1,037
Views
105
CrossRef citations to date
0
Altmetric
Review

Applications of electrowetting-based digital microfluidics in clinical diagnostics

, , &
Pages 393-407 | Published online: 09 Jan 2014

References

  • Whitesides GM. The origins and the future of microfluidics. Nature442, 368–373 (2006).
  • Squires TM, Quake SR. Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys.77, 977–1026 (2005).
  • Terry SC, Jerman JH, Angell JB. A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Transact. Electron. Dev. Vol. ED-26(12), 1880–1886 (1979).
  • Tuckerman DB, Pease RFW. High-performance heat sinking for VLSI. IEEE Electron. Dev. Lett. (5), 126–129 (1981).
  • Becker H, Locascio LE. Polymer microfluidic devices. Talanta56(2), 267–287 (2002).
  • Mcdonald JC, Duffy DC, Anderson JR et al. Fabrication of microfluidic systems in poly (dimethylsiloxane). Electrophoresis21(1), 2127–2140 (2000).
  • Wego A, Richter S, Pagel L. Fluidic microsystems based on printed circuit board technology. J. Micromech. Microeng.11, 528–531 (2001).
  • Coltro WKT, de Jesus DP, da Silva JAF, do Lago CL, Carrilho E. Toner and paper-based fabrication techniques for microfluidic applications. Electrophoresis31(15), 2487–2498 (2010).
  • Manz A, Graber N, Widmer HM. Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens. Actuators B Chem.B1, 244–248 (1990).
  • Yager P, Edwards T, Fu E et al. Microfluidic diagnostic technologies for global public health. Nature442, 412–418 (2006).
  • Chin CD, Linder V, Sia SK. Lab-on-a-chip devices for global health: past studies and future opportunities. Lab Chip7(1), 41–57 (2007).
  • Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications Chem. Soc. Rev.39(3), 1153–1182 (2010).
  • Yang C-G, Xu Z-R, Wang J-H. Manipulation of droplets in microfluidic systems. Trends Analyt. Chem.29(2), 141–157 (2010).
  • Teh S-Y, Lin R, Hung L-H, Lee AP. Droplet microfluidics. Lab Chip8(2), 198–220 (2010).
  • Huebner A, Sharma S, Srisa-Art M, Hollfelder F, Edel JB, DeMello AJ. Microdroplets: a sea of applications? Lab Chip8(8), 1244–1254 (2008).
  • Fair RB. Digital microfluidics: is a true lab-on-a-chip possible? Microfluid Nanofluidics3(3), 245–281 (2007).
  • Pollack MG. Electrowetting-based microactuation of droplets for digital microfluidics. Duke University Department of Electrical and Computer Engineering, Durham, NC, USA (2001).
  • Batchelder JS. Dielectrophoretic manipulator. Rev. Sci. Instrum.54(3), 300–302 (2001).
  • Washizu M. Electrostatic actuation of liquid droplets for micro-reactor applications. IEEE Trans. Ind. Appl.34(4), 732–737 (2002).
  • Schwartz JA, Vykoukal JV, Gascoyne PRC. Droplet-based chemistry on a programmable micro-chip. Lab Chip4(1), 11–17 (2004).
  • Mugele F, Baret J-C. Electrowetting: from basics to applications. J. Phys. Condens. Matter17(28), R705–R774 (2005).
  • Lippman G. [Relationship between electrical and capillary phenomena]. Ann. Chim. Phys.5494 (1875).
  • Berge B. [Electrocapillarity and wetting of water on insulator films]. C.R. Acad. Sci. (Paris)II(317), 157–163 (1993).
  • Welters WJJ, Fokkink LGJ. Fast electrically switchable capillary effects. Langmuir14(7), 1535–1538 (1998).
  • Pollack MG, Fair RB, Shenderov AD. Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl. Phys. Lett.77(11), 1725 (2000).
  • Pollack MG, Shenderov AD, Fair RB. Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip2(2), 96–101 (2002).
  • Cho SK, Moon H, Kim C-J. Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J. Microelectromech. Syst.12(1), 70–80 (2003).
  • Paik P, Pamula VK, Pollack MG, Fair RB. Electrowetting-based droplet mixers for microfluidic systems. Lab Chip328–333 (2003).
  • Ren H, Fair RB, Pollack MG. Automated on-chip droplet dispensing with volume control by electro-wetting actuation and capacitance metering. Sens. Actuators B Chem.98(2–3), 319–327 (2004).
  • Bavière R, Boutet J, Fouillet Y. Dynamics of droplet transport induced by electrowetting actuation. Microfluid. Nanofluidics4(4), 287–294 (2007).
  • Yi U-C, Kim C-J. Characterization of electrowetting actuation on addressable single-side coplanar electrodes. J. Micromech. Microeng.16(10), 2053–2059 (2006).
  • Cooney CG, Chen C-Y, Emerling MR, Nadim A, Sterling JD. Electrowetting droplet microfluidics on a single planar surface. Microfluid. Nanofluidics2(5), 435–446 (2006).
  • Moon H, Cho SK, Garrell RL, Kim C-J. Low voltage electrowetting-on-dielectric. J. Appl. Phys.92(7), 4080–4087 (2003).
