467
Views
28
CrossRef citations to date
0
Altmetric
Theme: Emerging Molecular Diagnostic Technologies - Review

Breast cancer stem cell enrichment and isolation by mammosphere culture and its potential diagnostic applications

&
Pages 49-60 | Published online: 09 Jan 2014

References

  • Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 414(6859), 105–111 (2001).
  • Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat. Rev. Cancer 3(12), 895–902 (2003).
  • Smalley M, Ashworth A. Stem cells and breast cancer: a field in transit. Nat. Rev. Cancer 3(11), 832–844 (2003).
  • Stingl J, Caldas C. Molecular heterogeneity of breast carcinomas and the cancer stem cell hypothesis. Nat. Rev. Cancer 7(10), 791–799 (2007).
  • Shackleton M, Quintana E, Fearon ER, Morrison SJ. Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138(5), 822–829 (2009).
  • Lapidot T, Sirard C, Vormoor J et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367(6464), 645–648 (1994).
  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100(7), 3983–3988 (2003).
  • Ponti D, Costa A, Zaffaroni N et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 65(13), 5506–5511 (2005).
  • Hemmati HD, Nakano I, Lazareff JA et al. Cancerous stem cells can arise from pediatric brain tumors. Proc. Natl Acad. Sci. USA 100(25), 15178–15183 (2003).
  • Singh SK, Clarke ID, Terasaki M et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 63(18), 5821–5828 (2003).
  • Fang D, Nguyen TK, Leishear K et al. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res. 65(20), 9328–9337 (2005).
  • Li C, Heidt DG, Dalerba P et al. Identification of pancreatic cancer stem cells. Cancer Res. 67(3), 1030–1037 (2007).
  • Kondo T, Setoguchi T, Taga T. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc. Natl Acad. Sci. USA 101(3), 781–786 (2004).
  • Rappa G, Mercapide J, Anzanello F et al. Growth of cancer cell lines under stem cell-like conditions has the potential to unveil therapeutic targets. Exp. Cell Res. 314(10), 2110–2122 (2008).
  • Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat. Rev. Cancer 5(4), 275–284 (2005).
  • Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 11(7), 1156–1166 (2001).
  • Goodell MA, Rosenzweig M, Kim H et al. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat. Med. 3(12), 1337–1345 (1997).
  • Gupta PB, Onder TT, Jiang G et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138(4), 645–659 (2009).
  • Li X, Lewis MT, Huang J et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J. Natl Cancer Inst. 100(9), 672–679 (2008).
  • Diehn M, Cho RW, Lobo NA et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458(7239), 780–783 (2009).
  • Li F, Tiede B, Massagué J, Kang Y. Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res. 17(1), 3–14 (2007).
  • Li Y, Welm B, Podsypanina K et al. Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc. Natl Acad. Sci. USA 100(26), 15853–15858 (2003).
  • Katoh M. Networking of WNT, FGF, Notch, BMP, and Hedgehog signaling pathways during carcinogenesis. Stem Cell Rev. 3(1), 30–38 (2007).
  • Vermeulen L, De Sousa E Melo F, van der Heijden M et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat. Cell Biol. 12(5), 468–476 (2010).
  • Katoh M. Network of WNT and other regulatory signaling cascades in pluripotent stem cells and cancer stem cells. Curr. Pharm. Biotechnol. 12(2), 160–170 (2011).
  • Mani SA, Guo W, Liao MJ et al. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 133(4), 704–715 (2008).
  • Morel AP, Lièvre M, Thomas C, Hinkal G, Ansieau S, Puisieux A. Generation of breast cancer stem cells through epithelial–mesenchymal transition. PLoS ONE 3(8), e2888 (2008).
  • Lakhani SR, Van De Vijver MJ, Jacquemier J et al. The pathology of familial breast cancer: predictive value of immunohistochemical markers estrogen receptor, progesterone receptor, HER-2, and p53 in patients with mutations in BRCA1 and BRCA2. J. Clin. Oncol. 20(9), 2310–2318 (2002).
