136
Views
6
CrossRef citations to date
0
Altmetric
Review

Neoplasms of the hepatobiliary system: clinical presentation, molecular pathways and diagnostics

&
Pages 883-895 | Published online: 09 Jan 2014

References

  • Parkin DM. Global cancer statistics in the year 2000. Lancet Oncol.2(9), 533–543 (2001).
  • Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J. Clin.55(2), 74–108 (2005).
  • Schutte K, Bornschein J, Malfertheiner P. Hepatocellular carcinoma – epidemiological trends and risk factors. Dig. Dis.27(2), 80–92 (2009).
  • El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology132(7), 2557–2576 (2007).
  • Nordenstedt H, White DL, El-Serag HB. The changing pattern of epidemiology in hepatocellular carcinoma. Dig. Liver Dis.42(Suppl. 3), S206–S214 (2010).
  • El-Serag HB, Mason AC. Rising incidence of hepatocellular carcinoma in the United States. N. Engl. J. Med.340(10), 745–750 (1999).
  • El-Serag HB, Davila JA, Petersen NJ, McGlynn KA. The continuing increase in the incidence of hepatocellular carcinoma in the United States: an update. Ann. Intern. Med.139(10), 817–823 (2003).
  • Khan SA, Taylor-Robinson SD, Toledano MB et al. Changing international trends in mortality rates for liver, biliary and pancreatic tumours. J. Hepatol.37(6), 806–813 (2002).
  • Bosetti C, Bianchi C, Negri E, Colombo M, La Vecchia C. Estimates of the incidence and prevalence of hepatocellular carcinoma in Italy in 2002 and projections for the years 2007 and 2012. Tumori95(1), 23–27 (2009).
  • Jepsen P, Vilstrup H, Tarone RE, Friis S, Sorensen HT. Incidence rates of hepatocellular carcinoma in the U.S. and Denmark: recent trends. Int. J. Cancer121(7), 1624–1626 (2007).
  • Beasley RP, Hwang LY, Lin CC, Chien CS. Hepatocellular carcinoma and hepatitis B virus. A prospective study of 22 707 men in Taiwan. Lancet2(8256), 1129–1133 (1981).
  • Lauer GM, Walker BD. Hepatitis C virus infection. N. Engl. J. Med.345(1), 41–52 (2001).
  • Blumberg BS, Larouze B, London WT et al. The relation of infection with the hepatitis B agent to primary hepatic carcinoma. Am. J. Pathol.81(3), 669–682 (1975).
  • Tsukuma H, Hiyama T, Tanaka S et al. Risk factors for hepatocellular carcinoma among patients with chronic liver disease. N. Engl. J. Med.328(25), 1797–1801 (1993).
  • Yang HI, Lu SN, Liaw YF et al. Hepatitis B e antigen and the risk of hepatocellular carcinoma. N. Engl. J. Med.347(3), 168–174 (2002).
  • Chen CJ, Yang HI, Su J et al. Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. JAMA295(1), 65–73 (2006).
  • Chang MH, Chen CJ, Lai MS et al. Universal hepatitis B vaccination in Taiwan and the incidence of hepatocellular carcinoma in children. Taiwan Childhood Hepatoma Study Group. N. Engl. J. Med.336(26), 1855–1859 (1997).
  • McGlynn KA, Tsao L, Hsing AW, Devesa SS, Fraumeni JF Jr. International trends and patterns of primary liver cancer. Int. J. Cancer94(2), 290–296 (2001).
  • Yu MC, Yuan JM. Environmental factors and risk for hepatocellular carcinoma. Gastroenterology127(5 Suppl. 1), S72–S78 (2004).
  • Tsai JF, Chuang LY, Jeng JE et al. Betel quid chewing as a risk factor for hepatocellular carcinoma: a case–control study. Br. J. Cancer84(5), 709–713 (2001).
  • Tsai JF, Jeng JE, Chuang LY et al. Habitual betel quid chewing and risk for hepatocellular carcinoma complicating cirrhosis. Medicine (Baltimore)83(3), 176–187 (2004).
  • Allen NE, Beral V, Casabonne D et al. Moderate alcohol intake and cancer incidence in women. J. Natl Cancer Inst.101(5), 296–305 (2009).
  • El-Serag HB, Tran T, Everhart JE. Diabetes increases the risk of chronic liver disease and hepatocellular carcinoma. Gastroenterology126(2), 460–468 (2004).
  • Chen CL, Yang HI, Yang WS et al. Metabolic factors and risk of hepatocellular carcinoma by chronic hepatitis B/C infection: a follow-up study in Taiwan. Gastroenterology135(1), 111–121 (2008).
  • Bhala N, Bhopal R, Brock A, Griffiths C, Wild S. Alcohol-related and hepatocellular cancer deaths by country of birth in England and Wales: analysis of mortality and census data. J. Public Health (Oxf.)31(2), 250–257 (2009).
