236
Views
59
CrossRef citations to date
0
Altmetric
Review

Therapeutic strategies for inhibiting invasion in glioblastoma

, &
Pages 519-534 | Published online: 09 Jan 2014

References

  • Wen PY, Kesari S. Malignant gliomas in adults. N. Engl. J. Med.359, 492–507 (2008).
  • Furnari FB, Fenton T, Bachoo RM et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev.21, 2683–2710 (2007).
  • Giese A, Bjerkvig R, Berens M et al. Cost of migration: invasion of malignant gliomas and implications for treatment. J. Clin. Oncol.21, 1624–1636 (2003).
  • Giese A, Westphal M. Glioma invasion in the central nervous system. Neurosurgery39, 235–252 (1996).
  • WHO Classification Of Tumours Of The Central Nervous System (4th Edition). Louis DN, Ohgaki H, Wiestler OD et al. (Eds). IARC, Lyon, France (2007).
  • Bernsen H, Van der Laak J, Kusters B et al. Gliomatosis cerebri: quantitative proof of vessel recruitment by cooptation instead of angiogenesis. J. Neurosurg.103, 702–706 (2005).
  • Fischer I, Gagner JP, Law M et al. Angiogenesis in gliomas: biology and molecular pathophysiology. Brain Pathol.15, 297–310 (2005).
  • Ganslandt O, Stadlbauer A, Fahlbusch R et al. Proton magnetic resonance spectroscopic imaging integrated into image-guided surgery: correlation to standard magnetic resonance imaging and tumor cell density. Neurosurgery56, 291–298 (2005).
  • Vredenburgh J, Desjardins A, Herndon JN et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin. Cancer Res.13, 1253–1259 (2007).
  • Cloughesy T, Prados M, Wen P et al. A Phase II, randomized, non-comparative clinical trial of the effect of bevacizumab (BV) alone or in combination with irinotecan (CPT) on 6-month progression free survival (PFS6) in recurrent, treatment-refractory glioblastoma (GBM). J. Clin. Oncol.26 (2008) (Abstract 2010b).
  • Norden AD, Drappatz J, Wen PY. Novel anti-angiogenic therapies for malignant gliomas. Lancet Neurol.7, 1152–1160 (2008).
  • Norden AD, Young GS, Setayesh K et al. Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology70, 779–787 (2008).
  • Narayana A, Raza S, Golfinos JG et al. Bevacizumab therapy in recurrent high grade glioma: impact on local control and survival. J. Clin. Oncol.26(Suppl.), (2008) (Abstract 13000).
  • Lamszus K, Kunkel P, Westphal M. Invasion as limitation to anti-angiogenic glioma therapy. Acta Neurochir. Suppl.88, 169–177 (2003).
  • Kunkel P, Ulbricht U, Bohlen P et al. Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. Cancer Res.61, 6624–6628 (2001).
  • Rubenstein J, Kim J, Ozawa T et al. Anti-VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. Neoplasia2, 306–314 (2000).
  • Chi A, Norden AD, Wen PY. Inhibition of angiogenesis and invasion in malignant gliomas. Expert Rev. Anticancer Ther.7, 1537–1560 (2007).
  • Fischer I, Cunliffe CH, Bollo RJ et al. High-grade glioma before and after treatment with radiation and Avastin: initial observations. Neuro Oncol.10, 700–708 (2008).
  • Rao J. Molecular mechanisms of glioma invasiveness: the role of proteases. Nat. Rev. Cancer3, 489–501 (2003).
  • Bellail AC, Hunter SB, Brat DJ et al. Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion. Int. J. Biochem. Cell Biol.36, 1046–1069 (2004).
  • Bello L, Giussani C, Carrabba G et al. Angiogenesis and invasion in gliomas. Cancer Treat. Res.117, 263–284 (2004).
  • Gunther W, Skaftnesmo KO, Arnold H et al. Molecular approaches to brain tumour invasion. Acta Neurochir. (Wien)145, 1029–1036 (2003).
  • Nakada M, Nakada S, Demuth T et al. Molecular targets of glioma invasion. Cell. Mol. Life Sci.64, 458–478 (2007).
  • Salhia B, Tran NL, Symons M et al. Molecular pathways triggering glioma cell invasion. Expert Rev. Mol. Diagn.6, 613–626 (2006).
  • Suzuki SO, Iwaki T. Dynamic analysis of glioma cells: looking into “movement phenotypes”. Neuropathology25, 254–262 (2005).
