153
Views
11
CrossRef citations to date
0
Altmetric
Review

Molecular diagnosis of acute myeloid leukemia

&
Pages 993-1012 | Published online: 09 Jan 2014

References

  • Gaidzik V, Dohner K. Prognostic implications of gene mutations in acute myeloid leukemia with normal cytogenetics. Semin. Oncol.35(4), 346–355 (2008).
  • Chen J, Odenike O, Rowley JD. Leukaemogenesis: more than mutant genes. Nat. Rev. Cancer10(1), 23–36 (2010).
  • Eklund EA. Genomic analysis of acute myeloid leukemia: potential for new prognostic indicators. Curr. Opin. Hematol.17(2), 75–78 (2010).
  • Grimwade D, Hills RK. Independent prognostic factors for AML outcome. Hematol. Am. Soc. Hematol. Educ. Program385–395 (2009).
  • Dohner H, Estey EH, Amadori S et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood115(3), 453–474 (2010).
  • Swerdlow SH. International Agency for Research on Cancer. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. International Agency for Research on Cancer, Lyon, France (2008).
  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J. Clin.59(4), 225–249 (2009).
  • Sanz MA, Grimwade D, Tallman MS et al. Management of acute promyelocytic leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood113(9), 1875–1891 (2009).
  • Diverio D, Rossi V, Avvisati G et al. Early detection of relapse by prospective reverse transcriptase-polymerase chain reaction analysis of the PML/RARα fusion gene in patients with acute promyelocytic leukemia enrolled in the GIMEMA-AIEOP multicenter “AIDA” trial. GIMEMA-AIEOP Multicenter “AIDA” trial. Blood92(3), 784–789 (1998).
  • Mardis ER, Ding L, Dooling DJ et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N. Engl. J. Med.361(11), 1058–1066 (2009).
  • Ley TJ, Mardis ER, Ding L et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature456(7218), 66–72 (2008).
  • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell100(1), 57–70 (2000).
  • Kelly LM, Gilliland DG. Genetics of myeloid leukemias. Annu. Rev. Genomics Hum. Genet.3, 179–198 (2002).
  • Yamamoto Y, Kiyoi H, Nakano Y et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood97(8), 2434–2439 (2001).
  • Nakao M, Yokota S, Iwai T et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia10(12), 1911–1918 (1996).
  • Chan IT, Kutok JL, Williams IR et al. Conditional expression of oncogenic K-ras from its endogenous promoter induces a myeloproliferative disease. J. Clin. Invest.113(4), 528–538 (2004).
  • Kelly LM, Liu Q, Kutok JL, Williams IR, Boulton CL, Gilliland DG. FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant model. Blood99(1), 310–318 (2002).
  • Castilla LH, Garrett L, Adya N et al. The fusion gene Cbfb–MYH11 blocks myeloid differentiation and predisposes mice to acute myelomonocytic leukaemia. Nat. Genet.23(2), 144–146 (1999).
  • Yergeau DA, Hetherington CJ, Wang Q et al. Embryonic lethality and impairment of haematopoiesis in mice heterozygous for an AML1–ETO fusion gene. Nat. Genet.15(3), 303–306 (1997).
  • Schessl C, Rawat VP, Cusan M et al. The AML1–ETO fusion gene and the FLT3 length mutation collaborate in inducing acute leukemia in mice. J. Clin. Invest.115(8), 2159–2168 (2005).
  • Kelly LM, Kutok JL, Williams IR et al.PML/RARα and FLT3–ITD induce an APL-like disease in a mouse model. Proc. Natl Acad. Sci. USA99(12), 8283–8288 (2002).
  • Miyamoto T, Weissman IL, Akashi K. AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation. Proc. Natl Acad. Sci. USA97(13), 7521–7526 (2000).
  • Jurlander J, Caligiuri MA, Ruutu T et al. Persistence of the AML1/ETO fusion transcript in patients treated with allogeneic bone marrow transplantation for t(8;21) leukemia. Blood88(6), 2183–2191 (1996).
  • Wolff DJ, Bagg A, Cooley LD et al. Guidance for fluorescence in situ hybridization testing in hematologic disorders. J. Mol. Diagn.9(2), 134–143 (2007).
  • Rennert H, Golde T, Wilson RB, Spitalnik SL, Van Deerlin VM, Leonard DG. A novel, non-nested reverse-transcriptase polymerase chain reaction (RT-PCR) test for the detection of the t(15;17) translocation: a comparative study of RT-PCR cytogenetics, and fluorescence in situ hybridization. Mol. Diagn.4(3), 195–209 (1999).
  • Ahn JY, Seo K, Weinberg O, Boyd SD, Arber DA. A comparison of two methods for screening CEBPA mutations in patients with acute myeloid leukemia. J. Mol. Diagn.11(4), 319–323 (2009).
