224
Views
28
CrossRef citations to date
0
Altmetric
Review

Next-generation sequencing applied to molecular diagnostics

&
Pages 425-444 | Published online: 09 Jan 2014

References

  • Maxam AM, Gilbert W. A new method for sequencing DNA. Proc. Natl Acad. Sci. USA74(2), 560–564 (1977).
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc. Natl Acad. Sci. USA74(12), 5463–5467 (1977).
  • Bentley DR, Balasubramanian S, Swerdlow HP et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature456(7218), 53–59 (2008).
  • Wang J, Wang W, Li R et al. The diploid genome sequence of an Asian individual. Nature456(7218), 60–65 (2008).
  • Ahn S-M, Kim T-H, Lee S et al. The first Korean genome sequence and analysis: full genome sequencing for a socio-ethnic group. Genome Res.19(9), 1622–1629 (2009).
  • Ley TJ, Mardis ER, Ding L et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature456(7218), 66–72 (2008).
  • Lee W, Jiang Z, Liu J et al. The mutation spectrum revealed by paired genome sequences from a lung cancer patient. Nature465(7297), 473–477 (2010).
  • Mardis ER, Ding L, Dooling DJ et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N. Engl. J. Med.361(11), 1058–1066 (2009).
  • Pleasance ED, Cheetham RK, Stephens PJ et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature463(7278), 191–196 (2010).
  • Pleasance ED, Stephens PJ, O’Meara S et al. A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature463(7278), 184–190 (2010).
  • Shah SP, Morin RD, Khattra J et al. Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature461(7265), 809–813 (2009).
  • Ding L, Ellis MJ, Li S et al. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature464(7291), 999–1005 (2010).
  • Maher CA, Kumar-Sinha C, Cao X et al. Transcriptome sequencing to detect gene fusions in cancer. Nature458(7234), 97–101 (2009).
  • Maher CA, Palanisamy N, Brenner JC et al. Chimeric transcript discovery by paired-end transcriptome sequencing. Proc. Natl Acad. Sci. USA106(30), 12353–12358 (2009).
  • Ng SB, Bigham AW, Buckingham KJ et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat. Genet.42(9), 790–793 (2010).
  • Ng SB, Buckingham KJ, Lee C et al. Exome sequencing identifies the cause of a Mendelian disorder. Nat. Genet.42(1), 30–35 (2010).
  • Ng SB, Turner EH, Robertson PD et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature461(7261), U272–U153 (2009).
  • Drmanac R, Sparks AB, Callow MJ et al. Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science327(5961), 78–81 (2010).
  • Service RF. Gene sequencing. The race for the $1000 genome. Science311(5767), 1544–1546 (2006).
  • Shendure J. The beginning of the end for microarrays? Nat. Methods5(7), 585–587 (2008).
  • Ledford H. The death of microarrays? Nature455(7215), 847 (2008).
  • Ransohoff DF, Khoury MJ. Personal genomics: information can be harmful. Eur. J. Clin. Invest.40(1), 64–68 (2010).
  • Aparicio SA, Huntsman DG. Does massively parallel DNA resequencing signify the end of histopathology as we know it? J. Pathol.220(2), 307–315 (2010).
  • Pettersson E, Lundeberg J, Ahmadian A. Generations of sequencing technologies. Genomics93(2), 105–111 (2009).
  • Tucker T, Marra M, Friedman JM. Massively parallel sequencing: the next big thing in genetic medicine. Am. J. Hum. Genet.85(2), 142–154 (2009).
  • Voelkerding KV, Dames SA, Durtschi JD. Next-generation sequencing: from basic research to diagnostics. Clin. Chem.55(4), 641–658 (2009).
  • Ten Bosch JR, Grody WW. Keeping up with the next generation: massively parallel sequencing in clinical diagnostics. J. Mol. Diagn.10(6), 484–492 (2008).
  • Morozova O, Marra MA. Applications of next-generation sequencing technologies in functional genomics. Genomics92(5), 255–264 (2008).
  • Fullwood MJ, Wei CL, Liu ET, Ruan Y. Next-generation DNA sequencing of paired-end tags (PET) for transcriptome and genome analyses. Genome Res.19(4), 521–532 (2009).
  • Bentley DR. Whole-genome re-sequencing. Curr. Opin. Genet. Dev.16(6), 545–552 (2006).
  • Mardis ER. New strategies and emerging technologies for massively parallel sequencing: applications in medical research. Genome Med.1(4), 40 (2009).