  • Tonn JC, Goldbrunner R. Mechanisms of glioma cell invasion. Acta Neurochir. Suppl.88, 163–167 (2003).
  • Claes A, Idema AJ, Wesseling P. Diffuse glioma growth: a guerilla war. Acta Neuropathol.114, 443–458 (2007).
  • Hoelzinger DB, Demuth T, Berens ME. Autocrine factors that sustain glioma invasion and paracrine biology in the brain microenvironment. J. Natl Cancer Inst.99, 1583–1593 (2007).
  • Singh S, Dirks PB. Brain tumor stem cells: identification and concepts. Neurosurg. Clin. N. Am.18, 31–38, viii (2007).
  • Stiles CD, Rowitch DH. Glioma stem cells: a midterm exam. Neuron58, 832–846 (2008).
  • Dirks PB. Cancer: stem cells and brain tumours. Nature444, 687–688 (2006).
  • Sanai N, Alvarez-Buylla A, Berger MS. Neural stem cells and the origin of gliomas. N. Engl. J. Med.353, 811–822 (2005).
  • Singh SK, Hawkins C, Clarke ID et al. Identification of human brain tumour initiating cells. Nature432, 396–401 (2004).
  • Liu G, Yuan X, Zeng Z et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol. Cancer5, 67 (2006).
  • Zeppernick F, Ahmadi R, Campos B et al. Stem cell marker CD133 affects clinical outcome in glioma patients. Clin. Cancer Res.14, 123–129 (2008).
  • Joo KM, Kim SY, Jin X et al. Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas. Lab. Invest.88, 808–815 (2008).
  • Wang J, Sakariassen PO, Tsinkalovsky O et al. CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. Int. J. Cancer122, 761–768 (2008).
  • Widera D, Kaus A, Kaltschmidt C et al. Neural stem cells, inflammation and NF-κB: basic principle of maintenance and repair or origin of brain tumours? J. Cell. Mol. Med.12, 459–470 (2008).
  • Widera D, Mikenberg I, Kaltschmidt B et al. Potential role of NF-κB in adult neural stem cells: the underrated steersman? Int. J. Dev. Neurosci.24, 91–102 (2006).
  • Murai T, Miyazaki Y, Nishinakamura H et al. Engagement of CD44 promotes Rac activation and CD44 cleavage during tumor cell migration. J. Biol. Chem.279, 4541–4550 (2004).
  • Asano K, Duntsch CD, Zhou Q et al. Correlation of N-cadherin expression in high grade gliomas with tissue invasion. J. Neurooncol.70, 3–15 (2004).
  • Todaro L, Christiansen S, Varela M et al. Alteration of serum and tumoral neural cell adhesion molecule (NCAM) isoforms in patients with brain tumors. J. Neurooncol.83, 135–144 (2007).
  • Zamecnik J. The extracellular space and matrix of gliomas. Acta Neuropathol.110, 435–442 (2005).
  • Gladson CL, Cheresh DA. Glioblastoma expression of vitronectin and the αvβ3 integrin. Adhesion mechanism for transformed glial cells. J. Clin. Invest.88, 1924–1932 (1991).
  • Sarkar S, Nuttall RK, Liu S et al. Tenascin-C stimulates glioma cell invasion through matrix metalloproteinase-12. Cancer Res.66, 11771–11780 (2006).
  • Brack SS, Silacci M, Birchler M et al. Tumor-targeting properties of novel antibodies specific to the large isoform of tenascin-C. Clin. Cancer Res.12, 3200–3208 (2006).
  • Orend G, Chiquet-Ehrismann R. Tenascin-C induced signaling in cancer. Cancer Lett.244, 143–163 (2006).
  • Kunigal S, Gondi CS, Gujrati M et al. SPARC-induced migration of glioblastoma cell lines via uPA–uPAR signaling and activation of small GTPase RhoA. Int. J. Oncol.29, 1349–1357 (2006).
  • Tucker GC. Integrins: molecular targets in cancer therapy. Curr. Oncol. Rep.8, 96–103 (2006).
  • Ridley AJ, Schwartz MA, Burridge K et al. Cell migration: integrating signals from front to back. Science302, 1704–1709 (2003).
  • Wang M, Wang T, Liu S et al. The expression of matrix metalloproteinase-2 and -9 in human gliomas of different pathological grades. Brain Tumor Pathol.20, 65–72 (2003).
