96
Views
12
CrossRef citations to date
0
Altmetric
Perspective

Urine molecular profiling distinguishes health and disease: new methods in diagnostics? Focus on UPLC–MS

Pages 383-391 | Published online: 09 Jan 2014

References

  • Wu X. Urinalysis: a review of methods and procedures. Crit. Care Nurs. Clin. North Am.22, 121–128 (2010).
  • Hallbach J. [Clinical Chemistry for Beginners]. Georg Thieme Verlag, Stuttgart, Germany, 111 (2001).
  • Julian BA, Suzuki H, Suzuki Y, Tomino Y, Spasovski G, Novak J. Sources of urinary proteins and their analysis by urinary proteomics for the detection of biomarkers of disease. Proteomics Clin. Appl.3, 1029–1043 (2009).
  • Teunissen SF, Rosing H, Schinkel AH, Schellens JHM, Beijnen JH. Bioanalytical methods for determination of tamoxifen and its Phase I metabolites: a review. Anal. Chim. Acta683, 21–37 (2010).
  • Barroso M, Gallardo E, Queiroz JA. Bioanalytical methods for the determination of cocaine and metabolites in human biological samples. Bioanalysis1, 977–1000 (2009).
  • Janicka M, Kot-Wasik A, Namiesnik J. Analytical procedures for determination of cocaine and its metabolites in biological samples. Trends Analyt. Chem.29, 209–224 (2010).
  • Taskeen A, Naeem I. Analysis of bisphenol A in blood and urine samples: a mini review. Asian J. Chem.22, 4136–4140 (2010).
  • Oledzka I, Baczek T. Urinary steroids measured by modern separation techniques and applied as biomarkers in stress studies. Curr. Pharm. Anal.6, 151–163 (2010).
  • Stanczyk FZ, Clarke NJ. Advantages and challenges of mass spectrometry assays for steroid hormones. J. Steroid Biochem. Mol. Biol.121, 491–495 (2010).
  • Krone N, Hughes BA, Lavery GG, Stewart PM, Arlt W, Shackleton CHL. Gas chromatography/mass spectrometry (GC/MS) remains a pre-eminent discovery tool in clinical steroid investigations even in the era of fast liquid chromatography tandem mass spectrometry (LC/MS/MS). J. Steroid Biochem. Mol. Biol.121, 496–504 (2010).
  • Shrivastav PS, Buha SM, Sanyal M. Detection and quantitation of β-blockers in plasma and urine. Bioanalysis2, 263–276 (2010).
  • Guichardant M, Lagarde M. Analysis of biomarkers from lipid peroxidation: a comparative study. Eur. J. Lipid Sci. Technol.111, 75–82 (2009).
  • Dudley E. Analysis of urinary modified nucleosides by mass spectrometry. In: Mass Spectrometry of Nucleosides and Nucleic Acids. JH Banoub, PA Limbach (Eds). CRC Press, FL, USA, 163–194 (2010).
  • Antonucci R, Atzori L, Barberini L, Fanos V. Metabolomics: the ‘new clinical chemistry’ for personalized neonatal medicine. Minerva Pediatr.62, 145–148 (2010).
  • Munoz B, Albores A. The role of molecular biology in the biomonitoring of human exposure to chemicals. Int. J. Mol. Sci.11, 4511–4525 (2010).
  • Kim K-B, Lee BM. Metabolomics, a new promising technology for toxicological research. Toxicol. Res.25, 59–69 (2009).
  • Patterson AD, Lanz C, Gonzalez FJ, Idle JR. The role of mass spectrometry-based metabolomics in medical countermeasures against radiation. Mass Spectrom. Rev.29, 503–521 (2010).
  • Fave G, Beckmann ME, Draper JH, Mathers JC. Measurement of dietary exposure: a challenging problem which may be overcome thanks to metabolomics? Genes Nutr.4, 135–141 (2009).
  • Zhang S, Nagana GGA, Ye T, Raftery D. Advances in NMR-based biofluid analysis and metabolite profiling. Analyst135, 1490–1498 (2010).
  • Wilson ID, Lindon JC, Nicholson JK. The practice of NMR spectroscopy in drug metabolism studies. Drugs Pharm. Sci.186, 373–392 (2009).