  • Bauer KR, Brown M, Cress RD, Parise CA, Caggiano V. Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California Cancer Registry. Cancer 109(9), 1721–1728 (2007).
  • Onitilo AA, Engel JM, Greenlee RT, Mukesh BN. Breast cancer subtypes based on ER/PR and Her2 expression: comparison of clinicopathologic features and survival. Clin. Med. Res. 7(1–2), 4–13 (2009).
  • Dontu G, Abdallah WM, Foley JM et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 17(10), 1253–1270 (2003).
  • Vescovi AL, Reynolds BA, Fraser DD, Weiss S. bFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuron 11(5), 951–966 (1993).
  • Reynolds BA, Weiss S. Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev. Biol. 175(1), 1–13 (1996).
  • Grimshaw MJ, Cooper L, Papazisis K et al. Mammosphere culture of metastatic breast cancer cells enriches for tumorigenic breast cancer cells. Breast Cancer Res. 10(3), R52 (2008).
  • Lawson DA, Xin L, Lukacs RU, Cheng D, Witte ON. Isolation and functional characterization of murine prostate stem cells. Proc. Natl Acad. Sci. USA 104(1), 181–186 (2007).
  • Ginestier C, Hur MH, Charafe-Jauffret E et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1(5), 555–567 (2007).
  • Cicalese A, Bonizzi G, Pasi CE et al. The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell 138(6), 1083–1095 (2009).
  • Tirino V, Camerlingo R, Franco R et al. The role of CD133 in the identification and characterisation of tumour-initiating cells in non-small-cell lung cancer. Eur. J. Cardiothorac. Surg. 36(3), 446–453 (2009).
  • Liu S, Dontu G, Mantle ID et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 66(12), 6063–6071 (2006).
  • Charafe-Jauffret E, Ginestier C, Iovino F et al. Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res. 69(4), 1302–1313 (2009).
  • Fillmore CM, Gupta PB, Rudnick JA et al. Estrogen expands breast cancer stem-like cells through paracrine FGF/Tbx3 signaling. Proc. Natl Acad. Sci. USA 107(50), 21737–21742 (2010).
  • Wang XY, Penalva LO, Yuan H et al. Musashi1 regulates breast tumor cell proliferation and is a prognostic indicator of poor survival. Mol. Cancer 9, 221 (2010).
  • Chiou SH, Wang ML, Chou YT et al. Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial–mesenchymal transdifferentiation. Cancer Res. 70(24), 10433–10444 (2010).
  • Bandyopadhyay A, Wang L, Agyin J et al. Doxorubicin in combination with a small TGF-β inhibitor: a potential novel therapy for metastatic breast cancer in mouse models. PLoS ONE 5(4), e10365 (2010).
  • Li Y, Zhang T, Korkaya H et al. Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells. Clin. Cancer Res. 16(9), 2580–2590 (2010).
  • Prud’homme GJ, Glinka Y, Toulina A, Ace O, Subramaniam V, Jothy S. Breast cancer stem-like cells are inhibited by a non-toxic aryl hydrocarbon receptor agonist. PLoS ONE 5(11), e13831 (2010).
  • Botchkina GI, Zuniga ES, Das M et al. New-generation taxoid SB-T-1214 inhibits stem cell-related gene expression in 3D cancer spheroids induced by purified colon tumor-initiating cells. Mol. Cancer 9, 192 (2010).
  • Nagrath S, Sequist LV, Maheswaran S et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450(7173), 1235–1239 (2007).
  • Adams AA, Okagbare PI, Feng J et al. Highly efficient circulating tumor cell isolation from whole blood and label-free enumeration using polymer-based microfluidics with an integrated conductivity sensor. J. Am. Chem. Soc. 130(27), 8633–8641 (2008).
  • Talasaz AH, Powell AA, Huber DE et al. Isolating highly enriched populations of circulating epithelial cells and other rare cells from blood using a magnetic sweeper device. Proc. Natl Acad. Sci. USA 106(10), 3970–3975 (2009).