  • Hart CL, Morrison DS, Batty GD, Mitchell RJ, Davey Smith G. Effect of body mass index and alcohol consumption on liver disease: analysis of data from two prospective cohort studies. Br. J. Med.340, c1240 (2010).
  • Ikai I, Arii S, Okazaki M et al. Report of the 17th Nationwide Follow-up Survey of Primary Liver Cancer in Japan. Hepatol. Res.37(9), 676–691 (2007).
  • Khan SA, Thomas HC, Davidson BR, Taylor-Robinson SD. Cholangiocarcinoma. Lancet366(9493), 1303–1314 (2005).
  • Sripa B, Pairojkul C. Cholangiocarcinoma: lessons from Thailand. Curr. Opin. Gastroenterol.24(3), 349–356 (2008).
  • Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J. Clin. Oncol.24(14), 2137–2150 (2006).
  • Jepsen P, Vilstrup H, Tarone RE, Friis S, Sorensen HT. Incidence rates of intra- and extrahepatic cholangiocarcinomas in Denmark from 1978 through 2002. J. Natl Cancer Inst.99(11), 895–897 (2007).
  • McLean L, Patel T. Racial and ethnic variations in the epidemiology of intrahepatic cholangiocarcinoma in the United States. Liver Int.26(9), 1047–1053 (2006).
  • Taylor-Robinson SD, Toledano MB, Arora S et al. Increase in mortality rates from intrahepatic cholangiocarcinoma in England and Wales 1968–1998. Gut48(6), 816–820 (2001).
  • Endo I, Gonen M, Yopp AC et al. Intrahepatic cholangiocarcinoma: rising frequency, improved survival, and determinants of outcome after resection. Ann. Surg.248(1), 84–96 (2008).
  • Nathan H, Pawlik TM, Wolfgang CL et al. Trends in survival after surgery for cholangiocarcinoma: a 30-year population-based SEER database analysis. J. Gastrointest. Surg.11(11), 1488–1496 (2007).
  • Patel T. Increasing incidence and mortality of primary intrahepatic cholangiocarcinoma in the United States. Hepatology33(6), 1353–1357 (2001).
  • Welzel TM, Graubard BI, El-Serag HB et al. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma in the United States: a population-based case–control study. Clin. Gastroenterol. Hepatol.5(10), 1221–1228 (2007).
  • West J, Wood H, Logan RF, Quinn M, Aithal GP. Trends in the incidence of primary liver and biliary tract cancers in England and Wales 1971–2001. Br. J. Cancer94(11), 1751–1758 (2006).
  • Chao TC, Greager JA. Primary carcinoma of the gallbladder. J. Surg. Oncol.46(4), 215–221 (1991).
  • Chapman RW. Risk factors for biliary tract carcinogenesis. Ann. Oncol.10(Suppl. 4), 308–311 (1999).
  • Lipsett PA, Pitt HA, Colombani PM, Boitnott JK, Cameron JL. Choledochal cyst disease. A changing pattern of presentation. Ann. Surg.220(5), 644–652 (1994).
  • Scott J, Shousha S, Thomas HC, Sherlock S. Bile duct carcinoma: a late complication of congenital hepatic fibrosis. Case report and review of literature. Am. J. Gastroenterol.73(2), 113–119 (1980).
  • Kobayashi M, Ikeda K, Saitoh S et al. Incidence of primary cholangiocellular carcinoma of the liver in Japanese patients with hepatitis C virus-related cirrhosis. Cancer88(11), 2471–2477 (2000).
  • Kurathong S, Lerdverasirikul P, Wongpaitoon V et al.Opisthorchis viverrini infection and cholangiocarcinoma. A prospective, case–controlled study. Gastroenterology89(1), 151–156 (1985).
  • Shin HR, Lee CU, Park HJ et al. Hepatitis B and C virus, Clonorchis sinensis for the risk of liver cancer: a case–control study in Pusan, Korea. Int. J. Epidemiol.25(5), 933–940 (1996).
  • Gores GJ. Early detection and treatment of cholangiocarcinoma. Liver Transpl.6(6 Suppl 2), S30–S34 (2000).
  • Burak K, Angulo P, Pasha TM et al. Incidence and risk factors for cholangiocarcinoma in primary sclerosing cholangitis. Am. J. Gastroenterol.99(3), 523–526 (2004).
  • Erichsen R, Jepsen P, Vilstrup H, Ekbom A, Sorensen HT. Incidence and prognosis of cholangiocarcinoma in Danish patients with and without inflammatory bowel disease: a national cohort study, 1978–2003. Eur. J. Epidemiol.24(9), 513–520 (2009).
  • Adenugba A, Khan SA, Taylor-Robinson SD et al. Polychlorinated biphenyls in bile of patients with biliary tract cancer. Chemosphere76(6), 841–846 (2009).