  • Koutroulis I, Zarros A, Theocharis S. The role of matrix metalloproteinases in the pathophysiology and progression of human nervous system malignancies: a chance for the development of targeted therapeutic approaches? Expert Opin. Ther. Targets12, 1577–1586 (2008).
  • Kodama T, Ikeda E, Okada A et al. ADAM12 is selectively overexpressed in human glioblastomas and is associated with glioblastoma cell proliferation and shedding of heparin-binding epidermal growth factor. Am. J. Pathol.165, 1743–1753 (2004).
  • Lakka SS, Gondi CS, Yanamandra N et al. Inhibition of cathepsin B and MMP-9 gene expression in glioblastoma cell line via RNA interference reduces tumor cell invasion, tumor growth and angiogenesis. Oncogene23, 4681–4689 (2004).
  • Gondi CS, Lakka SS, Dinh DH et al. Downregulation of uPA, uPAR and MMP-9 using small, interfering, hairpin RNA (siRNA) inhibits glioma cell invasion, angiogenesis and tumor growth. Neuron Glia Biol.1, 165–176 (2004).
  • Wang L, Zhang ZG, Zhang RL et al. Matrix metalloproteinase 2 (MMP2) and MMP9 secreted by erythropoietin-activated endothelial cells promote neural progenitor cell migration. J. Neurosci.26, 5996–6003 (2006).
  • Golembieski WA, Thomas SL, Schultz CR et al. HSP27 mediates SPARC-induced changes in glioma morphology, migration, and invasion. Glia56, 1061–1075 (2008).
  • Stylli SS, Kaye AH, Lock P. Invadopodia: at the cutting edge of tumour invasion. J. Clin. Neurosci.15, 725–737 (2008).
  • Chan AY, Coniglio SJ, Chuang YY et al. Roles of the Rac1 and Rac3 GTPases in human tumor cell invasion. Oncogene24, 7821–7829 (2005).
  • Luwor RB, Kaye AH, Zhu HJ. Transforming growth factor-β (TGF-β) and brain tumours. J. Clin. Neurosci.15, 845–855 (2008).
  • Abounader R, Laterra J. Scatter factor/hepatocyte growth factor in brain tumor growth and angiogenesis. Neuro Oncol.7, 436–451 (2005).
  • Grotegut S, von Schweinitz D, Christofori G et al. Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. EMBO J.25, 3534–3545 (2006).
  • Eckerich C, Zapf S, Fillbrandt R et al. Hypoxia can induce c-Met expression in glioma cells and enhance SF/HGF-induced cell migration. Int. J. Cancer121, 276–283 (2007).
  • Wang H, Shen W, Huang H et al. Insulin-like growth factor binding protein 2 enhances glioblastoma invasion by activating invasion-enhancing genes. Cancer Res.63, 4315–4321 (2003).
  • Song SW, Fuller GN, Khan A et al. IIp45, an insulin-like growth factor binding protein 2 (IGFBP-2) binding protein, antagonizes IGFBP-2 stimulation of glioma cell invasion. Proc. Natl Acad. Sci. USA100, 13970–13975 (2003).
  • Bruna A, Darken RS, Rojo F et al. High TGFβ-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell11, 147–160 (2007).
  • Nakada M, Drake KL, Nakada S et al. Ephrin-B3 ligand promotes glioma invasion through activation of Rac1. Cancer Res.66, 8492–8500 (2006).
  • Nakada M, Niska JA, Tran NL et al. EphB2/R-Ras signaling regulates glioma cell adhesion, growth, and invasion. Am. J. Pathol.167, 565–576 (2005).
  • Wang LF, Fokas E, Juricko J et al. Increased expression of EphA7 correlates with adverse outcome in primary and recurrent glioblastoma multiforme patients. BMC Cancer8, 79 (2008).
  • Yepes M. TWEAK and the central nervous system. Mol. Neurobiol.35, 255–265 (2007).
  • Tran NL, McDonough WS, Savitch BA et al. The tumor necrosis factor-like weak inducer of apoptosis (TWEAK)-fibroblast growth factor-inducible 14 (Fn14) signaling system regulates glioma cell survival via NFκB pathway activation and BCL-XL/BCL-W expression. J. Biol. Chem.280, 3483–3492 (2005).
  • Tran NL, McDonough WS, Donohue PJ et al. The human Fn14 receptor gene is up-regulated in migrating glioma cells in vitro and overexpressed in advanced glial tumors. Am. J. Pathol.162, 1313–1321 (2003).