  • Saliba AE, Saias L, Psychari E et al. Microfluidic sorting and multimodal typing of cancer cells in self-assembled magnetic arrays. Proc. Natl Acad. Sci. USA 107(33), 14524–14529 (2010).
  • Stott SL, Hsu CH, Tsukrov DI et al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc. Natl Acad. Sci. USA 107(43), 18392–18397 (2010).
  • Schmidt-Kittler O, Ragg T, Daskalakis A et al. From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc. Natl Acad. Sci. USA 100(13), 7737–7742 (2003).
  • Meng S, Tripathy D, Frenkel EP et al. Circulating tumor cells in patients with breast cancer dormancy. Clin. Cancer Res. 10(24), 8152–8162 (2004).
  • Budd GT, Cristofanilli M, Ellis MJ et al. Circulating tumor cells versus imaging – predicting overall survival in metastatic breast cancer. Clin. Cancer Res. 12(21), 6403–6409 (2006).
  • Smerage JB, Hayes DF. The measurement and therapeutic implications of circulating tumour cells in breast cancer. Br. J. Cancer 94(1), 8–12 (2006).
  • Wülfing P, Borchard J, Buerger H et al. HER2-positive circulating tumor cells indicate poor clinical outcome in stage I to III breast cancer patients. Clin. Cancer Res. 12(6), 1715–1720 (2006).
  • Paterlini-Brechot P, Benali NL. Circulating tumor cells (CTC) detection: clinical impact and future directions. Cancer Lett. 253(2), 180–204 (2007).
  • Cohen SJ, Punt CJ, Iannotti N et al. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J. Clin. Oncol. 26(19), 3213–3221 (2008).
  • Maheswaran S, Sequist LV, Nagrath S et al. Detection of mutations in EGFR in circulating lung-cancer cells. N. Engl. J. Med. 359(4), 366–377 (2008).
  • Yager P, Edwards T, Fu E et al. Microfluidic diagnostic technologies for global public health. Nature 442(7101), 412–418 (2006).
  • Chin CD, Linder V, Sia SK. Lab-on-a-chip devices for global health: past studies and future opportunities. Lab Chip 7(1), 41–57 (2007).
  • Myers FB, Lee LP. Innovations in optical microfluidic technologies for point-of-care diagnostics. Lab Chip 8(12), 2015–2031 (2008).
  • Xu G, Hsieh TM, Lee DY et al. A self-contained all-in-one cartridge for sample preparation and real-time PCR in rapid influenza diagnosis. Lab Chip 10(22), 3103–3111 (2010).
  • Sun Y, Dhumpa R, Bang DD, Høgberg J, Handberg K, Wolff A. A lab-on-a-chip device for rapid identification of avian influenza viral RNA by solid-phase PCR. Lab Chip 11(8), 1457–1463 (2011).
  • Wang CH, Lien KY, Wu JJ, Lee GB. A magnetic bead-based assay for the rapid detection of methicillin-resistant Staphylococcus aureus by using a microfluidic system with integrated loop-mediated isothermal amplification. Lab Chip 11(8), 1521–1531 (2011).
  • Nagatani N, Yamanaka K, Ushijima H et al. Detection of influenza virus using a lateral flow immunoassay for amplified DNA by a microfluidic RT-PCR chip. Analyst 137(15), 3422–3426 (2012).
  • Verdoy D, Barrenetxea Z, Berganzo J et al. A novel real time micro PCR based point-of-care device for Salmonella detection in human clinical samples. Biosens. Bioelectron. 32(1), 259–265 (2012).
  • Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 23(10), 1294–1301 (2005).
  • Fan R, Vermesh O, Srivastava A et al. Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood. Nat. Biotechnol. 26(12), 1373–1378 (2008).