  • Kremsdorf D, Soussan P, Paterlini-Brechot P, Brechot C. Hepatitis B virus-related hepatocellular carcinoma: paradigms for viral-related human carcinogenesis. Oncogene25(27), 3823–3833 (2006).
  • Koike K. Hepatitis C virus contributes to hepatocarcinogenesis by modulating metabolic and intracellular signaling pathways. J. Gastroenterol. Hepatol.22(Suppl. 1), S108–S111 (2007).
  • Levrero M. Viral hepatitis and liver cancer: the case of hepatitis C. Oncogene25(27), 3834–3847 (2006).
  • Seitz HK, Stickel F. Molecular mechanisms of alcohol-mediated carcinogenesis. Nat. Rev. Cancer7(8), 599–612 (2007).
  • Matsuzaki K, Murata M, Yoshida K et al. Chronic inflammation associated with hepatitis C virus infection perturbs hepatic transforming growth factor β signaling, promoting cirrhosis and hepatocellular carcinoma. Hepatology46(1), 48–57 (2007).
  • Oda T, Tsuda H, Sakamoto M, Hirohashi S. Different mutations of the p53 gene in nodule-in-nodule hepatocellular carcinoma as a evidence for multistage progression. Cancer Lett.83(1–2), 197–200 (1994).
  • Oda T, Tsuda H, Scarpa A, Sakamoto M, Hirohashi S. p53 gene mutation spectrum in hepatocellular carcinoma. Cancer Res.52(22), 6358–6364 (1992).
  • Kondo Y, Kanai Y, Sakamoto M et al. β-catenin accumulation and mutation of exon 3 of the β-catenin gene in hepatocellular carcinoma. Jpn. J. Cancer Res.90(12), 1301–1309 (1999).
  • Yamada Y, Yoshimi N, Sugie S et al. β-catenin (Ctnnb1) gene mutations in diethylnitrosamine (DEN)-induced liver tumors in male F344 rats. Jpn. J. Cancer Res.90(8), 824–828 (1999).
  • Wong CM, Fan ST, Ng IO. β-catenin mutation and overexpression in hepatocellular carcinoma: clinicopathologic and prognostic significance. Cancer92(1), 136–145 (2001).
  • Prange W, Breuhahn K, Fischer F et al. β-catenin accumulation in the progression of human hepatocarcinogenesis correlates with loss of E-cadherin and accumulation of p53, but not with expression of conventional WNT-1 target genes. J. Pathol.201(2), 250–259 (2003).
  • Nejak-Bowen KN, Thompson MD, Singh S et al. Accelerated liver regeneration and hepatocarcinogenesis in mice overexpressing serine-45 mutant β-catenin. Hepatology51(5), 1603–1613 (2010).
  • Knight B, Yeoh GC, Husk KL et al. Impaired preneoplastic changes and liver tumor formation in tumor necrosis factor receptor type 1 knockout mice. J. Exp. Med.192(12), 1809–1818 (2000).
  • Sakurai T, Maeda S, Chang L, Karin M. Loss of hepatic NF-κB activity enhances chemical hepatocarcinogenesis through sustained c-Jun N-terminal kinase 1 activation. Proc. Natl Acad. Sci. USA103(28), 10544–10551 (2006).
  • Naugler WE, Sakurai T, Kim S et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science317(5834), 121–124 (2007).
  • Breuhahn K, Longerich T, Schirmacher P. Dysregulation of growth factor signaling in human hepatocellular carcinoma. Oncogene25(27), 3787–3800 (2006).
  • Tanabe KK, Lemoine A, Finkelstein DM et al. Epidermal growth factor gene functional polymorphism and the risk of hepatocellular carcinoma in patients with cirrhosis. JAMA299(1), 53–60 (2008).
  • Kern MA, Haugg AM, Koch AF et al. Cyclooxygenase-2 inhibition induces apoptosis signaling via death receptors and mitochondria in hepatocellular carcinoma. Cancer Res.66(14), 7059–7066 (2006).
  • Coulouarn C, Factor VM, Andersen JB, Durkin ME, Thorgeirsson SS. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene28(40), 3526–3536 (2009).
  • Ladeiro Y, Couchy G, Balabaud C et al. MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations. Hepatology47(6), 1955–1963 (2008).
  • Zucman-Rossi J. Molecular classification of hepatocellular carcinoma. Dig. Liver Dis.42(Suppl. 3), S235–S241 (2010).
  • International Consensus Group for Hepatocellular NeoplasiaThe International Consensus Group for Hepatocellular Neoplasia. Neoplasia TICGfH. Pathologic diagnosis of early hepatocellular carcinoma: a report of the International Consensus Group for Hepatocellular Neoplasia. Hepatology49(2), 658–664 (2009).
