144
Views
16
CrossRef citations to date
0
Altmetric
Review

Proton-beam therapy for tumors of the CNS

, , , &
Pages 319-330 | Published online: 09 Jan 2014

References

  • Slater JD. Clinical applications of proton radiation treatment at Loma Linda University: review of a fifteen-year experience. Technol. Cancer Res. Treat.5(2), 81–89 (2006).
  • Slater JM. Considerations in identifying optimal particles for radiation medicine. Technol. Cancer Res. Treat.5(2), 73–79 (2006).
  • Slater JM. Selecting the optimal particle for radiation therapy. Technol. Cancer Res. Treat.6(4), 35–39 (2007).
  • Bonnett DE. Current developments in proton therapy: a review. Phys. Med. Biol.38, 1371–1392 (1993).
  • Suit H, Goldberg S, Niemierko A et al. Proton beams to replace photon beams in radical dose treatments. Acta Oncol.42(8), 800–808 (2003).
  • Douw L, Klein M, Fagel, SS et al. Cognitive and radiological effects of radiotherapy in patients with low-grade glioma: long-term follow-up. Lancet Neurol.8(9), 810–818 (2009).
  • Laack NN, Brown PD. Cognitive sequelae of brain radiation in adults. Semin. Oncol.31(5), 702–713 (2004).
  • Brown PD, Buckner JC, O’Fallon JR et al. Effects of radiotherapy on cognitive function in patients with low-grade glioma measured by the folstein mini-mental state examination. J. Clin. Oncol.21(13), 2519–2524 (2003).
  • Laack NN, Brown PD, Ivnik RJ et al. Cognitive function after radiotherapy for supratentorial low-grade glioma: a North Center Cancer Treatment Group prospective study. Int. J. Radiat. Oncol. Biol. Phys.63(4), 1175–1183 (2005).
  • Monje M. Cranial radiation therapy and damage to hippocampal neurogenesis. Dev. Disabil. Res. Rev.14(3), 238–242 (2008).
  • Monje ML, Vogel H, Masek M et al. Impaired human hipocampal neurogenesis after treatment for central nervous system malignancies. Ann. Neurol.62(5), 515–520 (2007).
  • Abayomi OK, Pathogenesis of cognitive decline following therapeutic irradiation for head and neck tumors. Acta Oncol.41(4), 346–351 (2002).
  • Mizumatsu S, Monje ML, Morhardt DR et al. Extreme sensitivity of adult neurogenesis to low doses of X-irradiation. Cancer Res.63(14), 4021–4027 (2003).
  • Merchant TE, Hua CH, Shukla H et al. Proton versus photon radiotherapy for common pediatric brain tumors: comparison of models of dose characteristics and their relationship to cognitive function. Pediatr. Blood Cancer51(1), 110–117 (2008).
  • Palm A, Johansson KA. A review of the impact of photon and proton external beam radiotherapy treatment modalities on the dose distribution in field and out-of-field; implications for the long-term morbidity of cancer survivors. Acta Oncol.46(4), 462–473 (2007).
  • Suit H, Goldberg S, Niemierko A et al. Secondary carcinogenesis in patients treated with radiation: a review of data on radiation-induced cancers in human, non-human primate, canine and rodent subjects. Radiat. Res.167(1), 12–42 (2007).
  • Miralbell R, Lomax A, Cella L et al. Potential reduction of the incidence of radiation-induced second cancers by using proton beams in the treatment of pediatric tumors. Int. J. Radiat. Oncol. Biol. Phys.54(3), 824–829 (2002).
  • Newhauser WD, Fontenot JD, Mahajan A et al. The risk of developing a second cancer after receiving craniospinal proton radiation. Phys. Med. Biol.54(8), 2277–2291 (2009).
  • Hall EJ. Intensity-modulated radiation therapy, protons, and the risk of second cancers. Int. J. Radiat. Oncol. Biol. Phys.65(1), 1–7 (2006).
  • Gottschalk B. Neutron dose in scattered and scanned proton beams: in regard to Eric J. Hall (Int. J. Radiat. Oncol. Biol. Phys.65, 1–7, 2006). Int. J. Radiat. Oncol. Biol. Phys.66, 1594 (2006).