  • Schadt EE, Turner S, Kasarskis A. A window into third-generation sequencing. Hum. Mol. Genet.19, R227–R240 (2010).
  • Wheeler DA, Srinivasan M, Egholm M et al. The complete genome of an individual by massively parallel DNA sequencing. Nature452(7189), 872–876 (2008).
  • Soda M, Choi YL, Enomoto M et al. Identification of the transforming EML4–ALK fusion gene in non-small-cell lung cancer. Nature448(7153), 561–566 (2007).
  • Tomlins SA, Rhodes DR, Perner S et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science310(5748), 644–648 (2005).
  • Campbell PJ, Stephens PJ, Pleasance ED et al. Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat. Genet.40(6), 722–729 (2008).
  • Stephens PJ, Mcbride DJ, Lin M-L et al. Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature462(7276), 1005–1010 (2009).
  • Campbell PJ, Yachida S, Mudie LJ et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature467(7319), 1109–1113 (2010).
  • Beck CR, Collier P, Macfarlane C et al. LINE-1 retrotransposition activity in human genomes. Cell141(7), 1159–1170 (2010).
  • Huang CRL, Schneider AM, Lu Y et al. Mobile interspersed repeats are major structural variants in the human genome. Cell141(7), 1171–1182 (2010).
  • Iskow RC, Mccabe MT, Mills RE et al. Natural mutagenesis of human genomes by endogenous retrotransposons. Cell141(7), 1253–1261 (2010).
  • Mardis ER. The impact of next-generation sequencing technology on genetics. Trends Genet.24(3), 133–141 (2008).
  • Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature449(7164), 804–810 (2007).
  • Gill SR, Pop M, Deboy RT et al. Metagenomic analysis of the human distal gut microbiome. Science312(5778), 1355–1359 (2006).
  • Dusko Ehrlich S. Metagenomics of the intestinal microbiota: potential applications. Gastroenterol. Clin. Biol.34(Suppl. 1), S23–S28 (2010).
  • Marcy Y, Ouverney C, Bik EM et al. Dissecting biological ‘dark matter’ with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc. Natl Acad. Sci. USA104(29), 11889–11894 (2007).
  • Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature444(7122), 1027–1031 (2006).
  • Croucher NJ, Harris SR, Fraser C et al. Rapid pneumococcal evolution in response to clinical interventions. Science331(6016), 430–434 (2011).
  • Meyerson M, Gabriel S, Getz G. Advances in understanding cancer genomes through second-generation sequencing. Nat. Rev. Genet.11(10), 685–696 (2010).
  • Mamanova L, Coffey AJ, Scott CE et al. Target-enrichment strategies for next-generation sequencing. Nat. Methods7(2), 111–118 (2010).
  • Tewhey R, Warner JB, Nakano M et al. Microdroplet-based PCR enrichment for large-scale targeted sequencing. Nat. Biotechnol.27(11), 1025–1031 (2009).
  • Voelkerding KV, Dames S, Durtschi JD. Next generation sequencing for clinical diagnostics-principles and application to targeted resequencing for hypertrophic cardiomyopathy. J. Mol. Diagn.12(5), 539–551 (2010).
  • Davies H, Bignell GR, Cox C et al. Mutations of the BRAF gene in human cancer. Nature417(6892), 949–954 (2002).
  • Lynch TJ, Bell DW, Sordella R et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med.350(21), 2129–2139 (2004).
  • Paez JG, Janne PA, Lee JC et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science304(5676), 1497–1500 (2004).
  • Pao W, Miller V, Zakowski M et al. EGF receptor gene mutations are common in lung cancers from ‘never smokers’ and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl Acad. Sci. USA101(36), 13306–13311 (2004).
  • Sjoblom T, Jones S, Wood LD et al. The consensus coding sequences of human breast and colorectal cancers. Science314(5797), 268–274 (2006).
  • Zhao Q, Kirkness EF, Caballero OL et al. Systematic detection of putative tumor suppressor genes through the combined use of exome and transcriptome sequencing. Genome Biol.11(11), R114 (2010).
  • Harbour JW, Onken MD, Roberson EDO et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science330(6009), 1410–1413 (2010).
  • Jiao Y, Shi C, Edil BH et al.DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science331(6021), 1199–1203 (2011).
  • Parsons DW, Li M, Zhang X et al. The genetic landscape of the childhood cancer medulloblastoma. Science331(6016), 435–439 (2011).
  • Kan Z, Jaiswal BS, Stinson J et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature466(7308), 869–873 (2010).
  • Jones S, Hruban RH, Kamiyama M et al. Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science324(5924), 217 (2009).