  • Takayama T, Makuuchi M, Hirohashi S et al. Early hepatocellular carcinoma as an entity with a high rate of surgical cure. Hepatology28(5), 1241–1246 (1998).
  • Roncalli M, Park YN, Di Tommaso L. Histopathological classification of hepatocellular carcinoma. Dig. Liver Dis.42(Suppl. 3), S228–S234 (2010).
  • Lee JS, Chu IS, Heo J et al. Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling. Hepatology40(3), 667–676 (2004).
  • Lee JS, Heo J, Libbrecht L et al. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat. Med.12(4), 410–416 (2006).
  • Villanueva A, Newell P, Chiang DY, Friedman SL, Llovet JM. Genomics and signaling pathways in hepatocellular carcinoma. Semin. Liver Dis.27(1), 55–76 (2007).
  • Lee S, Kim WH, Jung HY, Yang MH, Kang GH. Aberrant CpG island methylation of multiple genes in intrahepatic cholangiocarcinoma. Am. J. Pathol.161(3), 1015–1022 (2002).
  • Tischoff I, Markwarth A, Witzigmann H et al. Allele loss and epigenetic inactivation of 3p21.3 in malignant liver tumors. Int. J. Cancer115(5), 684–689 (2005).
  • Yang B, House MG, Guo M, Herman JG, Clark DP. Promoter methylation profiles of tumor suppressor genes in intrahepatic and extrahepatic cholangiocarcinoma. Mod. Pathol.18(3), 412–420 (2005).
  • Francis H, Alpini G, DeMorrow S. Recent advances in the regulation of cholangiocarcinoma growth. Am. J. Physiol. Gastrointest. Liver Physiol.299(1), G1–G9 (2010).
  • Berthiaume EP, Wands J. The molecular pathogenesis of cholangiocarcinoma. Semin. Liver Dis.24(2), 127–137 (2004).
  • Park J, Tadlock L, Gores GJ, Patel T. Inhibition of interleukin 6-mediated mitogen-activated protein kinase activation attenuates growth of a cholangiocarcinoma cell line. Hepatology30(5), 1128–1133 (1999).
  • Endo K, Yoon BI, Pairojkul C, Demetris AJ, Sirica AE. ERBB-2 overexpression and cyclooxygenase-2 up-regulation in human cholangiocarcinoma and risk conditions. Hepatology36(2), 439–450 (2002).
  • Lai GH, Zhang Z, Shen XN et al. erbB-2/neu transformed rat cholangiocytes recapitulate key cellular and molecular features of human bile duct cancer. Gastroenterology129(6), 2047–2057 (2005).
  • Wise C, Pilanthananond M, Perry BF et al. Mechanisms of biliary carcinogenesis and growth. World J. Gastroenterol.14(19), 2986–2989 (2008).
  • Boberg KM, Schrumpf E, Bergquist A et al. Cholangiocarcinoma in primary sclerosing cholangitis: K-ras mutations and Tp53 dysfunction are implicated in the neoplastic development. J. Hepatol.32(3), 374–380 (2000).
  • Jaiswal M, LaRusso NF, Burgart LJ, Gores GJ. Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangiocarcinoma cells by a nitric oxide-dependent mechanism. Cancer Res.60(1), 184–190 (2000).
  • Ishimura N, Bronk SF, Gores GJ. Inducible nitric oxide synthase up-regulates Notch-1 in mouse cholangiocytes: implications for carcinogenesis. Gastroenterology128(5), 1354–1368 (2005).
  • Taniai M, Higuchi H, Burgart LJ, Gores GJ. p16INK4a promoter mutations are frequent in primary sclerosing cholangitis (PSC) and PSC-associated cholangiocarcinoma. Gastroenterology123(4), 1090–1098 (2002).
  • Isomoto H, Kobayashi S, Werneburg NW et al. Interleukin 6 upregulates myeloid cell leukemia-1 expression through a STAT3 pathway in cholangiocarcinoma cells. Hepatology42(6), 1329–1338 (2005).
  • Kanno N, Lesage G, Phinizy JL et al. Stimulation of α2-adrenergic receptor inhibits cholangiocarcinoma growth through modulation of Raf-1 and B-Raf activities. Hepatology35(6), 1329–1340 (2002).
  • Marzioni M, Fava G, Benedetti A. Nervous and neuroendocrine regulation of the pathophysiology of cholestasis and of biliary carcinogenesis. World J. Gastroenterol.12(22), 3471–3480 (2006).
  • Fava G, Marucci L, Glaser S et al. γ-aminobutyric acid inhibits cholangiocarcinoma growth by cyclic AMP-dependent regulation of the protein kinase A/extracellular signal-regulated kinase 1/2 pathway. Cancer Res.65(24), 11437–11446 (2005).
  • Alvaro D, Barbaro B, Franchitto A et al. Estrogens and insulin-like growth factor 1 modulate neoplastic cell growth in human cholangiocarcinoma. Am. J. Pathol.169(3), 877–888 (2006).