  • Ehtesham M, Winston JA, Kabos P et al. CXCR4 expression mediates glioma cell invasiveness. Oncogene25, 2801–2806 (2006).
  • Wu M, Chen Q, Li D et al. LRRC4 inhibits human glioblastoma cells proliferation, invasion, and proMMP-2 activation by reducing SDF-1 α/CXCR4-mediated ERK1/2 and Akt signaling pathways. J. Cell. Biochem.103, 245–255 (2008).
  • Guo P, Imanishi Y, Cackowski FC et al. Up-regulation of angiopoietin-2, matrix metalloprotease-2, membrane type 1 metalloprotease, and laminin 5 γ2 correlates with the invasiveness of human glioma. Am. J. Pathol.166, 877–890 (2005).
  • Voelzke WR, Petty WJ, Lesser GJ. Targeting the epidermal growth factor receptor in high-grade astrocytomas. Curr. Treat. Options Oncol.9, 23–31 (2008).
  • Anliker B, Chun J. Cell surface receptors in lysophospholipid signaling. Semin. Cell. Dev. Biol.15, 457–465 (2004).
  • Mitra SK, Hanson DA, Schlaepfer DD. Focal adhesion kinase: in command and control of cell motility. Nat. Rev. Mol. Cell. Biol.6, 56–68 (2005).
  • Lipinski CA, Tran NL, Menashi E et al. The tyrosine kinase pyk2 promotes migration and invasion of glioma cells. Neoplasia7, 435–445 (2005).
  • Lefranc F, Brotchi J, Kiss R. Possible future issues in the treatment of glioblastomas: special emphasis on cell migration and the resistance of migrating glioblastoma cells to apoptosis. J. Clin. Oncol.23, 2411–2422 (2005).
  • Nomura N, Nomura M, Mizuki N et al. Rac1 mediates phorbol 12-myristate 13-acetate-induced migration of glioblastoma cells via paxillin. Oncol. Rep.20, 705–711 (2008).
  • Webb DJ, Donais K, Whitmore LA et al. FAK–Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat. Cell Biol.6, 154–161 (2004).
  • Lund CV, Nguyen MT, Owens GC et al. Reduced glioma infiltration in Src-deficient mice. J. Neurooncol.78, 19–29 (2006).
  • Angers-Loustau A, Hering R, Werbowetski TE et al. SRC regulates actin dynamics and invasion of malignant glial cells in three dimensions. Mol. Cancer Res.2, 595–605 (2004).
  • Tamura M, Gu J, Matsumoto K et al. Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science280, 1614–1617 (1998).
  • Furukawa K, Kumon Y, Harada H et al.PTEN gene transfer suppresses the invasive potential of human malignant gliomas by regulating cell invasion-related molecules. Int. J. Oncol.29, 73–81 (2006).
  • Guha A, Mukherjee J. Advances in the biology of astrocytomas. Curr. Opin. Neurol.17, 655–662 (2004).
  • Endersby R, Baker SJ. PTEN signaling in brain: neuropathology and tumorigenesis. Oncogene27, 5416–5430 (2008).
  • Joy AM, Beaudry CE, Tran NL et al. Migrating glioma cells activate the PI3-K pathway and display decreased susceptibility to apoptosis. J. Cell Sci.116, 4409–4417 (2003).
  • Zhang Y, Zhang N, Dai B et al. FoxM1B transcriptionally regulates vascular endothelial growth factor expression and promotes the angiogenesis and growth of glioma cells. Cancer Res.68, 8733–8742 (2008).
  • Aggarwal BB. Nuclear factor-kB: the enemy within. Cancer Cell6, 203–208 (2004).
  • Van Waes C. Nuclear factor-kB in development, prevention, and therapy of cancer. Clin. Cancer Res.13, 1076–1082 (2007).
  • Nagai S, Washiyama K, Kurimoto M et al. Aberrant nuclear factor-κB activity and its participation in the growth of human malignant astrocytoma. J. Neurosurg.96, 909–917 (2002).
  • Tsunoda K, Kitange G, Anda T et al. Expression of the constitutively activated RelA/NF-κB in human astrocytic tumors and the in vitro implication in the regulation of urokinase-type plasminogen activator, migration, and invasion. Brain Tumor Pathol.22, 79–87 (2005).