  • Stevens DY, Petri CR, Osborn JL, Spicar-Mihalic P, McKenzie KG, Yager P. Enabling a microfluidic immunoassay for the developing world by integration of on-card dry reagent storage. Lab Chip 8(12), 2038–2045 (2008).
  • Lee BS, Lee JN, Park JM et al. A fully automated immunoassay from whole blood on a disc. Lab Chip 9(11), 1548–1555 (2009).
  • Washburn AL, Luchansky MS, Bowman AL, Bailey RC. Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators. Anal. Chem. 82(1), 69–72 (2010).
  • Ouellet E, Lausted C, Lin T, Yang CW, Hood L, Lagally ET. Parallel microfluidic surface plasmon resonance imaging arrays. Lab Chip 10(5), 581–588 (2010).
  • Schumacher S, Nestler J, Otto T et al. Highly-integrated lab-on-chip system for point-of-care multiparameter analysis. Lab Chip 12(3), 464–473 (2012).
  • Reedy CR, Price CW, Sniegowski J, Ferrance JP, Begley M, Landers JP. Solid phase extraction of DNA from biological samples in a post-based, high surface area poly(methyl methacrylate) (PMMA) microdevice. Lab Chip 11(9), 1603–1611 (2011).
  • Root BE, Agarwal AK, Kelso DM, Barron AE. Purification of HIV RNA from serum using a polymer capture matrix in a microfluidic device. Anal. Chem. 83(3), 982–988 (2011).
  • Duarte GR, Price CW, Littlewood JL et al. Characterization of dynamic solid phase DNA extraction from blood with magnetically controlled silica beads. Analyst 135(3), 531–537 (2010).
  • Price CW, Leslie DC, Landers JP. Nucleic acid extraction techniques and application to the microchip. Lab Chip 9(17), 2484–2494 (2009).
  • Kim J, Gale BK. Quantitative and qualitative analysis of a microfluidic DNA extraction system using a nanoporous AlO(x) membrane. Lab Chip 8(9), 1516–1523 (2008).
  • Cho YK, Lee JG, Park JM, Lee BS, Lee Y, Ko C. One-step pathogen specific DNA extraction from whole blood on a centrifugal microfluidic device. Lab Chip 7(5), 565–573 (2007).
  • Dertinger SKW, Chiu DT, Jeon NL, Whitesides GM. Generation of gradients having complex shapes using microfluidic networks. Anal. Chem. 73(6), 1240–1246 (2001).
  • Li Jeon N, Baskaran H, Dertinger SK, Whitesides GM, Van de Water L, Toner M. Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat. Biotechnol. 20(8), 826–830 (2002).
  • Walsh CL, Babin BM, Kasinskas RW, Foster JA, McGarry MJ, Forbes NS. A multipurpose microfluidic device designed to mimic microenvironment gradients and develop targeted cancer therapeutics. Lab Chip 9(4), 545–554 (2009).
  • Atencia J, Cooksey GA, Locascio LE. A robust diffusion-based gradient generator for dynamic cell assays. Lab Chip 12(2), 309–316 (2012).
  • Wlodkowic D, Cooper JM. Tumors on chips: oncology meets microfluidics. Curr. Opin. Chem. Biol. 14(5), 556–567 (2010).
  • Young EW, Beebe DJ. Fundamentals of microfluidic cell culture in controlled microenvironments. Chem. Soc. Rev. 39(3), 1036–1048 (2010).
  • El-Ali J, Sorger PK, Jensen KF. Cells on chips. Nature 442(7101), 403–411 (2006).
  • Wu MH, Huang SB, Lee GB. Microfluidic cell culture systems for drug research. Lab Chip 10(8), 939–956 (2010).
  • Sung JH, Shuler ML. A micro cell culture analog (microCCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs. Lab Chip 9(10), 1385–1394 (2009).
  • Hsiao AY, Torisawa YS, Tung YC et al. Microfluidic system for formation of PC-3 prostate cancer co-culture spheroids. Biomaterials 30(16), 3020–3027 (2009).