  • Saar B, Kellner-Weldon F. Radiological diagnosis of hepatocellular carcinoma. Liver Int.28(2), 189–199 (2008).
  • Jelic S. Hepatocellular carcinoma: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann. Oncol.20(Suppl. 4), 41–45 (2009).
  • Choi BI, Takayasu K, Han MC. Small hepatocellular carcinomas and associated nodular lesions of the liver: pathology, pathogenesis, and imaging findings. AJR Am. J. Roentgenol.160(6), 1177–1187 (1993).
  • Colli A, Fraquelli M, Casazza G et al. Accuracy of ultrasonography, spiral CT, magnetic resonance, and α-fetoprotein in diagnosing hepatocellular carcinoma: a systematic review. Am. J. Gastroenterol.101(3), 513–523 (2006).
  • Bruix J, Sherman M. Management of hepatocellular carcinoma. Hepatology42(5), 1208–1236 (2005).
  • Imamura H, Sano K, Sugawara Y, Kokudo N, Makuuchi M. Assessment of hepatic reserve for indication of hepatic resection: decision tree incorporating indocyanine green test. J. Hepatobiliary Pancreat. Surg.12(1), 16–22 (2005).
  • Hashimoto M, Watanabe G. Hepatic parenchymal cell volume and the indocyanine green tolerance test. J. Surg. Res.92(2), 222–227 (2000).
  • Cheng SH, Lin YM, Chuang VP et al. A pilot study of three-dimensional conformal radiotherapy in unresectable hepatocellular carcinoma. J. Gastroenterol. Hepatol.14(10), 1025–1033 (1999).
  • Yeung YP, Lo CM, Liu CL et al. Natural history of untreated nonsurgical hepatocellular carcinoma. Am. J. Gastroenterol.100(9), 1995–2004 (2005).
  • El-Serag HB, Siegel AB, Davila JA et al. Treatment and outcomes of treating of hepatocellular carcinoma among Medicare recipients in the United States: a population-based study. J. Hepatol.44(1), 158–166 (2006).
  • Stuart KE, Anand AJ, Jenkins RL. Hepatocellular carcinoma in the United States. Prognostic features, treatment outcome, and survival. Cancer77(11), 2217–2222 (1996).
  • Nguyen VT, Law MG, Dore GJ. Hepatitis B-related hepatocellular carcinoma: epidemiological characteristics and disease burden. J. Viral Hepat.16(7), 453–463 (2009).
  • Llovet JM, Ricci S, Mazzaferro V et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med.359(4), 378–390 (2008).
  • Yachimski P, Pratt DS. Cholangiocarcinoma: natural history, treatment, and strategies for surveillance in high-risk patients. J. Clin. Gastroenterol.42(2), 178–190 (2008).
  • Blechacz B, Gores GJ. Cholangiocarcinoma: advances in pathogenesis, diagnosis, and treatment. Hepatology48(1), 308–321 (2008).
  • Nichols JC, Gores GJ, LaRusso NF et al. Diagnostic role of serum CA 19–9 for cholangiocarcinoma in patients with primary sclerosing cholangitis. Mayo Clin. Proc.68(9), 874–879 (1993).
  • Fisher A, Theise ND, Min A et al. CA19–9 does not predict cholangiocarcinoma in patients with primary sclerosing cholangitis undergoing liver transplantation. Liver Transpl. Surg.1(2), 94–98 (1995).
  • Qin XL, Wang ZR, Shi JS et al. Utility of serum CA19–9 in diagnosis of cholangiocarcinoma: in comparison with CEA. World J. Gastroenterol.10(3), 427–432 (2004).
  • Bjornsson E, Kilander A, Olsson R. CA 19–9 and CEA are unreliable markers for cholangiocarcinoma in patients with primary sclerosing cholangitis. Liver19(6), 501–508 (1999).
  • Chen CY, Shiesh SC, Tsao HC, Lin XZ. The assessment of biliary CA 125, CA 19–9 and CEA in diagnosing cholangiocarcinoma – the influence of sampling time and hepatolithiasis. Hepatogastroenterology49(45), 616–620 (2002).
  • Slattery JM, Sahani DV. What is the current state-of-the-art imaging for detection and staging of cholangiocarcinoma? Oncologist11(8), 913–922 (2006).
  • Robledo R, Muro A, Prieto ML. Extrahepatic bile duct carcinoma: US characteristics and accuracy in demonstration of tumors. Radiology198(3), 869–873 (1996).
  • Gleeson FC, Rajan E, Levy MJ et al. EUS-guided FNA of regional lymph nodes in patients with unresectable hilar cholangiocarcinoma. Gastrointest. Endosc.67(3), 438–443 (2008).