  • Aparicio SA, Huntsman DG. Does massively parallel DNA resequencing signify the end of histopathology as we know it? J. Pathol.220(2), 307–315 (2010).
  • Bacher U, Kohlmann A, Haferlach T. Perspectives of gene expression profiling for diagnosis and therapy in haematological malignancies. Brief Funct. Genomic Proteomic8(3), 184–193 (2009).
  • Radmacher MD, Marcucci G, Ruppert AS et al. Independent confirmation of a prognostic gene-expression signature in adult acute myeloid leukemia with a normal karyotype: a Cancer and Leukemia Group B study. Blood108(5), 1677–1683 (2006).
  • Bullinger L, Dohner K, Bair E et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N. Engl. J. Med.350(16), 1605–1616 (2004).
  • Verhaak RG, Wouters BJ, Erpelinck CA et al. Prediction of molecular subtypes in acute myeloid leukemia based on gene expression profiling. Haematologica94(1), 131–134 (2009).
  • Kohlmann A, Bullinger L, Thiede C et al. Gene expression profiling in AML with normal karyotype can predict mutations for molecular markers and allows novel insights into perturbed biological pathways. Leukemia24(6), 1216–1220 (2010).
  • Haferlach T, Kohlmann A, Wieczorek L et al. Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: report from the International Microarray Innovations in Leukemia Study Group. J. Clin. Oncol.28(15), 2529–2537 (2010).
  • Tiu RV, Gondek LP, O’Keefe CL et al. New lesions detected by single nucleotide polymorphism array-based chromosomal analysis have important clinical impact in acute myeloid leukemia. J. Clin. Oncol.27(31), 5219–5226 (2009).
  • Miller DT, Adam MP, Aradhya S et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am. J. Hum. Genet.86(5), 749–764 (2010).
  • Maciejewski JP, Tiu RV, O’Keefe C. Application of array-based whole genome scanning technologies as a cytogenetic tool in haematological malignancies. Br. J. Haematol.146(5), 479–488 (2009).
  • Marcucci G, Caligiuri MA, Bloomfield CD. Core binding factor (CBF) acute myeloid leukemia: is molecular monitoring by RT-PCR useful clinically? Eur. J. Haematol.71(3), 143–154 (2003).
  • Ommen HB, Schnittger S, Jovanovic JV et al. Strikingly different molecular relapse kinetics in NPM1c, PML–RARA, RUNX1–RUNX1T1, and CBFB–MYH11 acute myeloid leukemias. Blood115(2), 198–205 (2010).
  • Perea G, Lasa A, Aventin A et al. Prognostic value of minimal residual disease (MRD) in acute myeloid leukemia (AML) with favorable cytogenetics [t(8;21) and inv(16)]. Leukemia20(1), 87–94 (2006).
  • Langabeer SE, Walker H, Rogers JR et al. Incidence of AML1/ETO fusion transcripts in patients entered into the MRC AML trials. MRC Adult Leukaemia Working Party. Br. J. Haematol.99(4), 925–928 (1997).
  • Langabeer SE, Walker H, Gale RE et al. Frequency of CBF β/MYH11 fusion transcripts in patients entered into the U.K. MRC AML trials. The MRC Adult Leukaemia Working Party. Br. J. Haematol.96(4), 736–739 (1997).
  • Rowe D, Cotterill SJ, Ross FM et al. Cytogenetically cryptic AML1–ETO and CBF β–MYH11 gene rearrangements: incidence in 412 cases of acute myeloid leukaemia. Br. J. Haematol.111(4), 1051–1056 (2000).
  • Grimwade D, Biondi A, Mozziconacci MJ et al. Characterization of acute promyelocytic leukemia cases lacking the classic t(15;17): results of the European Working Party. Groupe Francais de Cytogenetique Hematologique, Groupe de Francais d’Hematologie Cellulaire, UK Cancer Cytogenetics Group and BIOMED 1 European Community-Concerted Action “Molecular Cytogenetic Diagnosis in Haematological Malignancies”. Blood96(4), 1297–1308 (2000).
  • Iqbal S, Grimwade D, Chase A et al. Identification of PML/RARα rearrangements in suspected acute promyelocytic leukemia using fluorescence in situ hybridization of bone marrow smears: a comparison with cytogenetics and RT-PCR in MRC ATRA trial patients. MRC Adult Leukaemia Working Party. Leukemia14(5), 950–953 (2000).
  • Yamamoto K, Hamaguchi H, Kobayashi M, Tsurukubo Y, Nagata K. Terminal deletion of the long arm of chromosome 9 in acute promyelocytic leukemia with a cryptic PML/RAR α rearrangement. Cancer Genet. Cytogenet.113(2), 120–125 (1999).