  • Meyvantsson I, Warrick JW, Hayes S, Skoien A, Beebe DJ. Automated cell culture in high density tubeless microfluidic device arrays. Lab Chip 8(5), 717–724 (2008).
  • Zhou Y, Pang Y, Huang Y. Openly accessible microfluidic liquid handlers for automated high-throughput nanoliter cell culture. Anal. Chem. 84(5), 2576–2584 (2012).
  • Fukazawa H, Mizuno S, Uehara Y. A microplate assay for quantitation of anchorage-independent growth of transformed cells. Anal. Biochem. 228(1), 83–90 (1995).
  • Prime KL, Whitesides GM. Self-assembled organic monolayers: model systems for studying adsorption of proteins at surfaces. Science 252(5010), 1164–1167 (1991).
  • Lee SW, Laibinis PE. Protein-resistant coatings for glass and metal oxide surfaces derived from oligo(ethylene glycol)-terminated alkytrichlorosilanes. Biomaterials 19(18), 1669–1675 (1998).
  • Revzin A, Tompkins RG, Toner M. Surface engineering with poly(ethylene glycol) photolithography to create high-density cell arrays on glass. Langmuir 19(13), 9855–9862 (2003).
  • Mahmood TA, Miot S, Frank O et al. Modulation of chondrocyte phenotype for tissue engineering by designing the biologic-polymer carrier interface. Biomacromolecules 7(11), 3012–3018 (2006).
  • Arima Y, Iwata H. Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials 28(20), 3074–3082 (2007).
  • Wang YY, Lü LX, Shi JC, Wang HF, Xiao ZD, Huang NP. Introducing RGD peptides on PHBV films through PEG-containing cross-linkers to improve the biocompatibility. Biomacromolecules 12(3), 551–559 (2011).
  • Kim C, Lee KS, Bang JH et al. 3-Dimensional cell culture for on-chip differentiation of stem cells in embryoid body. Lab Chip 11(5), 874–882 (2011).
  • Kang E, Choi YY, Jun Y, Chung BG, Lee SH. Development of a multi-layer microfluidic array chip to culture and replate uniform-sized embryoid bodies without manual cell retrieval. Lab Chip 10(20), 2651–2654 (2010).
  • Davis JA, Inglis DW, Morton KJ et al. Deterministic hydrodynamics: taking blood apart. Proc. Natl Acad. Sci. USA 103(40), 14779–14784 (2006).
  • Choi S, Song S, Choi C, Park JK. Continuous blood cell separation by hydrophoretic filtration. Lab Chip 7(11), 1532–1538 (2007).
  • Han KH, Frazier AB. Lateral-driven continuous dielectrophoretic microseparators for blood cells suspended in a highly conductive medium. Lab Chip 8(7), 1079–1086 (2008).
  • Green JV, Radisic M, Murthy SK. Deterministic lateral displacement as a means to enrich large cells for tissue engineering. Anal. Chem. 81(21), 9178–9182 (2009).
  • Choi S, Song S, Choi C, Park JK. Microfluidic self-sorting of mammalian cells to achieve cell cycle synchrony by hydrophoresis. Anal. Chem. 81(5), 1964–1968 (2009).
  • Lenshof A, Laurell T. Continuous separation of cells and particles in microfluidic systems. Chem. Soc. Rev. 39(3), 1203–1217 (2010).
  • Bhagat AA, Hou HW, Li LD, Lim CT, Han J. Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation. Lab Chip 11(11), 1870–1878 (2011).
  • Mach AJ, Kim JH, Arshi A, Hur SC, Di Carlo D. Automated cellular sample preparation using a Centrifuge-on-a-Chip. Lab Chip 11(17), 2827–2834 (2011).
  • Moon HS, Kwon K, Kim SI et al. Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP). Lab Chip 11(6), 1118–1125 (2011).
  • den Toonder J. Circulating tumor cells: the Grand Challenge. Lab Chip 11(3), 375–377 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.