  • Petrowsky H, Wildbrett P, Husarik DB et al. Impact of integrated positron emission tomography and computed tomography on staging and management of gallbladder cancer and cholangiocarcinoma. J. Hepatol.45(1), 43–50 (2006).
  • Corvera CU, Blumgart LH, Akhurst T et al.18F-fluorodeoxyglucose positron emission tomography influences management decisions in patients with biliary cancer. J. Am. Coll. Surg.206(1), 57–65 (2008).
  • Casavilla FA, Marsh JW, Iwatsuki S et al. Hepatic resection and transplantation for peripheral cholangiocarcinoma. J. Am. Coll. Surg.185(5), 429–436 (1997).
  • Madariaga JR, Iwatsuki S, Todo S et al. Liver resection for hilar and peripheral cholangiocarcinomas: a study of 62 cases. Ann. Surg.227(1), 70–79 (1998).
  • Ohtsuka M, Ito H, Kimura F et al. Results of surgical treatment for intrahepatic cholangiocarcinoma and clinicopathological factors influencing survival. Br. J. Surg.89(12), 1525–1531 (2002).
  • Sherman M. αfetoprotein: an obituary. J. Hepatol.34(4), 603–605 (2001).
  • Okuda K. Early recognition of hepatocellular carcinoma. Hepatology6(4), 729–738 (1986).
  • Collier J, Sherman M. Screening for hepatocellular carcinoma. Hepatology27(1), 273–278 (1998).
  • Li D, Mallory T, Satomura S. AFP-L3: a new generation of tumor marker for hepatocellular carcinoma. Clin. Chim. Acta313(1–2), 15–19 (2001).
  • Aoyagi Y, Suzuki Y, Isemura M et al. The fucosylation index of α-fetoprotein and its usefulness in the early diagnosis of hepatocellular carcinoma. Cancer61(4), 769–774 (1988).
  • Taketa K. α-fetoprotein: reevaluation in hepatology. Hepatology12(6), 1420–1432 (1990).
  • Kuromatsu R, Tanaka M, Tanikawa K. Serum α-fetoprotein and lens culinaris agglutinin-reactive fraction of α-fetoprotein in patients with hepatocellular carcinoma. Liver13(4), 177–182 (1993).
  • Yamashita F, Tanaka M, Satomura S, Tanikawa K. Prognostic significance of Lens culinaris agglutinin A-reactive α-fetoprotein in small hepatocellular carcinomas. Gastroenterology111(4), 996–1001 (1996).
  • Marrero JA, Su GL, Wei W et al. Des-γ carboxyprothrombin can differentiate hepatocellular carcinoma from nonmalignant chronic liver disease in American patients. Hepatology37(5), 1114–1121 (2003).
  • Nakagawa T, Seki T, Shiro T et al. Clinicopathologic significance of protein induced vitamin K absence or antagonist II and α-fetoprotein in hepatocellular carcinoma. Int. J. Oncol.14(2), 281–286 (1999).
  • Malaguarnera G, Giordano M, Paladina I et al. Serum markers of hepatocellular carcinoma. Dig. Dis. Sci. DOI: 10.1007/s10620-010-1184-7 (2010) (Epub ahead of print).
  • Giannelli G, Marinosci F, Sgarra C et al. Clinical role of tissue and serum levels of SCCA antigen in hepatocellular carcinoma. Int. J. Cancer116(4), 579–583 (2005).
  • Hussein MM, Ibrahim AA, Abdella HM, Montasser IF, Hassan MI. Evaluation of serum squamous cell carcinoma antigen as a novel biomarker for diagnosis of hepatocellular carcinoma in Egyptian patients. Indian J. Cancer45(4), 167–172 (2008).
  • Hu JS, Wu DW, Liang S, Miao XY. GP73, a resident Golgi glycoprotein, is sensibility and specificity for hepatocellular carcinoma of diagnosis in a hepatitis B-endemic Asian population. Med. Oncol.27(2), 339–345 (2010).
  • Marrero JA, Romano PR, Nikolaeva O et al. GP73, a resident Golgi glycoprotein, is a novel serum marker for hepatocellular carcinoma. J. Hepatol.43(6), 1007–1012 (2005).
  • Li XM, Tang ZY, Qin LX, Zhou J, Sun HC. Serum vascular endothelial growth factor is a predictor of invasion and metastasis in hepatocellular carcinoma. J. Exp. Clin. Cancer Res.18(4), 511–517 (1999).
  • Yamagamim H, Moriyama M, Matsumura H et al. Serum concentrations of human hepatocyte growth factor is a useful indicator for predicting the occurrence of hepatocellular carcinomas in C-viral chronic liver diseases. Cancer95(4), 824–834 (2002).
  • Tokusashi Y, Asai K, Tamakawa S et al. Expression of NGF in hepatocellular carcinoma cells with its receptors in non-tumor cell components. Int. J. Cancer114(1), 39–45 (2005).