  • Smith D, Shimamura T, Barbera S et al. NF-κB controls growth of glioblastomas/astrocytomas. Mol. Cell. Biochem.307, 141–147 (2008).
  • Karin M. Nuclear factor-κB in cancer development and progression. Nature441, 431–436 (2006).
  • Ahn KS, Sethi G, Aggarwal BB. Nuclear factor-κB: from clone to clinic. Curr. Mol. Med.7, 619–637 (2007).
  • Lee CH, Jeon YT, Kim SH et al. NF-κB as a potential molecular target for cancer therapy. Biofactors29, 19–35 (2007).
  • Weaver KD, Yeyeodu S, Cusack JC Jr et al. Potentiation of chemotherapeutic agents following antagonism of nuclear factor κB in human gliomas. J. Neurooncol.61, 187–196 (2003).
  • Chuang YY, Tran NL, Rusk N et al. Role of synaptojanin 2 in glioma cell migration and invasion. Cancer Res.64, 8271–8275 (2004).
  • Salhia B, Tran NL, Chan A et al. The guanine nucleotide exchange factors trio, Ect2, and Vav3 mediate the invasive behavior of glioblastoma. Am. J. Pathol.173, 1828–1838 (2008).
  • Dey N, Crosswell HE, De P et al. The protein phosphatase activity of PTEN regulates SRC family kinases and controls glioma migration. Cancer Res.68, 1862–1871 (2008).
  • Stupp R, Mason WP, van den Bent MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med.352, 987–996 (2005).
  • Wick W, Wick A, Schulz JB et al. Prevention of irradiation-induced glioma cell invasion by temozolomide involves caspase 3 activity and cleavage of focal adhesion kinase. Cancer Res.62, 1915–1919 (2002).
  • Schiff D, Purow B. Bevacizumab in combination with irinotecan for patients with recurrent glioblastoma multiforme. Nat. Clin. Pract. Oncol.5, 186–187 (2008).
  • Vredenburgh JJ, Desjardins A, Herndon JE 2nd et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J. Clin. Oncol.25, 4722–4729 (2007).
  • Tonn J, Kerkau S, Hanke A et al. Effect of synthetic matrix-metalloproteinase inhibitors on invasive capacity and proliferation of human malignant gliomas in vitro. Int. J. Cancer80, 764–772 (1999).
  • Levin VA, Phuphanich S, Yung WK et al. Randomized, double-blind, placebo-controlled trial of marimastat in glioblastoma multiforme patients following surgery and irradiation. J. Neurooncol.78, 295–302 (2006).
  • Levin V, Phuphanich S, Yung W et al. Randomized, double-blind, placebo-controlled trial of marimastat in glioblastoma multiforme patients following surgery and irradiation. J. Neurooncol.78, 295–302 (2006).
  • Groves MD, Puduvalli VK, Hess KR et al. Phase II trial of temozolomide plus the matrix metalloproteinase inhibitor, marimastat, in recurrent and progressive glioblastoma multiforme. J. Clin. Oncol.20, 1383–1388 (2002).
  • Wong ET, Hess KR, Gleason MJ et al. Outcomes and prognostic factors in recurrent glioma patients enrolled onto Phase II clinical trials. J. Clin. Oncol.17, 2572–2578 (1999).
  • Groves MD, Puduvalli VK, Conrad CA et al. Phase II trial of temozolomide plus marimastat for recurrent anaplastic gliomas: a relationship among efficacy, joint toxicity and anticonvulsant status. J. Neurooncol.80, 83–90 (2006).
  • Coussens LM, Fingleton B, Matrisian LM. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science295, 2387–2392 (2002).
  • Blazquez C, Salazar M, Carracedo A et al. Cannabinoids inhibit glioma cell invasion by down-regulating matrix metalloproteinase-2 expression. Cancer Res.68, 1945–1952 (2008).
  • Gabriely G, Wurdinger T, Kesari S et al. MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol. Cell. Biol.28, 5369–5380 (2008).
  • Reardon DA, Nabors LB, Stupp R et al. Cilengitide: an integrin-targeting arginine–glycine–aspartic acid peptide with promising activity for glioblastoma multiforme. Expert Opin. Investig. Drugs17, 1225–1235 (2008).
  • Yamada S, Bu XY, Khankaldyyan V et al. Effect of the angiogenesis inhibitor Cilengitide (EMD 121974) on glioblastoma growth in nude mice. Neurosurgery59, 1304–1312 (2006).