  • Paganetti H, Bortfeld T, Delaney TF. Neutron dose in proton radiation therapy: In regard to Eric J. Hall (Int. J. Radiat. Oncol. Biol. Phys.65, 1–7, 2006). Int. J. Radiat. Oncol. Biol. Phys.66, 1594–1595 (2006).
  • Jarlskog C, Lee C, Bolch WE et al. Assessment of organ-specific neutron equivalent doses in proton therapy using computational whole-body age-dependent voxel phantoms. Physics Med. Biol.53(3), 693 (2008).
  • Zacharatou-Jarlskog C, Lee C, Jiang H et al. Monte Carlo simulations using whole-body pediatric and adult phantoms as virtual patients to assess secondary organ doses in proton radiation therapy. Med. Phys.33(6), 2123 (2006).
  • Wroe A, Rosenfeld A, Schulte R. Out-of-field dose equivalents delivered by proton therapy of prostate cancer. Med. Phys.34, 3449–3456 (2007).
  • Wroe A, Clasie B, Kooy H. Out-of-field dose equivalents delivered by passively scattered therapeutic proton beams for clinically relevant field configurations. Int. J. Rad. Onc. Biol. Phys.73(1), 306–313 (2009).
  • Jemal A, Siegel R, Ward E et al. Cancer statistics, 2009. CA Cancer J. Clin.58(2), 71–96 (2009).
  • Amberger-Murphy V. Hypoxia helps glioma to fight therapy. Curr. Cancer Drug Targets9(3), 381–390 (2009).
  • van den Bent MJ, Afra D, de Witte O et al. Long-term efficacy of early versus delayed radiotherapy for low-grade astrocytoma and oligodendroglioma in adults: the EORTC 22845 randomised trial; EORTC Radiotherapy and Brain Tumor Groups and the UK Medical Research Council. Lancet366(9490), 985–990 (2005). Erratum in: Lancet367(9525), 1818 (2006).
  • Schomas DA, Laack NN, Rao RD et al. Intracranial low-grade gliomas in adults: 30-year experience with long-term follow-up at Mayo Clinic. Neuro Oncol.11(4), 437–445 (2009).
  • Walker M, Green S, Byar D et al. Randomized comparisons of radiotherapy and nitrosurias for the treatment of malignant glioma after surgery. N. Engl. J. Med.303, 1323–1329 (1980).
  • Lee S, Fraass B, Herbort K et al. Patterns of failure following high dose 3-D conformal radiotherapy for high grade astrocytomas: a quantitative dosimetric study. Int. J. Radiat. Oncol. Biol. Phys.43, 79–88 (1999).
  • Chan J, Lee, S, Benedick F et al. Survival and failure patterns of high-grade gliomas after three-dimensional conformal radiotherapy. J. Clin. Oncol.20(6), 1635–1642 (2002).
  • Fitzek M, Thornton A, Rabinov J et al. Accelerated fractionated proton/photon irradiation to 90 cobalt gray equivalent for glioblastoma multiforme: results of a Phase II prospective trial. J. Neurosurg.91, 251–260 (1999).
  • Stupp R, Hegi ME, Mason WP et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised Phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol.10(5), 459–466 (2009).
  • Mirimanoff R, Mason W, Van den Bent M et al. Is long-term survival in glioblastoma possible? Updated results of the EORTC/NCIC Phase III randomized trial on radiotherapy (RT) and concomitant and adjuvant temozolomide (TMZ) versus RT alone. Int. J. Radiat. Oncol. Biol. Phys.69(3), S2–S2 (2007).
  • Glas M, Happold C, Rieger J et al. Long-term survival of patients with glioblastoma treated with radiotherapy and lomustine plus temozolomide. Clin. Oncol.27(8), 1257–1261 (2009).
  • Ronson BB, Schulte RW, Han KP et al. Fractionated proton beam irradiation of pituitary adenomas. Int. J. Radiat. Oncol. Biol. Phys.64(2), 425–434 (2006).