  • Gohring G, Lange K, Atta J, Krauter J, Holzer D, Schlegelberger B. Cryptic t(15;17) in a patient with AML M3 and a complex karyotype. Cancer Genet. Cytogenet.175(1), 77–80 (2007).
  • Mrozek K, Prior TW, Edwards C et al. Comparison of cytogenetic and molecular genetic detection of t(8;21) and inv(16) in a prospective series of adults with de novo acute myeloid leukemia: a Cancer and Leukemia Group B Study. J. Clin. Oncol.19(9), 2482–2492 (2001).
  • Salto-Tellez M, Shelat SG, Benoit B et al. Multiplex RT-PCR for the detection of leukemia-associated translocations: validation and application to routine molecular diagnostic practice. J. Mol. Diagn.5(4), 231–236 (2003).
  • Eyre TA, Ducluzeau F, Sneddon TP, Povey S, Bruford EA, Lush MJ. The HUGO Gene Nomenclature Database, 2006 updates. Nucleic Acids Res,34(Database issue), D319–D321 (2006).
  • Ogino S, Gulley ML, den Dunnen JT, Wilson RB. Standard mutation nomenclature in molecular diagnostics: practical and educational challenges. J. Mol. Diagn.9(1), 1–6 (2007).
  • den Dunnen JT, Antonarakis SE. Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Hum. Mutat.15(1), 7–12 (2000).
  • Heerema-McKenney A, Arber DA. Acute myeloid leukemia. Hematol. Oncol. Clin. North Am.23(4), 633–654 (2009).
  • Peterson LF, Zhang DE. The 8;21 translocation in leukemogenesis. Oncogene23(24), 4255–4262 (2004).
  • Shigesada K, van de Sluis B, Liu PP. Mechanism of leukemogenesis by the inv(16) chimeric gene CBFB/PEBP2B–MHY11.Oncogene23(24), 4297–4307 (2004).
  • Grimwade D, Hills RK, Moorman AV et al. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities amongst 5,876 younger adult patients treated in the UK Medical Research Council trials. Blood116(3), 354–365 (2010).
  • Guidez F, Ivins S, Zhu J, Soderstrom M, Waxman S, Zelent A. Reduced retinoic acid-sensitivities of nuclear receptor corepressor binding to PML– and PLZF–RARα underlie molecular pathogenesis and treatment of acute promyelocytic leukemia. Blood91(8), 2634–2642 (1998).
  • Borrow J, Goddard AD, Gibbons B et al. Diagnosis of acute promyelocytic leukaemia by RT-PCR: detection of PML–RARA and RARA–PML fusion transcripts. Br. J. Haematol.82(3), 529–540 (1992).
  • Dou Y, Hess JL. Mechanisms of transcriptional regulation by MLL and its disruption in acute leukemia. Int. J. Hematol.87(1), 10–18 (2008).
  • Keefe JG, Sukov WR, Knudson RA et al. Development of five dual-color, double-fusion fluorescence in situ hybridization assays for the detection of common MLL translocation partners. J. Mol. Diagn.12(4), 441–452 (2010).
  • Ageberg M, Drott K, Olofsson T, Gullberg U, Lindmark A. Identification of a novel and myeloid specific role of the leukemia-associated fusion protein DEK–NUP214 leading to increased protein synthesis. Genes Chromosomes Cancer47(4), 276–287 (2008).
  • Soekarman D, von Lindern M, Daenen S et al. The translocation (6;9) (p23;q34) shows consistent rearrangement of two genes and defines a myeloproliferative disorder with specific clinical features. Blood79(11), 2990–2997 (1992).
  • Shearer BM, Knudson RA, Flynn HC, Ketterling RP. Development of a D-FISH method to detect DEK/CAN fusion resulting from t(6;9)(p23;q34) in patients with acute myelogenous leukemia. Leukemia19(1), 126–131 (2005).
  • Nucifora G, Laricchia-Robbio L, Senyuk V. EVI1 and hematopoietic disorders: history and perspectives. Gene368, 1–11 (2006).
  • Shearer BM, Sukov WR, Flynn HC, Knudson RA, Ketterling RP. Development of a dual-color, double fusion FISH assay to detect RPN1/EVI1 gene fusion associated with inv(3), t(3;3), and ins(3;3) in patients with myelodysplasia and acute myeloid leukemia. Am. J. Hematol.85(8), 569–574 (2010).
  • Ma Z, Morris SW, Valentine V et al. Fusion of two novel genes, RBM15 and MKL1, in the t(1;22)(p13;q13) of acute megakaryoblastic leukemia. Nat. Genet.28(3), 220–221 (2001).