  • Slater EP, Langer P, Niemczyk E et al.PALB2 mutations in European familial pancreatic cancer families. Clin. Genet.78(5), 490–494 (2010).
  • Villarroel MC, Rajesh Kumar NV, Garrido-Laguna I et al. Personalizing cancer treatment in the age of global genomic analyses: PALB2 gene mutations and the response to DNA damaging agents in pancreatic cancer. Mol. Cancer Ther.10(1), 3–8 (2011).
  • Cheng Y, Wang J, Shao J et al. Identification of novel SNPs by next-generation sequencing of the genomic region containing the APC gene in colorectal cancer patients in China. Omics14(3), 315–325 (2010).
  • Durbin RM, Abecasis GR, Altshuler DL et al. A map of human genome variation from population-scale sequencing. Nature467(7319), 1061–1073 (2010).
  • Pennisi E. Genomics. 1000 Genomes Project gives new map of genetic diversity. Science330(6004), 574–575 (2010).
  • Timmermann B, Kerick M, Roehr C et al. Somatic mutation profiles of MSI and MSS colorectal cancer identified by whole exome next generation sequencing and bioinformatics analysis. PLoS One5(12), e15661 (2010).
  • Adey A, Morrison HG, Asun et al. Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition. Genome Biol.11(12), R119 (2010).
  • Summerer D, Schracke N, Wu H et al. Targeted high throughput sequencing of a cancer-related exome subset by specific sequence capture with a fully automated microarray platform. Genomics95(4), 241–246 (2010).
  • Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet.10(1), 57–63 (2009).
  • Morin R, Bainbridge M, Fejes A et al. Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. Biotechniques45(1), 81–94 (2008).
  • Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat. Methods5(7), 621–628 (2008).
  • Morrissy AS, Morin RD, Delaney A et al. Next-generation tag sequencing for cancer gene expression profiling. Genome Res.19(10), 1825–1835 (2009).
  • ‘t Hoen PA, Ariyurek Y, Thygesen HH et al. Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. Nucleic Acids Res.36(21), e141 (2008).
  • Sultan M, Schulz MH, Richard H et al. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science321(5891), 956–960 (2008).
  • Jacobsen N, Eriksen J, Nielsen PS. Efficient poly(A)+ RNA selection using LNA oligo(T) capture. Methods Mol. Biol.703, 43–51 (2011).
  • Oshlack A, Robinson MD, Young MD. From RNA-seq reads to differential expression results. Genome Biol.11(12), 220 (2010).
  • Wang X, Sun Q, Mcgrath SD, Mardis ER, Soloway PD, Clark AG. Transcriptome-wide identification of novel imprinted genes in neonatal mouse brain. PLoS One3(12), e3839 (2008).
  • Wagner JR, Ge B, Pokholok D, Gunderson KL, Pastinen T, Blanchette M. Computational analysis of whole-genome differential allelic expression data in human. PLoS Comput. Biol.6(7), e1000849 (2010).
  • Shah SP, Kobel M, Senz J et al. Mutation of FOXL2 in granulosa-cell tumors of the ovary. N. Engl. J. Med.360(26), 2719–2729 (2009).
  • Jones S, Wang TL, Shih Ie M et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science330(6001), 228–231 (2010).
  • Wiegand KC, Shah SP, Al-Agha OM et al.ARID1A mutations in endometriosis-associated ovarian carcinomas. N. Engl. J. Med.363(16), 1532–1543 (2010).
  • Berger MF, Levin JZ, Vijayendran K et al. Integrative analysis of the melanoma transcriptome. Genome Res.20(4), 413–427 (2010).
  • Li Z, Tognon CE, Godinho FJ et al.ETV6–NTRK3 fusion oncogene initiates breast cancer from committed mammary progenitors via activation of AP1 complex. Cancer Cell12(6), 542–558 (2007).
  • Persson M, Andren Y, Mark J, Horlings HM, Persson F, Stenman G. Recurrent fusion of MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck. Proc. Natl Acad. Sci. USA106(44), 18740–18744 (2009).
  • Mitani Y, Li J, Rao PH et al. Comprehensive analysis of the MYB–NFIB gene fusion in salivary adenoid cystic carcinoma: incidence, variability, and clinicopathologic significance. Clin. Cancer Res.16(19), 4722–4731 (2010).
  • Antonescu CR, Zhang L, Chang NE et al. EWSR1–POU5F1 fusion in soft tissue myoepithelial tumors. A molecular analysis of sixty-six cases, including soft tissue, bone, and visceral lesions, showing common involvement of the EWSR1 gene. Genes Chromosomes Cancer49(12), 1114–1124 (2010).