  • Zhu ZW, Friess H, Wang L et al. Enhanced glypican-3 expression differentiates the majority of hepatocellular carcinomas from benign hepatic disorders. Gut48(4), 558–564 (2001).
  • Wijnhoven BP, Dinjens WN, Pignatelli M. E-cadherin-catenin cell–cell adhesion complex and human cancer. Br. J. Surg.87(8), 992–1005 (2000).
  • Cheon YK, Cho YD, Moon JH et al. Diagnostic utility of interleukin-6 (IL-6) for primary bile duct cancer and changes in serum IL-6 levels following photodynamic therapy. Am. J. Gastroenterol.102(10), 2164–2170 (2007).
  • Matull WR, Andreola F, Loh A et al. MUC4 and MUC5AC are highly specific tumour-associated mucins in biliary tract cancer. Br. J. Cancer98(10), 1675–1681 (2008).
  • Bamrungphon W, Prempracha N, Bunchu N et al. A new mucin antibody/enzyme-linked lectin-sandwich assay of serum MUC5AC mucin for the diagnosis of cholangiocarcinoma. Cancer Lett.247(2), 301–308 (2007).
  • Alvaro D, Macarri G, Mancino MG et al. Serum and biliary insulin-like growth factor I and vascular endothelial growth factor in determining the cause of obstructive cholestasis. Ann. Intern. Med.147(7), 451–459 (2007).
  • Chen CY, Tsai WL, Wu HC et al. Diagnostic role of biliary pancreatic elastase for cholangiocarcinoma in patients with cholestasis. Clin. Chim. Acta390(1–2), 82–89 (2008).
  • Ayaru L, Stoeber K, Webster GJ et al. Diagnosis of pancreaticobiliary malignancy by detection of minichromosome maintenance protein 5 in bile aspirates. Br. J. Cancer98(9), 1548–1554 (2008).
  • Uenishi T, Yamazaki O, Tanaka H et al. Serum cytokeratin 19 fragment (CYFRA21-1) as a prognostic factor in intrahepatic cholangiocarcinoma. Ann. Surg. Oncol.15(2), 583–589 (2008).
  • Smith RA, Ghaneh P, Sutton R et al. Prognosis of resected ampullary adenocarcinoma by preoperative serum CA19-9 levels and platelet-lymphocyte ratio. J. Gastrointest. Surg.12(8), 1422–1428 (2008).
  • Ikeda T, Nakayama Y, Hamada Y et al. FU-MK-1 expression in human gallbladder carcinoma: an antigenic prediction marker for a better postsurgical prognosis. Am. J. Clin. Pathol.132(1), 111–117 (2009).
  • Zhao Y, Jia W, Sun W et al. Combination of improved 18O incorporation and multiple reaction monitoring: a universal strategy for absolute quantitative verification of serum candidate biomarkers of liver cancer. J. Proteome Res.9(6), 3319–3327 (2010).
  • Matos JM, Witzmann FA, Cummings OW, Schmidt CM. A pilot study of proteomic profiles of human hepatocellular carcinoma in the United States. J. Surg. Res.155(2), 237–243 (2009).
  • Wu FX, Wang Q, Zhang ZM et al. Identifying serological biomarkers of hepatocellular carcinoma using surface-enhanced laser desorption/ionization-time-of-flight mass spectroscopy. Cancer Lett.279(2), 163–170 (2009).
  • Zinkin NT, Grall F, Bhaskar K et al. Serum proteomics and biomarkers in hepatocellular carcinoma and chronic liver disease. Clin. Cancer Res.14(2), 470–477 (2008).
  • Chen Y, Zhou Y, Qiu S et al. Autoantibodies to tumor-associated antigens combined with abnormal α-fetoprotein enhance immunodiagnosis of hepatocellular carcinoma. Cancer Lett.289(1), 32–39 (2010).
  • Jia HL, Ye QH, Qin LX et al. Gene expression profiling reveals potential biomarkers of human hepatocellular carcinoma. Clin. Cancer Res.13(4), 1133–1139 (2007).
  • Bonney GK, Craven RA, Prasad R et al. Circulating markers of biliary malignancy: opportunities in proteomics? Lancet Oncol.9(2), 149–158 (2008).
  • Srisomsap C, Sawangareetrakul P, Subhasitanont P et al. Proteomic studies of cholangiocarcinoma and hepatocellular carcinoma cell secretomes. J. Biomed. Biotechnol.2010, 437143 (2010).
  • Wang X, Dai S, Zhang Z et al. Characterization of apolipoprotein A-I as a potential biomarker for cholangiocarcinoma. Eur. J. Cancer Care (Engl.)18(6), 625–635 (2009).
  • Liu L, Wang J, Liu B et al. Serum levels of variants of transthyretin down-regulation in cholangiocarcinoma. J. Cell. Biochem.104(3), 745–755 (2008).