  • Mercher T, Raffel GD, Moore SA et al. The OTT–MAL fusion oncogene activates RBPJ-mediated transcription and induces acute megakaryoblastic leukemia in a knockin mouse model. J. Clin. Invest.119(4), 852–864 (2009).
  • Ballerini P, Blaise A, Mercher T et al. A novel real-time RT-PCR assay for quantification of OTT–MAL fusion transcript reliable for diagnosis of t(1;22) and minimal residual disease (MRD) detection. Leukemia17(6), 1193–1196 (2003).
  • Duchayne E, Fenneteau O, Pages MP et al. Acute megakaryoblastic leukaemia: a national clinical and biological study of 53 adult and childhood cases by the Groupe Francais d’Hematologie Cellulaire (GFHC). Leuk. Lymphoma44(1), 49–58 (2003).
  • Meani N, Alcalay M. Role of nucleophosmin in acute myeloid leukemia. Expert Rev. Anticancer Ther.9(9), 1283–1294 (2009).
  • Grisendi S, Mecucci C, Falini B, Pandolfi PP. Nucleophosmin and cancer. Nat. Rev. Cancer6(7), 493–505 (2006).
  • Borer RA, Lehner CF, Eppenberger HM, Nigg EA. Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell56(3), 379–390 (1989).
  • Thiede C, Koch S, Creutzig E et al. Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood107(10), 4011–4020 (2006).
  • Schnittger S, Schoch C, Kern W et al. Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood106(12), 3733–3739 (2005).
  • Dohner K, Schlenk RF, Habdank M et al. Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations. Blood106(12), 3740–3746 (2005).
  • Boissel N, Renneville A, Biggio V et al. Prevalence, clinical profile, and prognosis of NPM mutations in AML with normal karyotype. Blood106(10), 3618–3620 (2005).
  • Falini B, Mecucci C, Tiacci E et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N. Engl. J. Med.352(3), 254–266 (2005).
  • Falini B, Sportoletti P, Martelli MP. Acute myeloid leukemia with mutated NPM1: diagnosis, prognosis and therapeutic perspectives. Curr. Opin. Oncol.21(6), 573–581 (2009).
  • Gruszka AM, Lavorgna S, Irno Consalvo M et al. A monoclonal antibody against mutated nucleophosmin1 for the molecular diagnosis of acute myeloid leukemias. Blood116, 2096–2102 (2010).
  • Wertheim G, Bagg A. Nucleophosmin (NPM1) mutations in acute myeloid leukemia: an ongoing (cytoplasmic) tale of dueling mutations and duality of molecular genetic testing methodologies. J. Mol. Diagn.10(3), 198–202 (2008).
  • Gorello P, Cazzaniga G, Alberti F et al. Quantitative assessment of minimal residual disease in acute myeloid leukemia carrying nucleophosmin (NPM1) gene mutations. Leukemia20(6), 1103–1108 (2006).
  • Preudhomme C, Sagot C, Boissel N et al. Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association (ALFA). Blood100(8), 2717–2723 (2002).
  • Lin LI, Chen CY, Lin DT et al. Characterization of CEBPA mutations in acute myeloid leukemia: most patients with CEBPA mutations have biallelic mutations and show a distinct immunophenotype of the leukemic cells. Clin. Cancer Res.11(4), 1372–1379 (2005).
  • Pabst T, Mueller BU, Zhang P et al. Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-α (C/EBPα), in acute myeloid leukemia. Nat. Genet.27(3), 263–270 (2001).
  • Gombart AF, Hofmann WK, Kawano S et al. Mutations in the gene encoding the transcription factor CCAAT/enhancer binding protein α in myelodysplastic syndromes and acute myeloid leukemias. Blood99(4), 1332–1340 (2002).
  • Wouters BJ, Lowenberg B, Erpelinck-Verschueren CA, van Putten WL, Valk PJ, Delwel R. Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome. Blood113(13), 3088–3091 (2009).
  • Hackanson B, Bennett KL, Brena RM et al. Epigenetic modification of CCAAT/enhancer binding protein α expression in acute myeloid leukemia. Cancer Res.68(9), 3142–3151 (2008).
  • Figueroa ME, Wouters BJ, Skrabanek L et al. Genome-wide epigenetic analysis delineates a biologically distinct immature acute leukemia with myeloid/T-lymphoid features. Blood113(12), 2795–2804 (2009).
  • Thiede C, Steudel C, Mohr B et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood99(12), 4326–4335 (2002).
  • Meshinchi S, Appelbaum FR. Structural and functional alterations of FLT3 in acute myeloid leukemia. Clin. Cancer Res.15(13), 4263–4269 (2009).
  • Mead AJ, Linch DC, Hills RK, Wheatley K, Burnett AK, Gale RE. FLT3 tyrosine kinase domain mutations are biologically distinct from and have a significantly more favorable prognosis than FLT3 internal tandem duplications in patients with acute myeloid leukemia. Blood110(4), 1262–1270 (2007).