  • Antonescu CR, Dal Cin P, Nafa K et al.EWSR1–CREB1 is the predominant gene fusion in angiomatoid fibrous histiocytoma. Genes Chromosomes Cancer46(12), 1051–1060 (2007).
  • Aman P. Fusion genes in solid tumors. Semin. Cancer Biol.9(4), 303–318 (1999).
  • Stenman G. Fusion oncogenes and tumor type specificity – insights from salivary gland tumors. Semin. Cancer Biol.15(3), 224–235 (2005).
  • Ross H, Argani P. Xp11 translocation renal cell carcinoma. Pathology42(4), 369–373 (2010).
  • Hedgepeth RC, Zhou M, Ross J. Rapid development of metastatic Xp11 translocation renal cell carcinoma in a girl treated for neuroblastoma. J. Pediatr Hematol. Oncol.31(8), 602–604 (2009).
  • Palanisamy N, Ateeq B, Kalyana-Sundaram S et al. Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. Nat. Med.16(7), 793–798 (2010).
  • Zhao Q, Caballero OL, Levy S et al. Transcriptome-guided characterization of genomic rearrangements in a breast cancer cell line. Proc. Natl Acad. Sci. USA106(6), 1886–1891 (2009).
  • Mcbride DJ, Orpana AK, Sotiriou C et al. Use of cancer-specific genomic rearrangements to quantify disease burden in plasma from patients with solid tumors. Genes Chromosomes Cancer49(11), 1062–1069 (2010).
  • Leary RJ, Kinde I, Diehl F et al. Development of personalized tumor biomarkers using massively parallel sequencing. Sci. Transl. Med.2(20), 20ra14 (2010).
  • Stephens PJ, Greenman CD, Fu B et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell144(1), 27–40 (2011).
  • Morin RD, Zhao Y, Prabhu AL et al. Preparation and analysis of microRNA libraries using the Illumina massively parallel sequencing technology. Methods Mol. Biol.650, 173–199 (2010).
  • Thomas MF, Ansel KM. Construction of small RNA cDNA libraries for deep sequencing. Methods Mol. Biol.667, 93–111 (2010).
  • Git A, Dvinge H, Salmon-Divon M et al. Systematic comparison of microarray profiling, real-time PCR, and next generation sequencing technologies for measuring differential microRNA expression. RNA16(5), 991–1006 (2010).
  • Buermans HP, Ariyurek Y, Van Ommen GJ, Den Dunnen JT, T Hoen PA. New methods for next generation sequencing based microRNA expression profiling. BMC Genomics11(1), 716 (2010).
  • Vaz C, Ahmad HM, Sharma P et al. Analysis of microRNA transcriptome by deep sequencing of small RNA libraries of peripheral blood. BMC Genomics11, 288 (2010).
  • Xu G, Wu J, Zhou L et al. Characterization of the small RNA transcriptomes of androgen dependent and independent prostate cancer cell line by deep sequencing. PLoS One5(11), e15519 (2010).
  • Kuchenbauer F, Morin RD, Argiropoulos B et al. In-depth characterization of the microRNA transcriptome in a leukemia progression model. Genome Res.18(11), 1787–1797 (2008).
  • Ramsingh G, Koboldt DC, Trissal M et al. Complete characterization of the microRNAome in a patient with acute myeloid leukemia. Blood116(24), 5316–5326 (2010).
  • Persson H, Kvist A, Rego N et al. Identification of new microRNAs in paired normal and tumor breast tissue suggests a dual role for the ERBB2/Her2 gene. Cancer Res.71(1), 78–86 (2011).
  • Zhou VW, Goren A, Bernstein BE. Charting histone modifications and the functional organization of mammalian genomes. Nat. Rev. Genet.12(1), 7–18 (2011).
  • Grober OM, Mutarelli M, Giurato G et al. Global analysis of estrogen receptor β binding to breast cancer cell genome reveals an extensive interplay with estrogen receptor α for target gene regulation. BMC Genomics12(1), 36 (2011).
  • Strub T, Giuliano S, Ye T et al. Essential role of microphthalmia transcription factor for DNA replication, mitosis and genomic stability in melanoma. Oncogene DOI: 10.1038/onc.2010.612 (2011) (Epub ahead of print).
  • Fanelli M, Amatori S, Barozzi I et al. Pathology tissue-chromatin immunoprecipitation, coupled with high-throughput sequencing, allows the epigenetic profiling of patient samples. Proc. Natl Acad. Sci. USA107(50), 21535–21540 (2010).