  • Luu QT, Loredo LN, Archambeau JO et al. Fractionated proton radiation treatment for pediatric craniopharyngioma: Preliminary report. Cancer J.12, 155–159 (2006).
  • Fitzek MM, Linggood RM, Adams J et al. Combined proton and photon irradiation for craniopharyngioma: long-term results of the early cohort of patients treated at Harvard Cyclotron Laboratory and Massachusetts General Hospital. Int. J. Radiat. Oncol. Biol. Phys.64(5), 1348–1354 (2006).
  • Winkfield KM, Linsenmeier C, Yock TI et al. Surveillance of craniopharyngioma cyst growth in children treated with proton radiotherapy. Int. J. Radiat. Oncol. Biol. Phys.73(3), 716–721 (2009).
  • Munzenrider JE. Proton therapy for uveal melanomas and other eye lesions. Strahlenther. Onkol.175(S2), 68–73 (1999).
  • Zografos L, Ducrey N, Beati D et al. Metastatic melanoma in the eye and orbit. Ophthalmology110(11), 2245–2256 (2003).
  • Egger E, Zografos L, Schalenbourg A. Eye retention after proton beam radiotherapy for uveal melanoma. Int. J. Radiat. Oncol. Biol. Phys.55(4), 867–880 (2003).
  • Egger E, Schalenbourg A, Zografos L. Maximizing local tumor control and survival after proton beam radiotherapy of uveal melanoma. Int. J. Radiat. Oncol. Biol. Phys.51(1), 138–147 (2001).
  • Purdy JA. Dose to normal tissue outside the radiation therapy patient’s treated volume: a review of different radiation therapy techniques. Health Phys.95(5), 666–676 (2008).
  • Fossati P, Ricardi U, Orecchia R. Pediatric medulloblastoma: toxicity of current treatment and potential role of proton therapy. Cancer Treat. Rev.35, 79–96 (2009).
  • Lin R, Hug E, Schaefer R et al. Conformal proton radiation therapy of the posterior fossa: a study comparing protons with three-dimensional planned photons in limiting dose to auditory structures. Int. J. Radiat. Oncol. Biol. Phys.48(4), 1219–1226 (2000).
  • Yu GE, Loredo LN, Yonemoto LT et al. Reducing toxicity from craniospinal irradiation: using proton beams to treat medulloblastoma in young children. Cancer J.10(6), 386–390 (2004).
  • Timmermann B, Lomax AJ, Nobile L et al. Novel technique of craniospinal axis proton therapy with the spot-scanning system: avoidance of patching multiple fields and optimized ventral dose distribution. Strahlenther. Onkol.183(12), 685–688 (2007).
  • Krejcarek SC, Grant, PE, Henson, JW et al. Physiologic and radiographic evidence of the distal edge of the proton beam in craniospinal irradiation. J. Radiat. Oncol. Biol. Phys.68(3), 646–649 (2007).
  • Rutz HP, Weber DC, Goitein G et al. Postoperative spot-scanning proton radiation therapy for chordoma and chondrosarcome in children and adolescents: initial experience at Paul Scherrer Institute. Int. J. Radiat. Oncol. Biol. Phys.71(1), 220–225 (2008).
  • MacDonald SM, Safai S, Trofimov A et al. Proton radiotherapy for childhood ependymoma: initial clinical outcomes and dose comparisons. Int. J. Radiat. Oncol. Biol. Phys.71(4), 979–986 (2008).
  • St Clair WH, Adams JA, Bues M et al. Advantage of protons compared to conventional x-ray or IMRT in the treatment of a pediatric patient with medulloblastoma. Int. J. Radiat. Oncol. Biol. Phys.58(3), 727–734 (2004).
  • Jain KK. Future prospects for the cure of brain cancer. Technol. Cancer Res. Treat.5(3), 183–184 (2006).
  • Gridley DS, Miller GM, Luo X et al. Proton radiation and TNF-α/Bax gene therapy for orthotopic C6 brain tumor in Wistar rats. Technol. Cancer Res. Treat.3(2), 217–227 (2004).