  • Breitenbuecher F, Markova B, Kasper S et al. A novel molecular mechanism of primary resistance to FLT3-kinase inhibitors in AML. Blood113(17), 4063–4073 (2009).
  • Hohenstein P, Hastie ND. The many facets of the Wilms’ tumour gene, WT1. Hum. Mol. Genet.15(Spec. No. 2), R196–R201 (2006).
  • Summers K, Stevens J, Kakkas I et al. Wilms’ tumour 1 mutations are associated with FLT3-ITD and failure of standard induction chemotherapy in patients with normal karyotype AML. Leukemia21(3), 550–551; author reply 552 (2007).
  • King-Underwood L, Renshaw J, Pritchard-Jones K. Mutations in the Wilms’ tumor gene WT1 in leukemias. Blood87(6), 2171–2179 (1996).
  • Gaidzik VI, Schlenk RF, Moschny S et al. Prognostic impact of WT1 mutations in cytogenetically normal acute myeloid leukemia: a study of the German–Austrian AML Study Group. Blood113(19), 4505–4511 (2009).
  • Paschka P, Marcucci G, Ruppert AS et al. Wilms’ tumor 1 gene mutations independently predict poor outcome in adults with cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J. Clin. Oncol.26(28), 4595–4602 (2008).
  • Virappane P, Gale R, Hills R et al. Mutation of the Wilms’ tumor 1 gene is a poor prognostic factor associated with chemotherapy resistance in normal karyotype acute myeloid leukemia: the United Kingdom Medical Research Council Adult Leukaemia Working Party. J. Clin. Oncol.26(33), 5429–5435 (2008).
  • Damm F, Heuser M, Morgan M et al. Single nucleotide polymorphism in the mutational hotspot of WT1 predicts a favorable outcome in patients with cytogenetically normal acute myeloid leukemia. J. Clin. Oncol.28(4), 578–585 (2010).
  • Renneville A, Roumier C, Biggio V et al. Cooperating gene mutations in acute myeloid leukemia: a review of the literature. Leukemia22(5), 915–931 (2008).
  • Cairoli R, Beghini A, Grillo G et al. Prognostic impact of c-KIT mutations in core binding factor leukemias: an Italian retrospective study. Blood107(9), 3463–3468 (2006).
  • Paschka P, Marcucci G, Ruppert AS et al. Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21): a Cancer and Leukemia Group B Study. J. Clin. Oncol.24(24), 3904–3911 (2006).
  • Pollard JA, Alonzo TA, Gerbing RB et al. Prevalence and prognostic significance of KIT mutations in pediatric patients with core binding factor AML enrolled on serial pediatric cooperative trials for de novo AML. Blood115(12), 2372–2379 (2010).
  • Chandra P, Luthra R, Zuo Z et al. Acute myeloid leukemia with t(9;11) (p21–22;q23): common properties of dysregulated ras pathway signaling and genomic progression characterize de novo and therapy-related cases. Am. J. Clin. Pathol.133(5), 686–693 (2010).
  • Basecke J, Whelan JT, Griesinger F, Bertrand FE. The MLL partial tandem duplication in acute myeloid leukaemia. Br. J. Haematol.135(4), 438–449 (2006).
  • Schlenk RF, Dohner K, Krauter J et al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N. Engl. J. Med.358(18), 1909–1918 (2008).
  • Schnittger S, Kinkelin U, Schoch C et al. Screening for MLL tandem duplication in 387 unselected patients with AML identify a prognostically unfavorable subset of AML. Leukemia14(5), 796–804 (2000).
  • Weisser M, Kern W, Schoch C, Hiddemann W, Haferlach T, Schnittger S. Risk assessment by monitoring expression levels of partial tandem duplications in the MLL gene in acute myeloid leukemia during therapy. Haematologica90(7), 881–889 (2005).
  • Schnittger S, Wormann B, Hiddemann W, Griesinger F. Partial tandem duplications of the MLL gene are detectable in peripheral blood and bone marrow of nearly all healthy donors. Blood92(5), 1728–1734 (1998).
  • Tang JL, Hou HA, Chen CY et al.AML1/RUNX1 mutations in 470 adult patients with de novo acute myeloid leukemia: prognostic implication and interaction with other gene alterations. Blood114(26), 5352–5361 (2009).
  • Ward PS, Patel J, Wise DR et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting α-ketoglutarate to 2-hydroxyglutarate. Cancer Cell17(3), 225–234 (2010).
  • Marcucci G, Maharry K, Wu YZ et al.IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J. Clin. Oncol.28(14), 2348–2355 (2010).