  • Issaq HJ, Van QN, Waybright TJ, Muschik GM, Veenstra TD. Analytical and statistical approaches to metabolomics research. J. Sep. Sci.32, 2183–2199 (2009).
  • Cubbon S, Antonio C, Wilson J, Thomas-Oates J. Metabolomic applications of HILIC–LC–MS. Mass Spectrom. Rev.29, 671–684 (2010).
  • Tsikas D. Quantitative analysis of biomarkers, drugs and toxins in biological samples by immunoaffinity chromatography coupled to mass spectrometry or tandem mass spectrometry: a focused review of recent applications. J. Chromatogr. B Anal. Technol. Biomed. Life Sci.878, 133–148 (2010).
  • Ojanperä I, Pelander A, Ojanperä S. Comprehensive toxicological and forensic drug screening by LC/TOF-MS, in liquid chromatography time-of-flight mass spectrometry. In: Principles, Tools, and Applications for Accurate Mass Analysis. Ferrer I, Thurman EM (Eds). John Wiley & Sons, Inc., NJ, USA, 173, 179–195 (2008).
  • Ramautar R, Somsen GW, De Jong GJ. CE–MS in metabolomics. Electrophoresis30, 276–291 (2009).
  • Kentsis A, Monigatti F, Dorff K, Campagne F, Bachur R, Steen H. Urine proteomics for profiling of human disease using high accuracy mass spectrometry. Proteomics Clin. Appl.3, 1052–1061 (2009).
  • Fang X, Balgley BM, Lee CS. Recent advances in capillary electrophoresis-based proteomic techniques for biomarker discovery. Electrophoresis30, 3998–4007 (2009).
  • Liu C-M. Clinical diagnosis by CE. In: Encyclopedia of Chromatography (3rd Edition). Cazes J (Ed.). CRC Press, FL, USA, 1, 449–453 (2010).
  • Mischak H, Coon JJ, Novak J, Weissinger EM, Schanstra JP, Dominiczak AF. Capillary electrophoresis-mass spectrometry as a powerful tool in biomarker discovery and clinical diagnosis: an update of recent developments. Mass Spectrom. Rev.28, 703–724 (2009).
  • Zuerbig P, Schiffer E, Mischak H. Capillary electrophoresis coupled to mass spectrometry for urinary proteome analysis. In: Renal and Urinary Proteomics: Methods and Protocols. Thongboonkerd V (Ed.). Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 321–332 (2010).
  • Metzger J, Luppa PB, Good DM, Mischak H. Adapting mass spectrometry-based platforms for clinical proteomics applications: the capillary electrophoresis coupled mass spectrometry paradigm. Crit. Rev. Clin. Lab. Sci.46, 129–152 (2009).
  • Castagna A, Cecconi D, Boschetti E, Righetti PG. Prefractionation of urinary proteins. In: Renal and Urinary Proteomics: Methods and Protocols. Thongboonkerd V (Ed.). Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 201–217 (2010).
  • Pragst F, Maurer HH, Hallbach J et al. Screening procedures for ‘general unknown’ analysis. Clinical Toxicological Analysis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 1, 107–187 (2009).
  • Stoll DR. Recent progress in online, comprehensive two-dimensional high-performance liquid chromatography for non-proteomic applications. Anal. Bioanal. Chem.397, 979–986 (2010).
  • Bazzi C. IgA nephropathy: clinical significance of urinary proteins/polypeptides characterization. Curr. Proteomics6, 179–186 (2009).
  • Deyarajan P, Ross GF. Surface-enhanced laser desorption/ionization for urinary proteome analysis. In: Renal and Urinary Proteomics: Methods and Protocols. Thongboonkerd V (Ed.). Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 299–320 (2010).
  • Liu B-C, Lv L-L, Zhang L. Antibody microarrays for urinary proteome profiling. In: Renal and Urinary Proteomics. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 349–366 (2010).
  • Marouga R, David S, Hawkins E. The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal. Bioanal. Chem.382(3), 669–678. (2005).
  • Candiano G, Santucci L, Petretto A et al. 2D-electrophoresis and the urine proteome map: where do we stand? J. Proteomics73, 829–844 (2010).
  • Ramachandra RSP, Shaw MA, Sharma K. 2-D difference in-gel electrophoresis (2-D DIGE) and urinary proteomics.In: Renal and Urinary Proteomics: Methods and Protocols. Thongboonkerd V (Ed.). Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 253–269 (2010).