  • Nabors LB, Mikkelsen T, Rosenfeld SS et al. Phase I and correlative biology study of cilengitide in patients with recurrent malignant glioma. J. Clin. Oncol.25, 1651–1657 (2007).
  • Reardon DA, Fink KL, Mikkelsen T et al. Randomized Phase II study of cilengitide, an integrin-targeting arginine–glycine–aspartic acid peptide, in recurrent glioblastoma multiforme. J. Clin. Oncol.26, 5610–5617 (2008).
  • Stupp R, Goldbrunner R, Neyns B et al. Mature results of a Phase I/IIa trial of the integrin inhibitor cilengitide (EMD121974) added to standard concomitant and adjuvant temozolomide and radiotherapy for newly diagnosed glioblastoma. Neuro Oncol.9, 517 (2007).
  • Fasolo A, Sessa C. mTOR inhibitors in the treatment of cancer. Expert Opin. Investig. Drugs17, 1717–1734 (2008).
  • Bjornsti MA, Houghton PJ. The TOR pathway: a target for cancer therapy. Nat. Rev. Cancer4, 335–348 (2004).
  • Chang SM, Wen P, Cloughesy T et al. Phase II study of CCI-779 in patients with recurrent glioblastoma multiforme. Invest. New Drugs23, 357–361 (2005).
  • Galanis E, Buckner J, Maurer M et al. Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J. Clin. Oncol.23, 5294–5304 (2005).
  • Cloughesy TF, Yoshimoto K, Nghiemphu P et al. Antitumor activity of rapamycin in a Phase I trial for patients with recurrent PTEN-deficient glioblastoma. PLoS Med.5(1), e8 (2008).
  • Fan QW, Knight ZA, Goldenberg DD et al. A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma. Cancer Cell9, 341–349 (2006).
  • Maira SM, Stauffer F, Brueggen J et al. Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol. Cancer Ther.7, 1851–1863 (2008).
  • Momota H, Nerio E, Holland EC. Perifosine inhibits multiple signaling pathways in glial progenitors and cooperates with temozolomide to arrest cell proliferation in gliomas in vivo. Cancer Res.65, 7429–7435 (2005).
  • Garcia-Echeverria C, Sellers WR. Drug discovery approaches targeting the PI3K/Akt pathway in cancer. Oncogene27, 5511–5526 (2008).
  • Ravi R, Bedi A. NF-κB in cancer – a friend turned foe. Drug Resist. Updat.7, 53–67 (2004).
  • Yin D, Zhou H, Kumagai T et al. Proteasome inhibitor PS-341 causes cell growth arrest and apoptosis in human glioblastoma multiforme (GBM). Oncogene24, 344–354 (2005).
  • La Ferla-Bruhl K, Westhoff MA, Karl S et al. NF-κB-independent sensitization of glioblastoma cells for TRAIL-induced apoptosis by proteasome inhibition. Oncogene26, 571–582 (2007).
  • Robe PA, Martin D, Albert A et al. A Phase 1–2, prospective, double blind, randomized study of the safety and efficacy of sulfasalazine for the treatment of progressing malignant gliomas: study protocol of [ISRCTN45828668]. BMC Cancer6, 29 (2006).
  • Ning S, Knox SJ. Increased cure rate of glioblastoma using concurrent therapy with radiotherapy and arsenic trioxide. Int. J. Radiat. Oncol. Biol. Phys.60, 197–203 (2004).
  • Aoki H, Takada Y, Kondo S et al. Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: role of Akt and extracellular signal-regulated kinase signaling pathways. Mol. Pharmacol.72, 29–39 (2007).
  • Lovborg H, Oberg F, Rickardson L et al. Inhibition of proteasome activity, nuclear factor-κB translocation and cell survival by the antialcoholism drug disulfiram. Int. J. Cancer118, 1577–1580 (2006).
  • Martin V, Herrera F, Garcia-Santos G et al. Signaling pathways involved in antioxidant control of glioma cell proliferation. Free Radic. Biol. Med.42, 1715–1722 (2007).
  • Laguillier C, Hbibi AT, Baran-Marszak F et al. Cell death in NF-κB-dependent tumour cell lines as a result of NF-κB trapping by linker-modified hairpin decoy oligonucleotide. FEBS Lett.581, 1143–1150 (2007).
  • Olivier S, Robe P, Bours V. Can NF-κB be a target for novel and efficient anti-cancer agents?. Biochem. Pharmacol.72, 1054–1068 (2006).