  • Abbas S, Lugthart S, Kavelaars FG et al. Acquired mutations in the genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid leukemia (AML): prevalence and prognostic value. Blood DOI: 10.1182/blood-2009-11-250878 (2010) (Epub ahead of print).
  • Thol F, Damm F, Wagner K et al. Prognostic impact of IDH2 mutations in cytogenetically normal acute myeloid leukemia. Blood116(4), 614–616 (2010).
  • Chou WC, Hou HA, Chen CY et al. Distinct clinical and biologic characteristics in adult acute myeloid leukemia bearing the isocitrate dehydrogenase 1 mutation. Blood115(14), 2749–2754 (2010).
  • Boultwood J, Perry J, Pellagatti A et al. Frequent mutation of the polycomb-associated gene ASXL1 in the myelodysplastic syndromes and in acute myeloid leukemia. Leukemia24(5), 1062–1065 (2010).
  • Fisher CL, Pineault N, Brookes C et al. Loss-of-function additional sex combs like 1 mutations disrupt hematopoiesis but do not cause severe myelodysplasia or leukemia. Blood115(1), 38–46 (2010).
  • Carbuccia N, Murati A, Trouplin V et al. Mutations of ASXL1 gene in myeloproliferative neoplasms. Leukemia23(11), 2183–2186 (2009).
  • Delhommeau F, Dupont S, Della Valle V et al. Mutation in TET2 in myeloid cancers. N. Engl. J. Med.360(22), 2289–2301 (2009).
  • Abdel-Wahab O, Mullally A, Hedvat C et al. Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood114(1), 144–147 (2009).
  • Nibourel O, Kosmider O, Cheok M et al. Incidence and prognostic value of TET2 alterations in de novo acute myeloid leukemia (AML) achieving complete remission. Blood116(7), 1132–1135 (2010).
  • Bacher U, Haferlach C, Schnittger S, Kohlmann A, Kern W, Haferlach T. Mutations of the TET2 and CBL genes: novel molecular markers in myeloid malignancies. Ann. Hematol.89(7), 643–652 (2010).
  • Sargin B, Choudhary C, Crosetto N et al. Flt3-dependent transformation by inactivating c-Cbl mutations in AML. Blood110(3), 1004–1012 (2007).
  • Reindl C, Quentmeier H, Petropoulos K et al.CBL exon 8/9 mutants activate the FLT3 pathway and cluster in core binding factor/11q deletion acute myeloid leukemia/myelodysplastic syndrome subtypes. Clin. Cancer Res.15(7), 2238–2247 (2009).
  • Abbas S, Rotmans G, Lowenberg B, Valk PJ. Exon 8 splice site mutations in the gene encoding the E3-ligase CBL are associated with core binding factor acute myeloid leukemias. Haematologica93(10), 1595–1597 (2008).
  • Baldus CD, Mrozek K, Marcucci G, Bloomfield CD. Clinical outcome of de novo acute myeloid leukaemia patients with normal cytogenetics is affected by molecular genetic alterations: a concise review. Br. J. Haematol.137(5), 387–400 (2007).
  • Marcucci G, Baldus CD, Ruppert AS et al. Overexpression of the ETS-related gene, ERG, predicts a worse outcome in acute myeloid leukemia with normal karyotype: a Cancer and Leukemia Group B study. J. Clin. Oncol.23(36), 9234–9242 (2005).
  • Ichikawa H, Shimizu K, Hayashi Y, Ohki M. An RNA-binding protein gene, TLS/FUS, is fused to ERG in human myeloid leukemia with t(16;21) chromosomal translocation. Cancer Res.54(11), 2865–2868 (1994).
  • Sorensen PH, Lessnick SL, Lopez-Terrada D, Liu XF, Triche TJ, Denny CT. A second Ewing’s sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG. Nat. Genet.6(2), 146–151 (1994).
  • Baldus CD, Liyanarachchi S, Mrozek K et al. Acute myeloid leukemia with complex karyotypes and abnormal chromosome 21: amplification discloses overexpression of APP, ETS2, and ERG genes. Proc. Natl Acad. Sci. USA101(11), 3915–3920 (2004).
  • Rainis L, Toki T, Pimanda JE et al. The proto-oncogene ERG in megakaryoblastic leukemias. Cancer Res.65(17), 7596–7602 (2005).
  • Sutton AL, Zhang X, Ellison TI, Macdonald PN. The 1,25(OH)2D3-regulated transcription factor MN1 stimulates vitamin D receptor-mediated transcription and inhibits osteoblastic cell proliferation. Mol. Endocrinol.19(9), 2234–2244 (2005).
  • van Wely KH, Molijn AC, Buijs A et al. The MN1 oncoprotein synergizes with coactivators RAC3 and p300 in RAR-RXR-mediated transcription. Oncogene22(5), 699–709 (2003).
