947
Views
24
CrossRef citations to date
0
Altmetric
Editorial

Neuroprosthetic devices: how far are we from recovering movement in paralyzed patients?

&
Pages 427-430 | Published online: 09 Jan 2014

References

  • Bryden AM, Kilgore KL, Kirsch RF, Memberg WD, Peckham PH, Keith MW. An implanted neuroprosthesis for high tetraplegia. Top. Spinal Cord Inj. Rehabil.10(3), 38–52, (2005).
  • Peckham PH, Keith MW, Kilgore KL et al. Efficacy of an implanted neuroprosthesis for restoring hand grasp in tetraplegia: a multicenter study. Arch. Phys. Med. Rehabil.82, 1380–1388 (2001).
  • Kilgore KL, Peckham PH, Keith MW et al. An implanted upper extremity neuroprosthesis: follow-up of five patients. J. Bone Joint Surg. Am.79A(4), 533–541 (1997).
  • Brindley GS. History of the sacral anterior root stimulator, 1969–1982. Neurol. Urodyn.12, 481–483 (1993).
  • Brindley GS, Polkey CE, Rushton DN. Sacral anterior root stimulators for bladder control in paraplegia. Paraplegia20, 365–381 (1982).
  • Brindley GS. The first 500 sacral anterior root stimulators: implant failures and their repair. Paraplegia33, 5–9 (1995).
  • Baer GA, Talonen PP, Shneerson JM et al. Phrenic nerve stimulation for central ventilatory failure with bipolar and four-pole electrode systems. Pacing Clin. Electrophysiol.19, 1061–1072 (1990).
  • Glenn WW, Phelps ML, Elefteriades JA, Dentz B, Hogan JF. Twenty years experience in phrenic nerve stimulation to pace the diaphragm. Pacing Clin. Electrophysiol.9, 780–784 (1986).
  • Davis JA, Triolo RJ, Uhlir JP et al. Surgical technique for installing an 8-channel neuroprosthesis for standing. Clin. Orthop. Relat. Res.385, 237–252 (2001).
  • Triolo R, Bieri C, Uhlir J, Kobetic R, Scheiner A, Marsolais EB. Implanted functional neuromuscular stimulation systems for assisted standing and transfers for individuals with cervical spinal cord injuries.Arch. Phys. Med. Rehabil.7(11), 1119–1128 (1996).
  • Kobetic R, Triolo RJ, Uhlir J et al. Implanted functional electrical stimulation system for mobility in paraplegia: a follow-up case report. IEEE Trans. Rehabil. Eng.7(4), 390–398 (1999).
  • Davis R, MacFarland WC, Emmons SE. Initial results of the Nucleus FES-22-implanted system for limb movement in paraplegia. Stereotact. Funct. Neurosurg.63, 192–197 (1994).
  • Linder SH. Functional electrical stimulation to enhance cough in quadriplegia. Chest103(1), 166–169 (1993).
  • DiMarco AF, Onders RP, Ignagni A, Kowalski KE, Mortimer JT. Phrenic nerve pacing via intramuscular diaphragm electrodes in tetraplegic subjects. Chest127(2), 671–678 (2005).
  • Loeb GE, Peck RA, Moore WH, Hood K. BION system for distributed neural prosthetic interfaces. Med. Eng. Phys.23, 9–18 (2001).
  • Smith B, Tang Z, Johnson MW et al. An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle. IEEE Trans. Biomed. Eng.45, 463–475 (1998).
  • Snoek GJ, Ijzerman MJ, in’t Groen FA, Stofferrs TS, Zilvold G. Use of the NESS handmaster to restore hand function in tetraplegia: clinical experiences in ten patients. Spinal Cord398, 244–249 (2000).
  • Alon G, McBride K. Persons with C5 or C6 tetraplegia achieve selected functional gains using a neuroprosthesis. Arch. Phys. Med. Rehabil.84, 119–124 (2003).
  • Wheeler CA, Peckham PH. A wireless wearable controller for an upper extremity neuroprosthesis. J. Rehabil. Res. Dev. (In press).
  • Keith MW, Peckham PH, Thrope GB et al. Implantable functional neuromuscular stimulataion in the tetraplegic hand. J. Hand Surg. [Am.]14, 524–530 (1989).
  • Smith B, Peckham PH, Keith MW, Roscoe DD. An externally powered, multichannel, implantable stimulator for versatile control of paralyzed muscle. IEEE Trans. Biomed. Eng.34, 499–508 (1987).
  • Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT. On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J. Neurosci.2(11), 1527–1537 (1982).
  • Georgopoulos AP, Schwartz AB, Kettner RE. Neuronal population coding of movement direction. Science233, 1357–1440 (1986).
  • Wessberg J, Stambaugh CR, Kralik JD et al. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature408, 361–365 (2000).
  • Taylor DM, Tillery SI, Schwartz AB. Direct cortical control of 3D neuroprosthetic devices. Science296, 1829–1832 (2002).
  • Serruya MD, Hatsopoulos NG, Paninski L, Fellows MR, Donoghue JP. Brain-machine interface: instant neural control of a movement signal. Nature416, 141–142 (2002).
  • Carmena JM, Lebedev MA, Crist RE et al. Learning to control a brain–machine interface for reaching and grasping by primates. PLoS Biol.1(2), 193–208 (2003).
  • Musallam S, Corneil BD, Greger B, Scherberger H, Andersen RA. Cognitive control signals for neural prosthetics. Science305(5681), 258–262 (2004).
  • Hochberg LR, Serruya MD, Friehs GM et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature442(7099), 164–171 (2006).
  • Kipke DR, Shain W, Buzsáki G et al. Advanced neurotechnologies for chronic neural interfaces: new horizons and clinical opportunities. J. Neurosci.28(46), 11830–11838 (2008).
  • Hochberg LR, Simeral JD, Kim SP et al. More than two years of intracortically-based cursor control via a neural interface system. Program No. 673.15 2008 Neuroscience Meeting Planner. Washington, DC: Society for Neuroscience Online (2008).
  • Fagg AH, Hatsopoulos NG, de Lafuente V et al. Biomimetic brain machine interfaces for the control of movement. J. Neurosci.27(44), 11842–11846 (2007).
  • Blana D, Hincapie JG, Chadwick EK, Kirsch RF. A musculoskeletal model of the upper extremity for use in the development of neuroprosthetic systems. J. Biomech.41(8), 1714–1721 (2008).
  • Ajiboye B, Taylor DM, Simeral JD et al. Neural signal modulation during single versus multi-degree-of-freedom imagined arm movements in individuals with high tetraplegia. Program No. 673.17 2008 Neuroscience Meeting Planner. Washington, DC: Society for Neuroscience Online (2008).
  • Harrison RR, Watkins PT, Kier RJ et al. A low-power integrated circuit for a wireless 100-electrode neural recording system. IEEE J. Solid-State Circuits42(1) 123–133 (2007).
  • Rizk M, Obeid I, Callender SH, Wolf PD. A single-chip signal processing and telemetry engine for an implantable 96-channel neural data acquisition system. J. Neural Eng.4(3) 309–321 (2007).
  • Donoghue JP, Nurmikko A, Black M, Hochberg LR. Assistive technology and robotic control using motor cortex ensemble-based neural interface systems in humans with tetraplegia. J. Physiol. (Lond.)579(3), 603–611 (2007).
  • Wise KD, Sodagar AM, Yao Y, Gulari MN, Perlin GE, Najafi K. Microelectrodes, microelectronics, and implantable neural microsystems. Proc. IEEE96(7), 1184–1202 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.