136
Views
24
CrossRef citations to date
0
Altmetric
Review

Implications of genomic instability in the diagnosis and treatment of breast cancer

Pages 445-453 | Published online: 09 Jan 2014

References

  • Key TJ, Verkasalo PK, Banks E. Epidemiology of breast cancer. Lancet Oncol.2(3), 133–140 (2001).
  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J. Clin.59(4), 225–249 (2009).
  • Perou CM, Sorlie T, Eisen MB et al. Molecular portraits of human breast tumours. Nature406(6797), 747–752 (2000).
  • Bertucci F, Birnbaum D. Reasons for breast cancer heterogeneity. J. Biol.7(2), 6 (2008).
  • Wiechec E, Hansen LL. The effect of genetic variability on drug response in conventional breast cancer treatment. Eur. J. Pharmacol.625(1–3), 122–130 (2009).
  • Choi JY, Nowell SA, Blanco JG, Ambrosone CB. The role of genetic variability in drug metabolism pathways in breast cancer prognosis. Pharmacogenomics7(4), 613–624 (2006).
  • Levitt NC, Hickson ID. Caretaker tumour suppressor genes that defend genome integrity. Trends Mol. Med.8(4), 179–186 (2002).
  • Wiseman H, Halliwell B. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem. J.313(Pt 1), 17–29 (1996).
  • Feig DI, Reid TM, Loeb LA. Reactive oxygen species in tumorigenesis. Cancer Res.54(7 Suppl.), 1890s–1894s (1994).
  • Anderson GR, Stoler DL, Brenner BM. Cancer: the evolved consequence of a destabilized genome. Bioessays23(11), 1037–1046 (2001).
  • Eyfjord JE, Bodvarsdottir SK. Genomic instability and cancer: networks involved in response to DNA damage. Mutat. Res.592(1–2), 18–28 (2005).
  • Sorlie T, Perou CM, Tibshirani R et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA98(19), 10869–10874 (2001).
  • Hennessy BT, Gonzalez-Angulo AM, Stemke-Hale K et al. Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res.69(10), 4116–4124 (2009).
  • Jonsson G, Staaf J, Vallon-Christersson J et al. Genomic subtypes of breast cancer identified by array-comparative genomic hybridization display distinct molecular and clinical characteristics. Breast Cancer Res.12(3), R42 (2010).
  • Prat A, Perou CM. Deconstructing the molecular portraits of breast cancer. Mol. Oncol.5(1), 5–23 (2011).
  • Cheang MC, Chia SK, Voduc D et al. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J. Natl Cancer Inst.101(10), 736–750 (2009).
  • Rouzier R, Perou CM, Symmans WF et al. Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin. Cancer Res.11(16), 5678–5685 (2005).
  • Reis-Filho JS, Tutt AN. Triple negative tumours: a critical review. Histopathology52(1), 108–118 (2008).
  • Dent R, Trudeau M, Pritchard KI et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin. Cancer Res.13(15 Pt 1), 4429–4434 (2007).
  • Anders CK, Carey LA. Biology, metastatic patterns, and treatment of patients with triple-negative breast cancer. Clin. Breast Cancer9(Suppl. 2), S73–S81 (2009).
  • Shin BK, Lee Y, Lee JB, Kim HK, Cho SJ, Kim A. Breast carcinomas expressing basal markers have poor clinical outcome regardless of estrogen receptor status. Oncol. Rep.19(3), 617–625 (2008).
  • Prat A, Parker JS, Karginova O et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res.12(5), R68 (2010).
  • Taube JH, Herschkowitz JI, Komurov K et al. Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc. Natl Acad. Sci. USA107(35), 15449–15454 (2010).
  • Stephens PJ, McBride DJ, Lin ML et al. Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature462(7276), 1005–1010 (2009).
  • Boulton SJ. Cellular functions of the BRCA tumour-suppressor proteins. Biochem. Soc. Trans.34(Pt 5), 633–645 (2006).
  • Linger RJ, Kruk PA. BRCA1 16 years later: risk-associated BRCA1 mutations and their functional implications. FEBS J.277(15), 3086–3096 (2010).
  • Holstege H, Horlings HM, Velds A et al. BRCA1-mutated and basal-like breast cancers have similar aCGH profiles and a high incidence of protein truncating TP53 mutations. BMC Cancer10, 654 (2010).