  • Buijs A, Sherr S, van Baal S et al. Translocation (12;22) (p13;q11) in myeloproliferative disorders results in fusion of the ETS-like TEL gene on 12p13 to the MN1 gene on 22q11. Oncogene10(8), 1511–1519 (1995).
  • Langer C, Marcucci G, Holland KB et al. Prognostic importance of MN1 transcript levels, and biologic insights from MN1-associated gene and microRNA expression signatures in cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J. Clin. Oncol.27(19), 3198–3204 (2009).
  • Heuser M, Beutel G, Krauter J et al. High meningioma 1 (MN1) expression as a predictor for poor outcome in acute myeloid leukemia with normal cytogenetics. Blood108(12), 3898–3905 (2006).
  • Heuser M, Argiropoulos B, Kuchenbauer F et al. MN1 overexpression induces acute myeloid leukemia in mice and predicts ATRA resistance in patients with AML. Blood110(5), 1639–1647 (2007).
  • Carella C, Bonten J, Sirma S et al. MN1 overexpression is an important step in the development of inv(16) AML. Leukemia21(8), 1679–1690 (2007).
  • Tanner SM, Austin JL, Leone G et al. BAALC, the human member of a novel mammalian neuroectoderm gene lineage, is implicated in hematopoiesis and acute leukemia. Proc. Natl Acad. Sci. USA98(24), 13901–13906 (2001).
  • Heesch S, Schlee C, Neumann M et al. BAALC-associated gene expression profiles define IGFBP7 as a novel molecular marker in acute leukemia. Leukemia24(8), 1429–1436 (2010).
  • Bienz M, Ludwig M, Leibundgut EO et al. Risk assessment in patients with acute myeloid leukemia and a normal karyotype. Clin. Cancer Res.11(4), 1416–1424 (2005).
  • Brunet A, Bonni A, Zigmond MJ et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell96(6), 857–868 (1999).
  • Kops GJ, Dansen TB, Polderman PE et al. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature419(6904), 316–321 (2002).
  • Fei M, Zhao Y, Wang Y et al. Low expression of Foxo3a is associated with poor prognosis in ovarian cancer patients. Cancer Invest.27(1), 52–59 (2009).
  • Shukla S, Shukla M, Maclennan GT, Fu P, Gupta S. Deregulation of FOXO3A during prostate cancer progression. Int. J. Oncol.34(6), 1613–1620 (2009).
  • Myatt SS, Lam EW. The emerging roles of forkhead box (Fox) proteins in cancer. Nat. Rev. Cancer7(11), 847–859 (2007).
  • Scheijen B, Ngo HT, Kang H, Griffin JD. FLT3 receptors with internal tandem duplications promote cell viability and proliferation by signaling through Foxo proteins. Oncogene23(19), 3338–3349 (2004).
  • Bernard OA, Hillion J, Le Coniat M, Berger R. A new case of translocation t(6;11)(q21;q23) in a therapy-related acute myeloid leukemia resulting in an MLL–AF6q21 fusion. Genes Chromosomes Cancer22(3), 221–224 (1998).
  • Hillion J, Le Coniat M, Jonveaux P, Berger R, Bernard OA. AF6q21, a novel partner of the MLL gene in t(6;11)(q21;q23), defines a forkhead transcriptional factor subfamily. Blood90(9), 3714–3719 (1997).
  • Santamaria CM, Chillon MC, Garcia-Sanz R et al. High FOXO3a expression is associated with a poorer prognosis in AML with normal cytogenetics. Leuk. Res.33(12), 1706–1709 (2009).
  • Barjesteh van Waalwijk van Doorn-Khosrovani S, Erpelinck C, van Putten WL et al. High EVI1 expression predicts poor survival in acute myeloid leukemia: a study of 319 de novo AML patients. Blood101(3), 837–845 (2003).
  • Goyama S, Kurokawa M. Evi-1 as a critical regulator of leukemic cells. Int. J. Hematol.91(5), 753–757 (2010).
  • Groschel S, Lugthart S, Schlenk RF et al. High EVI1 expression predicts outcome in younger adult patients with acute myeloid leukemia and is associated with distinct cytogenetic abnormalities. J. Clin. Oncol.28(12), 2101–2107 (2010).
  • Balgobind BV, Lugthart S, Hollink IH et al. EVI1 overexpression in distinct subtypes of pediatric acute myeloid leukemia. Leukemia24(5), 942–949 (2010).
  • Lugthart S, van Drunen E, van Norden Y et al. High EVI1 levels predict adverse outcome in acute myeloid leukemia: prevalence of EVI1 overexpression and chromosome 3q26 abnormalities underestimated. Blood111(8), 4329–4337 (2008).