  • Fang X, Yu W, Li L et al. ChIP-seq and functional analysis of the SOX2 gene in colorectal cancers. OMICS14(4), 369–384 (2010).
  • Stender JD, Kim K, Charn TH et al. Genome-wide analysis of estrogen receptor α DNA binding and tethering mechanisms identifies Runx1 as a novel tethering factor in receptor-mediated transcriptional activation. Mol Cell Biol.30(16), 3943–3955 (2010).
  • Bottomly D, Kyler SL, Mcweeney SK, Yochum GS. Identification of β-catenin binding regions in colon cancer cells using ChIP-Seq. Nucleic Acids Res.38(17), 5735–5745 (2010).
  • Boyd M, Hansen M, Jensen TG et al. Genome-wide analysis of CDX2 binding in intestinal epithelial cells (Caco-2). J. Biol. Chem.285(33), 25115–25125 (2010).
  • Ley TJ, Ding L, Walter MJ et al.DNMT3A mutations in acute myeloid leukemia. N. Engl. J. Med.363(25), 2424–2433 (2010).
  • Hebenstreit D, Gu M, Haider S, Turner DJ, Lio P, Teichmann SA. EpiChIP: gene-by-gene quantification of epigenetic modification levels. Nucleic Acids Res.39(5), e27 (2010).
  • Lister R, Ecker JR. Finding the fifth base: genome-wide sequencing of cytosine methylation. Genome Res.19(6), 959–966 (2009).
  • Hodges E, Smith AD, Kendall J et al. High definition profiling of mammalian DNA methylation by array capture and single molecule bisulfite sequencing. Genome Res.19(9), 1593–1605 (2009).
  • Pomraning KR, Smith KM, Freitag M. Genome-wide high throughput analysis of DNA methylation in eukaryotes. Methods47(3), 142–150 (2009).
  • Down TA, Rakyan VK, Turner DJ et al. A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat. Biotechnol.26(7), 779–785 (2008).
  • Meissner A, Mikkelsen TS, Gu H et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature454(7205), 766–770 (2008).
  • Choi JH, Li Y, Guo J et al. Genome-wide DNA methylation maps in follicular lymphoma cells determined by methylation-enriched bisulfite sequencing. PLoS One5(9), pii: e13020 (2010).
  • Varley KE, Mitra RD. Bisulfite Patch PCR enables multiplexed sequencing of promoter methylation across cancer samples. Genome Res.20(9), 1279–1287 (2010).
  • Chan TA, Glockner S, Yi JM et al. Convergence of mutation and epigenetic alterations identifies common genes in cancer that predict for poor prognosis. PLoS Med.5(5), e114 (2008).
  • Varley KE, Mutch DG, Edmonston TB, Goodfellow PJ, Mitra RD. Intra-tumor heterogeneity of MLH1 promoter methylation revealed by deep single molecule bisulfite sequencing. Nucleic Acids Res.37(14), 4603–4612 (2009).
  • Korshunova Y, Maloney RK, Lakey N et al. Massively parallel bisulphite pyrosequencing reveals the molecular complexity of breast cancer-associated cytosine-methylation patterns obtained from tissue and serum DNA. Genome Res.18(1), 19–29 (2008).
  • Li M, Chen WD, Papadopoulos N et al. Sensitive digital quantification of DNA methylation in clinical samples. Nat. Biotechnol.27(9), 858–863 (2009).
  • Lupski JR, Reid JG, Gonzaga-Jauregui C et al. Whole-genome sequencing in a patient with Charco–Marie–Tooth neuropathy. N. Engl. J. Med.362(13), 1181–1191 (2010).
  • Musunuru K, Pirruccello JP, Do R et al. Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N. Engl. J. Med.363(23), 2220–2227 (2010).
  • Walsh T, Shahin H, Elkan-Miller T et al. Whole exome sequencing and homozygosity mapping identify mutation in the cell polarity protein GPSM2 as the cause of nonsyndromic hearing loss DFNB82. Am. J. Hum. Genet.87(1), 90–94 (2010).
  • Yi X, Liang Y, Huerta-Sanchez E et al. Sequencing of 50 human exomes reveals adaptation to high altitude. Science329(5987), 75–78 (2010).
  • Li Y, Vinckenbosch N, Tian G et al. Resequencing of 200 human exomes identifies an excess of low-frequency non-synonymous coding variants. Nat. Genet.42(11), 969–972 (2010).
  • Lo YM, Chan KC, Sun H et al. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci. Transl. Med.2(61), 61ra91 (2010).