  • Saal LH, Gruvberger-Saal SK, Persson C et al. Recurrent gross mutations of the PTEN tumor suppressor gene in breast cancers with deficient DSB repair. Nat. Genet.40(1), 102–107 (2008).
  • O’Shaughnessy J, Osborne C, Pippen JE et al. Iniparib plus chemotherapy in metastatic triple-negative breast cancer. N. Engl. J. Med.364(3), 205–214 (2011).
  • Anbazhagan R, Fujii H, Gabrielson E. Microsatellite instability is uncommon in breast cancer. Clin. Cancer Res.5(4), 839–844 (1999).
  • Lacroix-Triki M, Lambros MB, Geyer FC, Suarez PH, Reis-Filho JS, Weigelt B. Absence of microsatellite instability in mucinous carcinomas of the breast. Int. J. Clin. Exp. Pathol.4(1), 22–31 (2010).
  • Geigl JB, Obenauf AC, Schwarzbraun T, Speicher MR. Defining ‘chromosomal instability’. Trends Genet.24(2), 64–69 (2008).
  • Pellman D. Cell biology: aneuploidy and cancer. Nature446(7131), 38–39 (2007).
  • Weaver BA, Cleveland DW. Does aneuploidy cause cancer? Curr. Opin. Cell Biol.18(6), 658–667 (2006).
  • Tang YC, Williams BR, Siegel JJ, Amon A. Identification of aneuploidy-selective antiproliferation compounds. Cell144(4), 499–512 (2011).
  • Huang HE, Chin SF, Ginestier C et al. A recurrent chromosome breakpoint in breast cancer at the NRG1/neuregulin 1/heregulin gene. Cancer Res.64(19), 6840–6844 (2004).
  • Cheung AL, Deng W. Telomere dysfunction, genome instability and cancer. Front. Biosci.13, 2075–2090 (2008).
  • Lo AW, Sabatier L, Fouladi B, Pottier G, Ricoul M, Murnane JP. DNA amplification by breakage/fusion/bridge cycles initiated by spontaneous telomere loss in a human cancer cell line. Neoplasia4(6), 531–538 (2002).
  • Gruhne B, Kamranvar SA, Masucci MG, Sompallae R. EBV and genomic instability – a new look at the role of the virus in the pathogenesis of Burkitt’s lymphoma. Semin. Cancer Biol.19(6), 394–400 (2009).
  • Bailey SM, Murnane JP. Telomeres, chromosome instability and cancer. Nucleic Acids Res.34(8), 2408–2417 (2006).
  • Poonepalli A, Banerjee B, Ramnarayanan K, Palanisamy N, Putti TC, Hande MP. Telomere-mediated genomic instability and the clinico-pathological parameters in breast cancer. Genes Chromosomes Cancer47(12), 1098–1109 (2008).
  • Paik S, Kim C, Wolmark N. HER2 status and benefit from adjuvant trastuzumab in breast cancer. N. Engl. J. Med.358(13), 1409–1411 (2008).
  • Tokunaga E, Okada S, Yamashita N et al. High incidence and frequency of LOH are associated with aggressive features of high-grade HER2 and triple-negative breast cancers. Breast Cancer DOI: 10.1007/s12282-010-0232-7 (2010) (Epub ahead of print).
  • Osborne RJ, Hamshere MG. A genome-wide map showing common regions of loss of heterozygosity/allelic imbalance in breast cancer. Cancer Res.60(14), 3706–3712 (2000).
  • Wiechec E, Overgaard J, Hansen LL. A fragile site within the HPC1 region at 1q25.3 affecting RGS16, RGSL1, and RGSL2 in human breast carcinomas. Genes Chromosomes Cancer47(9), 766–780 (2008).
  • Arun B, Kilic G, Yen C et al. Loss of FHIT expression in breast cancer is correlated with poor prognostic markers. Cancer Epidemiol. Biomarkers Prev.14(7), 1681–1685 (2005).
  • Pluciennik E, Kusinska R, Potemski P, Kubiak R, Kordek R, Bednarek AK. WWOX – the FRA16D cancer gene: expression correlation with breast cancer progression and prognosis. Eur. J. Surg. Oncol.32(2), 153–157 (2006).
  • McClelland SE, Burrell RA, Swanton C. Chromosomal instability: a composite phenotype that influences sensitivity to chemotherapy. Cell Cycle8(20), 3262–3266 (2009).