  • Cilloni D, Renneville A, Hermitte F et al. Real-time quantitative polymerase chain reaction detection of minimal residual disease by standardized WT1 assay to enhance risk stratification in acute myeloid leukemia: a European LeukemiaNet study. J. Clin. Oncol.27(31), 5195–5201 (2009).
  • van der Kemp PA, Thomas D, Barbey R, de Oliveira R, Boiteux S. Cloning and expression in Escherichia coli of the OGG1 gene of Saccharomyces cerevisiae, which codes for a DNA glycosylase that excises 7,8-dihydro-8-oxoguanine and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine. Proc. Natl Acad. Sci. USA93(11), 5197–5202 (1996).
  • Nishioka K, Ohtsubo T, Oda H et al. Expression and differential intracellular localization of two major forms of human 8-oxoguanine DNA glycosylase encoded by alternatively spliced OGG1 mRNAs. Mol. Biol. Cell10(5), 1637–1652 (1999).
  • Liddiard K, Hills R, Burnett AK, Darley RL, Tonks A. OGG1 is a novel prognostic indicator in acute myeloid leukaemia. Oncogene29(13), 2005–2012 (2010).
  • Breems DA, Van Putten WL, De Greef GE et al. Monosomal karyotype in acute myeloid leukemia: a better indicator of poor prognosis than a complex karyotype. J. Clin. Oncol.26(29), 4791–4797 (2008).
  • Liu S, Shen T, Huynh L et al. Interplay of RUNX1/MTG8 and DNA methyltransferase 1 in acute myeloid leukemia. Cancer Res.65(4), 1277–1284 (2005).
  • Gelmetti V, Zhang J, Fanelli M, Minucci S, Pelicci PG, Lazar MA. Aberrant recruitment of the nuclear receptor corepressor–histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Mol. Cell. Biol.18(12), 7185–7191 (1998).
  • Figueroa ME, Lugthart S, Li Y et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell17(1), 13–27 (2010).
  • Miranda KC, Huynh T, Tay Y et al. A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell126(6), 1203–1217 (2006).
  • Kluiver J, Kroesen BJ, Poppema S, van den Berg A. The role of microRNAs in normal hematopoiesis and hematopoietic malignancies. Leukemia20(11), 1931–1936 (2006).
  • Hudder A, Novak RF. miRNAs: effectors of environmental influences on gene expression and disease. Toxicol. Sci.103(2), 228–240 (2008).
  • Li Z, Lu J, Sun M et al. Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc. Natl Acad. Sci. USA105(40), 15535–15540 (2008).
  • Marcucci G, Radmacher MD, Mrozek K, Bloomfield CD. MicroRNA expression in acute myeloid leukemia. Curr. Hematol. Malig. Rep.4(2), 83–88 (2009).
  • Jongen-Lavrencic M, Sun SM, Dijkstra MK, Valk PJ, Lowenberg B. MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia. Blood111(10), 5078–5085 (2008).
  • Garzon R, Garofalo M, Martelli MP et al. Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc. Natl Acad. Sci. USA105(10), 3945–3950 (2008).
  • Garzon R, Volinia S, Liu CG et al. MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood111(6), 3183–3189 (2008).
  • Bruder CE, Piotrowski A, Gijsbers AA et al. Phenotypically concordant and discordant monozygotic twins display different DNA copy-number-variation profiles. Am. J. Hum. Genet.82(3), 763–771 (2008).
  • Walter MJ, Payton JE, Ries RE et al. Acquired copy number alterations in adult acute myeloid leukemia genomes. Proc. Natl Acad. Sci. USA106(31), 12950–12955 (2009).
  • Fitzgibbon J, Smith LL, Raghavan M et al. Association between acquired uniparental disomy and homozygous gene mutation in acute myeloid leukemias. Cancer Res.65(20), 9152–9154 (2005).
  • Raghavan M, Smith LL, Lillington DM et al. Segmental uniparental disomy is a commonly acquired genetic event in relapsed acute myeloid leukemia. Blood112(3), 814–821 (2008).
  • Akagi T, Ogawa S, Dugas M et al. Frequent genomic abnormalities in acute myeloid leukemia/myelodysplastic syndrome with normal karyotype. Haematologica94(2), 213–223 (2009).
  • Stegmaier K. Genomic approaches to small molecule discovery. Leukemia23(7), 1226–1235 (2009).
  • Ma W, Kantarjian H, Zhang X et al. Detection of nucleophosmin gene mutations in plasma from patients with acute myeloid leukemia: clinical significance and implications. Cancer Biomark.5(1), 51–58 (2009).
  • Heinrichs S, Li C, Look AT. SNP array analysis in hematologic malignancies: avoiding false discoveries. Blood115(21), 4157–4161 (2010).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.