  • Chiu RW, Chan KC, Gao Y et al. Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma. Proc. Natl Acad. Sci. USA105(51), 20458–20463 (2008).
  • Ehrich M, Deciu C, Zwiefelhofer T et al. Noninvasive detection of fetal trisomy 21 by sequencing of DNA in maternal blood: a study in a clinical setting. Am. J. Obstet. Gynecol.204(3), 205.e1–11 (2011).
  • Chiu RW, Akolekar R, Zheng YW et al. Non-invasive prenatal assessment of trisomy 21 by multiplexed maternal plasma DNA sequencing: large scale validity study. BMJ342, c7401 (2011).
  • Fan HC, Wang J, Potanina A, Quake SR. Whole-genome molecular haplotyping of single cells. Nat. Biotechnol.29(1), 51–57 (2010).
  • Kitzman JO, Mackenzie AP, Adey A et al. Haplotype-resolved genome sequencing of a Gujarati Indian individual. Nat. Biotechnol.29(1), 59–63 (2010).
  • Tischkowitz M, Xia B. PALB2/FANCN: recombining cancer and Fanconi anemia. Cancer Res.70(19), 7353–7359 (2010).
  • Jones SJM, Laskin J, Li YY et al. Evolution of an adenocarcinoma in response to selection by targeted kinase inhibitors. Genome Biol.11(8), R82 (2010).
  • Worthey EA, Mayer AN, Syverson GD et al. Making a definitive diagnosis: Successful clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease. Genet. Med.13(3), 255–262 (2011).
  • Kobayashi S, Boggon TJ, Dayaram T et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med.352(8), 786–792 (2005).
  • Pao W, Miller VA, Politi KA et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med.2(3), e73 (2005).
  • Bell DW, Gore I, Okimoto RA et al. Inherited susceptibility to lung cancer may be associated with the T790M drug resistance mutation in EGFR. Nat. Genet.37(12), 1315–1316 (2005).
  • Inukai M, Toyooka S, Ito S et al. Presence of epidermal growth factor receptor gene T790M mutation as a minor clone in non-small cell lung cancer. Cancer Res.66(16), 7854–7858 (2006).
  • Turke AB, Zejnullahu K, Wu YL et al. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell17(1), 77–88 (2010).
  • Wardelmann E, Merkelbach-Bruse S, Pauls K et al. Polyclonal evolution of multiple secondary KIT mutations in gastrointestinal stromal tumors under treatment with imatinib mesylate. Clin. Cancer Res.12(6), 1743–1749 (2006).
  • Antonescu CR, Besmer P, Guo T et al. Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation. Clin. Cancer Res.11(11), 4182–4190 (2005).
  • Edwards SL, Brough R, Lord CJ et al. Resistance to therapy caused by intragenic deletion in BRCA2. Nature451(7182), 1111–1115 (2008).
  • Sakai W, Swisher EM, Jacquemont C et al. Functional restoration of BRCA2 protein by secondary BRCA2 mutations in BRCA2-mutated ovarian carcinoma. Cancer Res.69(16), 6381–6386 (2009).
  • Swisher EM, Sakai W, Karlan BY, Wurz K, Urban N, Taniguchi T. Secondary BRCA1 mutations in BRCA1-mutated ovarian carcinomas with platinum resistance. Cancer Res.68(8), 2581–2586 (2008).
  • Sakai W, Swisher EM, Karlan BY et al. Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature451(7182), 1116–1120 (2008).
  • Futschik A, Schlotterer C. The next generation of molecular markers from massively parallel sequencing of pooled DNA samples. Genetics186(1), 207–218 (2010).
  • Morgan JE, Carr IM, Sheridan E et al. Genetic diagnosis of familial breast cancer using clonal sequencing. Hum. Mutat.31(4), 484–491 (2010).
  • Walsh T, King MC. Ten genes for inherited breast cancer. Cancer Cell11(2), 103–105 (2007).
  • Casadei S, Norquist BM, Walsh T et al. Contribution to familial breast cancer of inherited mutations in the BRCA2-interacting protein PALB2. Cancer Res.71(6), 2222–2229 (2011).
  • Anderson K, Lutz C, Van Delft FW et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature469(7330), 356–361 (2011).
  • Geyer FC, Weigelt B, Natrajan R et al. Molecular analysis reveals a genetic basis for the phenotypic diversity of metaplastic breast carcinomas. J. Pathol.220(5), 562–573 (2010).
  • Yachida S, Jones S, Bozic I et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature467(7319), 1114–1117 (2010).