  • Carter SL, Eklund AC, Kohane IS, Harris LN, Szallasi Z. A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat. Genet.38(9), 1043–1048 (2006).
  • Brooks J, Cairns P, Zeleniuch-Jacquotte A. Promoter methylation and the detection of breast cancer. Cancer Causes Control20(9), 1539–1550 (2009).
  • Daskalos A, Nikolaidis G, Xinarianos G et al. Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer. Int. J. Cancer124(1), 81–87 (2009).
  • Elsheikh SE, Green AR, Rakha EA et al. Global histone modifications in breast cancer correlate with tumor phenotypes, prognostic factors, and patient outcome. Cancer Res.69(9), 3802–3809 (2009).
  • Kurdistani SK. Histone modifications as markers of cancer prognosis: a cellular view. Br. J. Cancer97(1), 1–5 (2007).
  • Bediaga NG, Acha-Sagredo A, Guerra I et al. DNA methylation epigenotypes in breast cancer molecular subtypes. Breast Cancer Res.12(5), R77 (2010).
  • Holm K, Hegardt C, Staaf J et al. Molecular subtypes of breast cancer are associated with characteristic DNA methylation patterns. Breast Cancer Res.12(3), R36 (2010).
  • Hicks J, Krasnitz A, Lakshmi B et al. Novel patterns of genome rearrangement and their association with survival in breast cancer. Genome Res.16(12), 1465–1479 (2006).
  • Bergamaschi A, Kim YH, Wang P et al. Distinct patterns of DNA copy number alteration are associated with different clinicopathological features and gene-expression subtypes of breast cancer. Genes Chromosomes Cancer45(11), 1033–1040 (2006).
  • Zhou H, Kuang J, Zhong L et al. Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat. Genet.20(2), 189–193 (1998).
  • Lingle WL, Lukasiewicz K, Salisbury JL. Deregulation of the centrosome cycle and the origin of chromosomal instability in cancer. Adv. Exp. Med. Biol.570, 393–421 (2005).
  • Yildirim-Assaf S, Coumbos A, Hopfenmuller W, Foss HD, Stein H, Kuhn W. The prognostic significance of determining DNA content in breast cancer by DNA image cytometry: the role of high grade aneuploidy in node negative breast cancer. J. Clin. Pathol.60(6), 649–655 (2007).
  • Tutt A, Gabriel A, Bertwistle D et al. Absence of Brca2 causes genome instability by chromosome breakage and loss associated with centrosome amplification. Curr. Biol.9(19), 1107–1110 (1999).
  • Salisbury JL, D’Assoro AB, Lingle WL. Centrosome amplification and the origin of chromosomal instability in breast cancer. J. Mammary Gland Biol. Neoplasia9(3), 275–283 (2004).
  • Li Y, Benezra R. Identification of a human mitotic checkpoint gene: hsMAD2. Science274(5285), 246–248 (1996).
  • Choi YH, Ahn JH, Kim SB et al. Tissue microarray-based study of patients with lymph node-negative breast cancer shows that HER2/neu overexpression is an important predictive marker of poor prognosis. Ann. Oncol.20(8), 1337–1343 (2009).
  • Chumsri S, Jeter S, Jacobs LK et al. Pathologic complete response to preoperative sequential doxorubicin/cyclophosphamide and single-agent taxane with or without trastuzumab in stage II/III HER2-positive breast cancer. Clin. Breast Cancer10(1), 40–45 (2010).
  • Yao L, Liu Y, Li Z et al. HER2 and response to anthracycline-based neoadjuvant chemotherapy in breast cancer. Ann. Oncol. DOI: 10.1093/annonc/mdq612 (2010) (Epub ahead of print).
  • Visscher DW, Wallis T, Awussah S, Mohamed A, Crissman JD. Evaluation of MYC and chromosome 8 copy number in breast carcinoma by interphase cytogenetics. Genes Chromosomes Cancer18(1), 1–7 (1997).
  • Schlotter CM, Vogt U, Bosse U, Mersch B, Wassmann K. C-myc, not HER-2/neu, can predict recurrence and mortality of patients with node-negative breast cancer. Breast Cancer Res.5(2), R30–R36 (2003).
  • Gillett C, Fantl V, Smith R et al. Amplification and overexpression of cyclin D1 in breast cancer detected by immunohistochemical staining. Cancer Res.54(7), 1812–1817 (1994).