  • Silva JC, Denny R, Dorschel CA et al. Quantitative proteomic analysis by accurate mass retention time pairs. Anal. Chem.77(7), 2187–2200 (2005).
  • Silva JC, Gorenstein MV, Li G-Z, Vissers JPC, Geromanos SJ. Absolute quantification of proteins by LCMSE. Mol. Cell Proteomics5, 144–156 (2006).
  • Chandrakumaran A, Hortebusch Z, König S. Urine profiling using ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry and pattern analysis. Biomacromolecular Mass Spectr.2(3), 199–210 (2010).
  • Gika HG, Theodoridis GA, Earll M, Snyder RW, Sumner SJ, Wilson ID. Does the mass spectrometer define the marker? A comparison of global metabolite profiling data generated simultaneously via UPLC–MS on two different mass spectrometers. Anal. Chem.82(19), 8226–8234 (2010).
  • Coppens A, Speeckaert M, Delanghe J. The pre-analytical challenges of routine urinalysis. Acta Clin. Belg.65, 182–189 (2010).
  • Lauridsen M, Hansen SH, Jaroszewski JW, Cornett C. Human urine as test material in 1H NMR-based metabonomics: recommendations for sample preparation and storage. Anal. Chem.79, 1181–1186 (2007).
  • Gika H, Theodoritis GA, Wilson ID. Liquid chromatography and ultra-performance liquid chromatography-mass spectrometry fingerprinting of human urine: sample stability under different handling and storage conditions for metabonomics studies. J. Chromatogr. A1189(1–2), 314–322 (2008).
  • Want EJ, Wilson ID, Gika H et al. Global metabolic profiling procedures for urine using UPLC–MS. Nat. Protoc.5, 1005–1018 (2010).
  • Zhang XK, Dutky RC, Fales HM. Rubber stoppers as sources of contaminants in electrospray analysis of peptides and proteins. Anal. Chem.68(18), 3288–3289 (1996).
  • Biemann K. Mass Spectrometry, Organic Chemical Applications. McGraw-Hill Book Company, Inc., NY, USA (1962).
  • Ji AJ, Jiang Z-P, Livson Y, Davis JA, Chu JX-G, Weng N-D. Challenges in urine bioanalytical assays: overcoming nonspecific binding. Bioanalysis2, 1573–1586 (2010).
  • Alvarez-Sanchez B, Priego-Capote F, Luque de Castro MD. Metabolomics analysis I. Selection of biological samples and practical aspects preceding sample preparation. Trends Anal. Chem.29, 111–119 (2010).
  • Chiu ML, Lawi W, Snyder ST, Wong PK, Liao JC, Gau V. Matrix effects – a challenge toward automation of molecular analysis. JALA15, 233–242 (2010).
  • Thomas CE, Sexton W, Benson K, Sutphen R, Koomen J. Urine collection and processing for protein biomarker discovery and quantification. Cancer Epidemiol. Biomarkers Prev.19, 953–959 (2010).
  • Qiu Y, Cai G, Su M et al. Urinary metabonomic study on colorectal cancer. J. Proteome Res.9, 1627–1634 (2010).
  • Zhang Z, Qiu Y, Hua Y et al. Serum and Urinary metabonomic study of human osteosarcoma. J. Proteome Res.9, 4861–4868 (2010).
  • Pasikanti KK, Esuvaranathan K, Ho PC et al. Noninvasive urinary metabonomic diagnosis of human bladder cancer. J. Proteome Res.9, 2988–2995 (2010).
  • Kim J-W, Lee G, Moon S-M et al. Metabolomic screening and star pattern recognition by urinary amino acid profile analysis from bladder cancer patients. Metabolomics6(2), 202–206 (2010).
  • Li X, Yang S, Qiu Y et al. Urinary metabolomics as a potentially novel diagnostic and stratification tool for knee osteoarthritis. Metabolomics6(1), 109–118 (2010).
  • Lee J, Kim M-H, Ha M, Chung BC. Urinary metabolic profiling of volatile organic compounds in acute exposed volunteers after an oil spill in Republic of Korea. Biomed. Chromatogr.24(5), 562–568 (2010).
  • Beckmann M, Enot DP, Overy DP et al. Metabolite fingerprinting of urine suggests breed-specific dietary metabolism differences in domestic dogs. Br. J. Nutr.103(8), 1127–1138 (2010).