  • Munroe DJ, Harris TJR. Third-generation sequencing fireworks at Marco Island. Nat. Biotechnol.28(5), 426–428 (2010).
  • Bowers J, Mitchell J, Beer E et al. Virtual terminator nucleotides for next-generation DNA sequencing. Nat. Methods6(8), 593–595 (2009).
  • Harris TD, Buzby PR, Babcock H et al. Single-molecule DNA sequencing of a viral genome. Science320(5872), 106–109 (2008).
  • Thompson JF, Steinmann KE. Single molecule sequencing with a HeliScope genetic analysis system. Curr. Protoc. Mol. Biol. Chapter 7, Unit 7 10 (2010).
  • Pushkarev D, Neff NF, Quake SR. Single-molecule sequencing of an individual human genome. Nat. Biotechnol.27(9), 847–850 (2009).
  • Goren A, Ozsolak F, Shoresh N et al. Chromatin profiling by directly sequencing small quantities of immunoprecipitated DNA. Nat. Methods7(1), 47–49 (2010).
  • Kapranov P, Ozsolak F, Kim SW et al. New class of gene-termini-associated human RNAs suggests a novel RNA copying mechanism. Nature466(7306), 642–646 (2010).
  • Ozsolak F, Ting DT, Wittner BS et al. Amplification-free digital gene expression profiling from minute cell quantities. Nat. Methods7(8), 619–621 (2010).
  • Ozsolak F, Platt AR, Jones DR et al. Direct RNA sequencing. Nature461(7265), 814–818 (2009).
  • Ozsolak F, Goren A, Gymrek M et al. Digital transcriptome profiling from attomole-level RNA samples. Genome Res.20(4), 519–525 (2010).
  • Tessler LA, Reifenberger JG, Mitra RD. Protein quantification in complex mixtures by solid phase single-molecule counting. Anal. Chem.81(17), 7141–7148 (2009).
  • Eid J, Fehr A, Gray J et al. Real-time DNA sequencing from single polymerase molecules. Science323(5910), 133–138 (2009).
  • Travers KJ, Chin CS, Rank DR, Eid JS, Turner SW. A flexible and efficient template format for circular consensus sequencing and SNP detection. Nucleic Acids Res.38(15), e159 (2010).
  • Flusberg BA, Webster DR, Lee JH et al. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat. Methods7(6), 461–465 (2010).
  • Uemura S, Aitken CE, Korlach J, Flusberg BA, Turner SW, Puglisi JD. Real-time tRNA transit on single translating ribosomes at codon resolution. Nature464(7291), 1012–1017 (2010).
  • Stoddart D, Heron AJ, Mikhailova E, Maglia G, Bayley H. Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proc. Natl Acad. Sci. USA106(19), 7702–7707 (2009).
  • Clarke J, Wu HC, Jayasinghe L, Patel A, Reid S, Bayley H. Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol.4(4), 265–270 (2009).
  • Olasagasti F, Lieberman KR, Benner S et al. Replication of individual DNA molecules under electronic control using a protein nanopore. Nat. Nanotechnol.5(11), 798–806 (2010).
  • Wallace EV, Stoddart D, Heron AJ et al. Identification of epigenetic DNA modifications with a protein nanopore. Chem. Commun.46(43), 8195–8197 (2010).
  • Cheley S, Xie H, Bayley H. A genetically encoded pore for the stochastic detection of a protein kinase. Chembiochem.7(12), 1923–1927 (2006).
  • Pop M, Salzberg SL. Bioinformatics challenges of new sequencing technology. Trends Genet.24(3), 142–149 (2008).
  • Trapnell C, Salzberg SL. How to map billions of short reads onto genomes. Nat. Biotechnol.27(5), 455–457 (2009).
  • Chaisson MJ, Brinza D, Pevzner PA. De novo fragment assembly with short mate-paired reads: does the read length matter? Genome Res.19(2), 336–346 (2009).
  • Ding L, Wendl MC, Koboldt DC, Mardis ER. Analysis of next-generation genomic data in cancer: accomplishments and challenges. Hum. Mol. Genet.19(R2), R188–R196 (2010).
  • Nagarajan N, Pop M. Sequencing and genome assembly using next-generation technologies. Methods Mol. Biol.673, 1–17 (2010).
  • Thomas RK, Baker AC, Debiasi RM et al. High-throughput oncogene mutation profiling in human cancer. Nat. Genet.39(3), 347–351 (2007).
  • Ng PC, Henikoff S. Predicting deleterious amino acid substitutions. Genome Res.11(5), 863–874 (2001).