  • Bartkova J, Lukas J, Muller H, Lutzhoft D, Strauss M, Bartek J. Cyclin D1 protein expression and function in human breast cancer. Int. J. Cancer57(3), 353–361 (1994).
  • Rudas M, Lehnert M, Huynh A et al. Cyclin D1 expression in breast cancer patients receiving adjuvant tamoxifen-based therapy. Clin. Cancer Res.14(6), 1767–1774 (2008).
  • Anzick SL, Kononen J, Walker RL et al. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science277(5328), 965–968 (1997).
  • Alkner S, Bendahl PO, Grabau D et al. AIB1 is a predictive factor for tamoxifen response in premenopausal women. Ann. Oncol.21(2), 238–244 (2010).
  • Ray ME, Yang ZQ, Albertson D et al. Genomic and expression analysis of the 8p11–12 amplicon in human breast cancer cell lines. Cancer Res.64(1), 40–47 (2004).
  • Turner N, Pearson A, Sharpe R et al. FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer. Cancer Res.70(5), 2085–2094 (2010).
  • Prentice LM, Shadeo A, Lestou VS et al. NRG1 gene rearrangements in clinical breast cancer: identification of an adjacent novel amplicon associated with poor prognosis. Oncogene24(49), 7281–7289 (2005).
  • Esteva FJ, Guo H, Zhang S et al. PTEN, PIK3CA, p-AKT, and p-p70S6K status: association with trastuzumab response and survival in patients with HER2-positive metastatic breast cancer. Am. J. Pathol.177(4), 1647–1656 (2010).
  • Bieche I, Lidereau R. Loss of heterozygosity at 13q14 correlates with RB1 gene underexpression in human breast cancer. Mol. Carcinog.29(3), 151–158 (2000).
  • Chano T, Ikebuchi K, Tomita Y et al. RB1CC1 together with RB1 and p53 predicts long-term survival in Japanese breast cancer patients. PLoS One5(12), e15737 (2010).
  • Cleton-Jansen AM. E-cadherin and loss of heterozygosity at chromosome 16 in breast carcinogenesis: different genetic pathways in ductal and lobular breast cancer? Breast Cancer Res.4(1), 5–8 (2002).
  • Kowalski PJ, Rubin MA, Kleer CG. E-cadherin expression in primary carcinomas of the breast and its distant metastases. Breast Cancer Res.5(6), R217–R222 (2003).
  • Bednarek AK, Laflin KJ, Daniel RL, Liao Q, Hawkins KA, Aldaz C. WWOXM, a novel WW domain-containing protein mapping to human chromosome 16q23.3-24.1, a region frequently affected in breast cancer. Cancer Res.60(8), 2140–2145 (2000).
  • Ingvarsson S, Sigbjornsdottir BI, Huiping C, Jonasson JG, Agnarsson BA. Alterations of the FHIT gene in breast cancer: association with tumor progression and patient survival. Cancer Detect. Prev.25(3), 292–298 (2001).
  • Ingvarsson S. FHIT alterations in breast cancer. Semin. Cancer Biol.11(5), 361–366 (2001).
  • Friedrich K, von Heydebreck A, Haroske G et al. Comparative genomic hybridization-based oncogenetic tree model for genetic classification of breast cancer. Anal. Quant. Cytol. Histol.31(2), 101–108 (2009).
  • Tsuneizumi M, Emi M, Hirano A et al. Association of allelic loss at 8p22 with poor prognosis among breast cancer cases treated with high-dose adjuvant chemotherapy. Cancer Lett.180(1), 75–82 (2002).
  • Hansen LL, Yilmaz M, Overgaard J, Andersen J, Kruse TA. Allelic loss of 16q23.2–24.2 is an independent marker of good prognosis in primary breast cancer. Cancer Res.58(10), 2166–2169 (1998).
  • Adeyinka A, Mertens F, Idvall I et al. Different patterns of chromosomal imbalances in metastasising and non-metastasising primary breast carcinomas. Int. J. Cancer84(4), 370–375 (1999).
  • Muller HM, Widschwendter A, Fiegl H et al. DNA methylation in serum of breast cancer patients: an independent prognostic marker. Cancer Res.63(22), 7641–7645 (2003).
  • Molina R, Jo J, Filella X et al. C-erbB-2, CEA and CA 15.3 serum levels in the early diagnosis of recurrence of breast cancer patients. Anticancer Res.19(4A), 2551–2555 (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.