  • Utispan K, Thuwajit P, Abiko Y et al. Gene expression profiling of cholangiocarcinoma-derived fibroblast reveals alterations related to tumor progression and indicates periostin as a poor prognostic marker. Mol. Cancer9, 13 (2010).
  • Ojima H, Yoshikawa D, Ino Y et al. Establishment of six new human biliary tract carcinoma cell lines and identification of MAGEH1 as a candidate biomarker for predicting the efficacy of gemcitabine treatment. Cancer Sci.101(4), 882–888 (2010).
  • Yamamoto Y, Kosaka N, Tanaka M et al. MicroRNA-500 as a potential diagnostic marker for hepatocellular carcinoma. Biomarkers14(7), 529–538 (2009).
  • Gramantieri L, Fornari F, Ferracin M et al. MicroRNA-221 targets Bmf in hepatocellular carcinoma and correlates with tumor multifocality. Clin. Cancer Res.15(16), 5073–5081 (2009).
  • Li W, Xie L, He X et al. Diagnostic and prognostic implications of microRNAs in human hepatocellular carcinoma. Int. J. Cancer123(7), 1616–1622 (2008).
  • Budhu A, Jia HL, Forgues M et al. Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology47(3), 897–907 (2008).
  • Kota J, Chivukula RR, O’Donnell KA et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell137(6), 1005–1017 (2009).
  • Gowda GA, Ijare OB, Shanaiah N, Bezabeh T. Combining nuclear magnetic resonance spectroscopy and mass spectrometry in biomarker discovery. Biomark. Med.3(3), 307–322 (2009).
  • Cox IJ, Sharif A, Cobbold JF, Thomas HC, Taylor-Robinson SD. Current and future applications of in vitro magnetic resonance spectroscopy in hepatobiliary disease. World J. Gastroenterol.12(30), 4773–4783 (2006).
  • Gowda GA, Zhang S, Gu H et al. Metabolomics-based methods for early disease diagnostics. Expert Rev. Mol. Diagn.8(5), 617–633 (2008).
  • Gao H, Lu Q, Liu X et al. Application of 1H NMR-based metabonomics in the study of metabolic profiling of human hepatocellular carcinoma and liver cirrhosis. Cancer Sci.100(4), 782–785 (2009).
  • Shariff MI, Ladep NG, Cox IJ et al. Characterization of urinary biomarkers of hepatocellular carcinoma using magnetic resonance spectroscopy in a Nigerian population. J. Proteome Res.9(2), 1096–1103 (2010).
  • Gowda GA. Human bile as a rich source of biomarkers for hepatopancreatobiliary cancers. Biomark. Med.4(2), 299–314 (2010).
  • Wu H, Xue R, Dong L et al. Metabolomic profiling of human urine in hepatocellular carcinoma patients using gas chromatography/mass spectrometry. Anal. Chim. Acta648(1), 98–104 (2009).
  • Khan SA, Cox IJ, Hamilton G, Thomas HC, Taylor-Robinson SD. In vivo and in vitro nuclear magnetic resonance spectroscopy as a tool for investigating hepatobiliary disease: a review of H and P MRS applications. Liver Int.25(2), 273–281 (2005).
  • Cox IJ, Menon DK, Sargentoni J et al. Phosphorus-31 magnetic resonance spectroscopy of the human liver using chemical shift imaging techniques. J. Hepatol.14(2–3), 265–275 (1992).
  • Cox IJ, Bell JD, Peden CJ et al.In vivo and in vitro31P magnetic resonance spectroscopy of focal hepatic malignancies. NMR Biomed.5(3), 114–120 (1992).
  • Bell JD, Cox IJ, Sargentoni J et al. A 31P and 1H-NMR investigation in vitro of normal and abnormal human liver. Biochim. Biophys. Acta1225(1), 71–77 (1993).
  • Soper R, Himmelreich U, Painter D et al. Pathology of hepatocellular carcinoma and its precursors using proton magnetic resonance spectroscopy and a statistical classification strategy. Pathology34(5), 417–422 (2002).
  • Dzik-Jurasz AS, Prescot AP, Leach MO, Collins DJ. Non-invasive study of human gall bladder bile in vivo using 1H-MR spectroscopy. Br. J. Radiol.76(907), 483–486 (2003).
  • Albiin N, Smith IC, Arnelo U et al. Detection of cholangiocarcinoma with magnetic resonance spectroscopy of bile in patients with and without primary sclerosing cholangitis. Acta Radiol.49(8), 855–862 (2008).
  • Paik S, Tang G, Shak S et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J. Clin. Oncol.24(23), 3726–3734 (2006).
  • Pak JH, Moon JH, Hwang SJ et al. Proteomic analysis of differentially expressed proteins in human cholangiocarcinoma cells treated with Clonorchis sinensis excretory–secretory products. J. Cell. Biochem.108(6), 1376–1388 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.