  • Roccaro AM, Hideshima T, Richardson PG et al. Bortezomib as an antitumor agent. Curr. Pharm. Biotechnol.7, 441–448 (2006).
  • Takada Y, Bhardwaj A, Potdar P et al. Nonsteroidal anti-inflammatory agents differ in their ability to suppress NF-κB activation, inhibition of expression of cyclooxygenase-2 and cyclin D1, and abrogation of tumor cell proliferation. Oncogene23, 9247–9258 (2004).
  • Robe PA, Bentires-Alj M, Bonif M et al.In vitro and in vivo activity of the nuclear factor-κB inhibitor sulfasalazine in human glioblastomas. Clin. Cancer Res.10, 5595–5603 (2004).
  • Kapahi P, Takahashi T, Natoli G et al. Inhibition of NF-κB activation by arsenite through reaction with a critical cysteine in the activation loop of IκB kinase. J. Biol. Chem.275, 36062–36066 (2000).
  • Panchal HD, Vranizan K, Lee CY et al. Early anti-oxidative and anti-proliferative curcumin effects on neuroglioma cells suggest therapeutic targets. Neurochem. Res.33, 1701–1710 (2008).
  • Dhandapani KM, Mahesh VB, Brann DW. Curcumin suppresses growth and chemoresistance of human glioblastoma cells via AP-1 and NFκB transcription factors. J. Neurochem.102, 522–538 (2007).
  • Hatcher H, Planalp R, Cho J et al. Curcumin: from ancient medicine to current clinical trials. Cell. Mol. Life Sci.65, 1631–1652 (2008).
  • Isomura I, Morita A. Regulation of NF-κB signaling by decoy oligodeoxynucleotides. Microbiol. Immunol.50, 559–563 (2006).
  • Nowicki MO, Dmitrieva N, Stein AM et al. Lithium inhibits invasion of glioma cells; possible involvement of glycogen synthase kinase-3. Neuro Oncol.10(5), 690–699 (2008).
  • Kotliarova S, Pastorino S, Kovell LC et al. Glycogen synthase kinase-3 inhibition induces glioma cell death through c-MYC, nuclear factor-κB, and glucose regulation. Cancer Res.68, 6643–6651 (2008).
  • Hjelmeland MD, Hjelmeland AB, Sathornsumetee S et al. SB-431542, a small molecule transforming growth factor-β-receptor antagonist, inhibits human glioma cell line proliferation and motility. Mol. Cancer Ther.3, 737–745 (2004).
  • Uhl M, Aulwurm S, Wischhusen J et al. SD-208, a novel transforming growth factor-β receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Res.64, 7954–7961 (2004).
  • Hau P, Jachimczak P, Schlingensiepen R et al. Inhibition of TGF-β2 with AP 12009 in recurrent malignant gliomas: from preclinical to Phase I/II studies. Oligonucleotides17, 201–212 (2007).
  • Schlingensiepen KH, Schlingensiepen R, Steinbrecher A et al. Targeted tumor therapy with the TGF-β2 antisense compound AP 12009. Cytokine Growth Factor Rev.17, 129–139 (2006).
  • Shi Q, Hjelmeland AB, Keir ST et al. A novel low-molecular weight inhibitor of focal adhesion kinase, TAE226, inhibits glioma growth. Mol. Carcinog.46, 488–496 (2007).
  • Reardon DA, Zalutsky MR, Akabani G et al. A pilot study: 131I-antitenascin monoclonal antibody 81c6 to deliver a 44-Gy resection cavity boost. Neuro Oncol.10, 182–189 (2008).
  • Reardon D, Akabani G, Coleman R et al. Salvage radioimmunotherapy with murine iodine-131-labeled antitenascin monoclonal antibody 81C6 for patients with recurrent primary and metastatic malignant brain tumors: Phase II study results. J. Clin. Oncol.24, 115–122 (2006).
  • Brockmann MA, Papadimitriou A, Brandt M et al. Inhibition of intracerebral glioblastoma growth by local treatment with the scatter factor/hepatocyte growth factor-antagonist NK4. Clin. Cancer Res.9, 4578–4585 (2003).
  • Martens T, Schmidt NO, Eckerich C et al. A novel one-armed anti-c-Met antibody inhibits glioblastoma growth in vivo. Clin. Cancer Res.12, 6144–6152 (2006).