  • Taylor SL, Ganti S, Bukanov NO et al. A metabolomics approach using juvenile cystic mice to identify urinary biomarkers and altered pathways in polycystic kidney disease. Am. J. Physiol. Renal Physiol.298(4), F909–F922 (2010).
  • Kouremenos KA, Pitt J, Marriott PJ. Metabolic profiling of infant urine using comprehensive two-dimensional gas chromatography: application to the diagnosis of organic acidurias and biomarker discovery. J. Chromatogr. A1217(1), 104–111 (2010).
  • Kumar BS, Lee Y-J, Yi HJ, Chung BC, Jung BH. Discovery of safety biomarkers for atorvastatin in rat urine using mass spectrometry based metabolomics combined with global and targeted approach. Anal. Chim. Acta661(1), 47–59 (2010).
  • van Dorsten FA, Grün CH, van Velzen EJ, Jacobs DM, Draijer R, van Duynhoven JP. The metabolic fate of red wine and grape juice polyphenols in humans assessed by metabolomics. Mol. Nutr. Food Res.54, 897–908 (2010).
  • Nevedomskaya E, Ramautar R, Derks R et al. CE–MS for metabolic profiling of volume-limited urine samples: application to accelerated aging TTD mice. J. Proteome Res.9, 4869–4874 (2010).
  • Wang W, Feng B, Li X et al. Urinary metabolic profiling of colorectal carcinoma based on online affinity solid phase extraction-high performance liquid chromatography and ultra performance liquid chromatography-mass spectrometry. Mol. Bio. Syst.6, 1947–1955 (2010).
  • Wang P, Sun H, Lv H et al. Thyroxine and reserpine-induced changes in metabolic profiles of rat urine and the therapeutic effect of Liu Wei Di Huang Wan detected by UPLC–HDMS. J. Pharm. Biomed. Anal.53, 631–645 (2010).
  • Manna SK, Patterson AD, Yang Q et al. Identification of noninvasive biomarkers for alcohol-induced liver disease using urinary metabolomics and the Ppara-null mouse. J. Proteome Res.9, 4176–4188 (2010).
  • Legido-Quigley C, Stella C, Perez-Jimenez F et al. Liquid chromatography-mass spectrometry methods for urinary biomarker detection in metabonomic studies with application to nutritional studies. Biomed. Chromatogr.24(7), 737–743 (2010).
  • Michopoulos F, Theodoridis G, Smith CJ, Wilson ID. Metabolite profiles from dried biofluid spots for metabonomic studies using UPLC combined with oaTOF–MS. J. Proteome Res.9, 3328–3334 (2010).
  • Zhao H, Fan M, Fan L, Sun J, Guo D. Liquid chromatography-tandem mass spectrometry analysis of metabolites in rats after administration of prenylflavonoids from Epimediums. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.878(15–16), 1113–1124 (2010).
  • Li Y, Liu S, Wang C et al. Novel biomarkers of 3-chloro-1,2-propanediol exposure by ultra performance liquid chromatography/mass spectrometry based metabonomic analysis of rat urine. Chem. Res. Toxicol.23, 1012–1017 (2010).
  • Zheng S, Yu M, Lu X et al. Urinary metabonomic study on biochemical changes in chronic unpredictable mild stress model of depression. Clin. Chim. Acta411(2–3), 204–209 (2010).
  • An Z, Chen Y, Zhang R et al. Integrated ionization approach for RRLC–MS/MS-based metabonomics, finding potential biomarkers for lung cancer. J. Proteome Res.9(8), 4071–4081 (2010).
  • Twohig M, Shockcor JP, Wilson ID, Nicholson JK, Plumb RS. Use of an atmospheric solids analysis probe (ASAP) for high throughput screening of biological fluids, preliminary applications on urine and bile. J. Proteome Res.9(7), 3590–3597 (2010).
  • Andersen S, Mischak H, Zurbig P, Parving H-H, Rossing P. Urinary proteome analysis enables assessment of renoprotective treatment in Type 2 diabetic patients with microalbuminuria. BMC Nephrol.11, 29 (2010).
  • Liang S-L, Clarke W. Urine proteomic profiling for biomarkers of acute renal transplant rejection. Methods Mol. Biol.641, 185–191 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.