  • Chatterjee D, Hetayothin B, Wheeler AR, King DJ, Garrell RL. Droplet-based microfluidics with nonaqueous solvents and solutions. Lab Chip6(2), 199–206 (2006).
  • Srinivasan V, Pamula VK, Fair RB. An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip4(4), 310–315 (2004).
  • Fouillet Y, Jary D, Chabrol C, Claustre P, Peponnet C. Digital microfluidic design and optimization of classic and new fluidic functions for lab on a chip systems. Microfluid. Nanofluidics4(3), 159–165 (2008).
  • Gong J, Kim C-JC. Direct-referencing two-dimensional-array digital microfluidics using multi-layer printed circuit board. J. Microelectromech. Syst.17(2), 257–264 (2008).
  • Fan S-K, Huang P-W, Wang T-T, Peng Y-H. Cross-scale electric manipulations of cells and droplets by frequency-modulated dielectrophoresis and electrowetting. Lab Chip8(8), 1325–1331 (2008).
  • Abdelgawad M, Watson MWL, Wheeler AR. Hybrid microfluidics: a digital-to-channel interface for in-line sample processing and chemical separations. Lab Chip9(8), 1046–1051 (2009).
  • Paik PY, Pamula VK, Chakrabarty K. A digital-microfluidic approach to chip cooling. IEEE Design & Test of Computers25(4), 372–381 (2008).
  • Dubois P, Marchand G, Fouillet Y et al. Ionic liquid droplet as e-microreactor. Analyt. Chem.78(14), 4909–4917 (2006).
  • Fair RB, Khlystov A, Tailor TD et al. Chemical and biological applications of digital microfluidic devices. IEEE Design & Test of Computers. 10–24 (2007).
  • Jebrail MJ, Wheeler AR. Let’s get digital: digitizing chemical biology with microfluidics. Curr. Opin. Chem. Biol.14(5), 574–581 (2010).
  • Malic L, Brassard D, Veres T, Tabrizian M. Integration and detection of biochemical assays in digital microfluidic LOC devices. Lab Chip10(4), 418–431 (2010).
  • Fouillet Y, Jary D, Brachet AG et al. Design and validation of a complex generic fluidic microprocessor based on EWOD droplet for biological applications. Presented at: 9th International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS). Boston, MA, USA, 9–13 October 2005.
  • Miller EM, Wheeler AR. A digital microfluidic approach to homogeneous enzyme assays. Analyt. Chem.80(5), 1614–1619 (2008).
  • Hua Z, Rouse JL, Eckhardt AE et al. Multiplexed real-time polymerase chain reaction on a digital microfluidic platform. Analyt. Chem.82(6), 2310–2316 (2010).
  • Sista RS, Eckhardt AE, Srinivasan V, Pollack MG, Palanki S, Pamula VK. Heterogeneous immunoassays using magnetic beads on a digital microfluidic platform. Lab Chip8(12), 2188–2196 (2008).
  • Mousa NA, Jebrail MJ, Yang H et al. Droplet-scale estrogen assays in breast tissue, blood, and serum. Sci. Transl. Med.1(1), 1ra2 (2009).
  • Chang Y-H, Lee G-B, Huang F-C, Chen Y-Y, Lin J-L. Integrated polymerase chain reaction chips utilizing digital microfluidics. Biomed. Microdevices8(3), 215–225 (2006).
  • Malic L, Veres T, Tabrizian M. Biochip functionalization using electrowetting-on-dielectric digital microfluidics for surface plasmon resonance imaging detection of DNA hybridization. Biosens. Bioelectron.24(7), 2218–2224 (2009).
  • Luan L, Evans RD, Jokerst NM, Fair RB. Integrated optical sensor in a digital microfluidic platform. IEEE Sens. J.8(5), 628–635 (2008).
  • Poulos JL, Nelson WC, Jeon T-J, Kim C-J, Schmidt JJ.Electrowetting on dielectric-based microfluidics for integrated lipid bilayer formation and measurement. Appl. Physics Lett.95(1), 013706 (2009).
  • Srinivasan V, Pamula VK, Fair RB. Droplet-based microfluidic lab-on-a-chip for glucose detection. Analytica Chimica Acta507(1), 145–150 (2004).
  • Shin Y-J, Lee J-B. Machine vision for digital microfluidics. Rev. Sci. Instrum.81(1), 014302 (2010).
  • Millington DS, Sista R, Eckhardt A et al. Digital microfluidics: a future technology in the newborn screening laboratory? Semin. Perinatol.34(2), 163–169 (2010).
  • Sista R, Hua Z, Thwar P et al. Development of a digital microfluidic platform for point of care testing. Lab Chip8(12), 2091–2104 (2008).
  • Miller EM, Ng AHC, Uddayasankar U, Wheeler AR. A digital microfluidic approach to heterogeneous immunoassays. Anal. Bioanal. Chem.399, 337–345 (2011).
  • Pollack MG, Paik PY, Shenderov AD, Pamula VK, Dietrich FS, Fair RB. Investigation of electrowetting-based microfluidics for real-time PCR applications. Presented at: 7th International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS). Squaw Valley, CA, USA, 5–9 October 2003.