  • Reardon D, Cloughsey TF, Raizer JJ et al. Phase II study of AMG 102, a fully human neutralizing antibody against hepatocyte growth factor/scatter factor, in patients with recurrent glioblastoma multiforme. J. Clin. Oncol. Suppl.26, (2008) (Abstract 2051).
  • Burgess T, Coxon A, Meyer S et al. Fully human monoclonal antibodies to hepatocyte growth factor with therapeutic potential against hepatocyte growth factor/c-Met-dependent human tumors. Cancer Res.66, 1721–1729 (2006).
  • Nicholas MK, Lukas RV, Jafri NF et al. Epidermal growth factor receptor – mediated signal transduction in the development and therapy of gliomas. Clin. Cancer Res.12, 7261–7270 (2006).
  • Brandes AA, Franceschi E, Tosoni A et al. Epidermal growth factor receptor inhibitors in neuro-oncology: hopes and disappointments. Clin. Cancer Res.14, 957–960 (2008).
  • Mellinghoff IK, Wang MY, Vivanco I et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N. Engl. J. Med.353, 2012–2024 (2005).
  • Martens T, Laabs Y, Gunther HS et al. Inhibition of glioblastoma growth in a highly invasive nude mouse model can be achieved by targeting epidermal growth factor receptor but not vascular endothelial growth factor receptor-2. Clin. Cancer Res.14, 5447–5458 (2008).
  • Lamszus K, Brockmann MA, Eckerich C et al. Inhibition of glioblastoma angiogenesis and invasion by combined treatments directed against vascular endothelial growth factor receptor-2, epidermal growth factor receptor, and vascular endothelial-cadherin. Clin. Cancer Res.11, 4934–4940 (2005).
  • Sathornsumetee S, Desjardins A, Vredenburgh J et al. Safety and efficacy of bevacizumab and erlotinib for recurrent glioblastoma patients in a Phase II study. Neuro Oncol.10, 827 (MA-840) (2008).
  • Shih AH, Holland EC. Platelet-derived growth factor (PDGF) and glial tumorigenesis. Cancer Lett.232, 139–147 (2006).
  • Lamszus K, Heese O, Westphal M. Angiogenesis-related growth factors in brain tumors. Cancer Treat. Res.117, 169–190 (2004).
  • Cattaneo MG, Gentilini D, Vicentini LM. Deregulated human glioma cell motility: inhibitory effect of somatostatin. Mol. Cell. Endocrinol.256, 34–39 (2006).
  • Natarajan M, Stewart JE, Golemis EA et al. HEF1 is a necessary and specific downstream effector of FAK that promotes the migration of glioblastoma cells. Oncogene25, 1721–1732 (2006).
  • Reardon DA, Egorin MJ, Quinn JA et al. Phase II study of imatinib mesylate plus hydroxyurea in adults with recurrent glioblastoma multiforme. J. Clin. Oncol.23, 9359–9368 (2005).
  • Wen PY, Yung WK, Lamborn KR et al. Phase I/II study of imatinib mesylate for recurrent malignant gliomas: North American Brain Tumor Consortium Study 99–08. Clin. Cancer Res.12, 4899–4907 (2006).
  • Raymond E, Brandes AA, Dittrich C et al. Phase II study of imatinib in patients with recurrent gliomas of various histologies: a European Organisation for Research and Treatment of Cancer Brain Tumor Group Study. J. Clin. Oncol.26, 4659–4665 (2008).
  • Lassman A, Wang W, Gilbert M et al. Phase II trial of dasatinib for recurrent glioblastoma. Neuro Oncol.10, 824 (MA-830) (2008).
  • Sauvageot CM, Weatherbee JL, Kesari S et al. Efficacy of the HSP90 inhibitor 17-AAG in human glioma cell lines and tumorigenic glioma stem cells. Neuro Oncol. DOI: 15228517-2008-060v1 (2008) (Epub ahead of print).
  • Workman P, Burrows F, Neckers L et al. Drugging the cancer chaperone HSP90: combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann. NY Acad. Sci.1113, 202–216 (2007).
  • Kim MS, Kwak HJ, Lee JW et al.17-Allylamino-17-demethoxygeldanamycin down-regulates hyaluronic acid-induced glioma invasion by blocking matrix metalloproteinase-9 secretion. Mol. Cancer Res.6, 1657–1665 (2008).
  • Corsten MF, Shah K. Therapeutic stem-cells for cancer treatment: hopes and hurdles in tactical warfare. Lancet Oncol.9, 376–384 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.