  • Kaminker JS, Zhang Y, Watanabe C, Zhang Z. CanPredict: a computational tool for predicting cancer-associated missense mutations. Nucleic Acids Res.35(Web Server issue), W595–W598 (2007).
  • Adzhubei IA, Schmidt S, Peshkin L et al. A method and server for predicting damaging missense mutations. Nat. Methods7(4), 248–249 (2010).
  • Carter H, Chen S, Isik L et al. Cancer-specific high-throughput annotation of somatic mutations: computational prediction of driver missense mutations. Cancer Res.69(16), 6660–6667 (2009).
  • Greenman C, Stephens P, Smith R et al. Patterns of somatic mutation in human cancer genomes. Nature446(7132), 153–158 (2007).
  • Bignell GR, Santarius T, Pole JCM et al. Architectures of somatic genomic rearrangement in human cancer amplicons at sequence-level resolution. Genome Res.17(9), 1296–1303 (2007).
  • Kaye J, Boddington P, De Vries J, Hawkins N, Melham K. Ethical implications of the use of whole genome methods in medical research. Eur. J. Hum. Genet.18(4), 398–403 (2010).
  • Via M, Gignoux C, Burchard EG. The 1000 Genomes Project: new opportunities for research and social challenges. Genome Med.2(1), 3 (2010).
  • Church GM. Molecular systems biology. Mol. Syst. Biol.1, 2005.0030 (2005).
  • Collins FS, Barker AD. Mapping the cancer genome. Pinpointing the genes involved in cancer will help chart a new course across the complex landscape of human malignancies. Sci. Am.296(3), 50–57 (2007).
  • Hudson TJ, Anderson W, Artez A et al. International network of cancer genome projects. Nature464(7291), 993–998 (2010).
  • Varela I, Tarpey P, Raine K et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature469(7331), 539–542 (2011).
  • Bilguvar K, Ozturk AK, Louvi A et al. Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature467(7312), 207–210 (2010).
  • Bolze A, Byun M, Mcdonald D et al. Whole-exome-sequencing-based discovery of human FADD deficiency. Am. J. Hum. Genet.87(6), 873–881 (2010).
  • Bowden DW, An SS, Palmer ND et al. Molecular basis of a linkage peak: exome sequencing and family-based analysis identify a rare genetic variant in the ADIPOQ gene in the IRAS Family Study. Hum. Mol. Genet.19(20), 4112–4120 (2010).
  • Byun M, Abhyankar A, Lelarge V et al. Whole-exome sequencing-based discovery of STIM1 deficiency in a child with fatal classic Kaposi sarcoma. J. Exp. Med.207(11), 2307–2312 (2010).
  • Caliskan M, Chong JX, Uricchio L et al. Exome sequencing reveals a novel mutation for autosomal recessive nonsyndromic mental retardation in the TECR gene on chromosome 19p13. Hum. Mol. Genet.20(7), 1285–1289 (2011).
  • Gilissen C, Arts HH, Hoischen A et al. Exome sequencing identifies WDR35 variants involved in Sensenbrenner syndrome. Am. J. Hum. Genet.87(3), 418–423 (2010).
  • Haack TB, Danhauser K, Haberberger B et al. Exome sequencing identifies ACAD9 mutations as a cause of complex I deficiency. Nat. Genet.42(12), 1131–1134 (2010).
  • Hoischen A, Van Bon BW, Gilissen C et al.De novo mutations of SETBP1 cause Schinzel-Giedion syndrome. Nat. Genet.42(6), 483–485 (2010).
  • Johnson JO, Mandrioli J, Benatar M et al. Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron68(5), 857–864 (2010).
  • Krawitz PM, Schweiger MR, Rodelsperger C et al. Identity-by-descent filtering of exome sequence data identifies PIGV mutations in hyperphosphatasia mental retardation syndrome. Nat. Genet.42(10), 827–829 (2010).
  • Lalonde E, Albrecht S, Ha KC et al. Unexpected allelic heterogeneity and spectrum of mutations in Fowler syndrome revealed by next-generation exome sequencing. Hum. Mutat.31(8), 918–923 (2010).
  • Otto EA, Hurd TW, Airik R et al. Candidate exome capture identifies mutation of SDCCAG8 as the cause of a retinal-renal ciliopathy. Nat. Genet.42(10), 840–850 (2010).
  • Wang JL, Yang X, Xia K et al.TGM6 identified as a novel causative gene of spinocerebellar ataxias using exome sequencing. Brain133(Pt 12), 3510–3518 (2010).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.