  • Berthier J, Mourier V, Sarrut N et al. Some examples of micro-devices for biotechnology developed at the Department of Technologies for Life Sciences and Healthcare of the LETI. Int. J. Nanotechnol.7, 802–7818 (2010).
  • Paik PY, Allen DJ, Eckhardt AE, Pamula VK, Pollack MG. Programmable flow-through real-time PCR using digital microfluidics. Presented at: 11th International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS). Paris, France, 7–11 October 2007.
  • Wulff-Burchfield E, Schell WA, Eckhardt AE et al. Microfluidic platform versus conventional real-time polymerase chain reaction for the detection of Mycoplasma pneumoniae in respiratory specimens. Diagn. Microbiol. Infect. Dis.67(1), 22–29 (2010).
  • Barbulovic-Nad I, Yang H, Park PS, Wheeler AR. Digital microfluidics for cell-based assays. Lab Chip8(4), 519–526 (2008).
  • Barbulovic-Nad I, Au SH, Wheeler AR. A microfluidic platform for complete mammalian cell culture. Lab Chip10(12), 1536–1542 (2010).
  • Shah GJ, Ohta AT, Chiou EP, Wu MC, Kim CJ. EWOD-driven droplet microfluidic device integrated with optoelectronic tweezers as an automated platform for cellular isolation and analysis. Lab Chip9(12), 1732–1739 (2009).
  • Mariella R. Sample preparation: the weak link in microfluidics-based biodetection. Biomed. Microdevices10(6), 777–784 (2008).
  • Madou M, Zoval J, Jia G, Kido H, Kim J, Kim N. Lab on a CD. Annu. Rev. Biomed. Eng.>8601–8628 (2006).
  • Yoon J-Y, Garrell RL. Preventing biomolecular adsorption in electrowetting-based biofluidic chips. Analyt. Chem.75(19), 5097–5102 (2003).
  • Luk VN, Mo GC, Wheeler AR. Pluronic additives: a solution to sticky problems in digital microfluidics. Langmuir24(12), 6382–6389 (2008).
  • Brassard D, Malic L, Normandin F, Tabrizian M, Veres T. Water-oil core-shell droplets for electrowetting-based digital microfluidic devices. Lab Chip8(8), 1342–1349 (2008).
  • Srinivasan V. A digital microfluidic lab-on-a-chip for clinical diagnostic applications. Duke University Department of Electrical and Computer Engineering, Durham, NC, USA (2005).
  • Welch ERF, Lin Y-Y, Madison A, Fair RB. Picoliter DNA sequencing chemistry on an electrowetting-based digital microfluidic platform. Biotechnol. J.6(2), 165–176 (2011).
  • Becker H. Mind the gap! Lab Chip10(3), 271–273 (2010).
  • Mukhopadhyay R. Microfluidics: on the slope of enlightenment. Analyt. Chem.81(11), 4169–4173 (2009).
  • Moon H, Wheeler AR, Garrell RL, Loo JA, Kim C-J. An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI–MS. Lab Chip61213–61219 (2006).
  • Kim DY, Steckl AJ. Electrowetting on paper for electronic paper display. ACS Appl. Mater. Interfaces2(11), 3318–3323 (2010).
  • Chiou PY, Moon H, Toshiyoshi H, Kim C-J, Wu MC. Light actuation of liquid by optoelectrowetting. Sens. Actuators A Phys.104(3), 222–228 (2003).
  • Park S-Y, Teitell M a, Chiou EPY. Single-sided continuous optoelectrowetting (SCOEW) for droplet manipulation with light patterns. Lab Chip10(13), 1655–1661 (2010).
  • Lehmann U, Hadjidj S, Parashar VK, Vandevyver C, Rida A, Gijs MAM. Two-dimensional magnetic manipulation of microdroplets on a chip as a platform for bioanalytical applications. Sens. Actuators B Chem.117, 457–463 (2006).
  • Pipper J, Zhang Y, Neuzil P, Hsieh T-M. Clockwork PCR including sample preparation. Angewandte Chemie47(21), 3900–3904 (2008).
  • Guttenberg Z, Muller H, Habermüller H et al. Planar chip device for PCR and hybridization with surface acoustic wave pump. Lab Chip5(3), 308–317 (2005).
  • Langelier SM, Chang DS, Zeitoun RI, Burns MA. Acoustically driven programmable liquid motion using resonance cavities. Proc. Natl Acad. Sci. USA106(31), 12617–12622 (2009).
  • Jensen EC, Bhat BP, Mathies RA. A digital microfluidic platform for the automation of quantitative biomolecular assays. Lab Chip10(6), 685–691 (2010).
  • Fidalgo LM, Maerkl SJ. A software-programmable microfluidic device for automated biology. Lab Chip11(9), 1612–1619 (2011).
  • Malk R, Fouillet Y, Davoust L. Rotating flow within a droplet actuated with AC EWOD. Sens. Actuators B Chem. DOI: 10.1016/j.snb.2009.12.066 (2011) (In Press).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.