  • Brisman JL, Cosgrove GR, Thornton AF et al. Hyperacute neuropathological findings after proton beam radiosurgery of the rat hippocampus. Neurosurgery56(6), 1330–1337 (2005).
  • Mao XW, Crapo JD, Mekonnen T et al. Radioprotective effect of a metalloporphyrin compound in rat eye model. Curr. Eye Res.34, 62–72 (2009).
  • Gridley DS, Makinde AY, Luo X et al. Radiation and a metalloporphyrin radioprotectant in a mouse prostate tumor model. Anticancer Res.27(5A), 3101–3109 (2007).
  • Makinde AY, Luo-Owen X, Rizvi A et al. Effect of a metalloprorphyrin antioxidant (MnTE-2-PyP) on the response of a mouse prostate cancer model to radiation. Anticancer Res.29(1), 107–118 (2009).
  • Ohnishi K, Ohnishi T. The biological effects of space radiation during long stays in space. Biol. Sci. Space18(4), 201–205 (2004).
  • Kerschensteiner M, Meinl E, Hohlfeld R. Neuro-immune crosstalk in CNS diseases. Neuroscience158(3), 1122–1132 (2009).
  • Gridley DS, Rizvi A, Luo-Owen X et al. Variable hematopoietic responses to acute photons, protons and simulated solar particle event protons. In Vivo22, 159–169 (2008).
  • Gridley DS, Pecaut MJ, Rizvi A et al. Low-dose, low-dose-rate proton radiation modulates CD4+ T cell gene expression. Int. J. Radiat. Biol.85(3), 250–261 (2009).
  • Gridley DS, Coutrakon GB, Rizvi A et al. Low dose photons modify liver response to simulated solar particle event protons. Radiat. Res.169, 280–287 (2008).
  • Fan JB, Mascia AE, Hsi W-C et al. Clinical characterization of a proton beam continuous uniform scanning system with dose layer stacking. Med. Phys.35(11), 4945–4954 (2008).
  • Oelfke U, Bortfeld T. Optimization of physical dose distributions with Hadron beams: comparing photon IMRT with IMPT. Technol. Cancer Res. Treat.2(5), 401–412 (2003).
  • Widesott L, Pierelli A, Fiorino C et al. Intensity-modulated proton therapy versus helical tomotherapy in nasopharynx cancer: planning comparison and NTCP evaluation. Int. J. Radiat. Oncol. Biol. Phys.72(2), 589–596 (2008).
  • Trofimov A, Bortfeld T. Optimization of beam parameters and treatment planning for intensity modulated proton therapy. Technol. Cancer Res. Treat.2(5), 437–444 (2003).
  • Rutz HP, Weber DC, Sugahara S et al. Extracranial chordoma: outcome in patients treated with function-preserving surgery followed by spot-scanning proton beam irradiation. Int. J. Radiat. Oncol. Biol. Phys.67(2), 512–520 (2007).
  • Weber DC, Lomax AJ, Rutz HP et al. Spot-scanning proton radiation therapy for recurrent, residual or untreated intracranial meningiomas. Radiother. Oncol.71, 251–258 (2004).
  • Weber DC, Rutz HP, Pedroni ES et al. Results of spot-scanning proton radiation therapy for chordoma and chondrosarcoma of the skull base: the Paul Scherrer Institut experience. Int. J. Radiat. Oncol. Biol. Phys.63(2), 401–409 (2005).
  • Nieder C, Mehta MP, Jalali R. Combined radio- and chemotherapy of brain tumours in adult patients. Clin. Oncol. (R. Coll. Radiol.)21(7), 515–524 (2009).
  • Noda SE, El-Jawahri A, Patel D et al. Molecular advances of brain tumor in radiation oncology. Semin. Radiat. Oncol.19(3), 171–178 (2009).
  • Mercer RW, Tyler MA, Ulasov IV et al. Targeted therapies for malignant glioma: progress and potential. BioDrugs23(1), 25–35 (2009).
  • Tu LC, Foltz G, Lin E et al. Targeting stem cells – clinical implications for cancer therapy. Curr. Stem Cell Res. Ther.4(2), 147–153 (2009).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.