113
Views
13
CrossRef citations to date
0
Altmetric
Review

Brain-evoked potentials as a tool for diagnosing neuropathic pain

&
Pages 759-771 | Published online: 09 Jan 2014

References

  • Merskey H, Bogduk N. Classification of Chronic Pain. IASP Press, WA, USA (1994).
  • Backonja MM. Defining neuropathic pain. Anesth. Analg.97, 785–790 (2003).
  • Treede RD, Jensen TS, Campbell JN et al. Neuropathic pain. Redefinition and a grading system for clinical and research purposes. Neurology70(18), 1630–1635 (2008).
  • Campbell JN, Meyer RA. Mechanisms of neuropathic pain. Neuron52, 77–92 (2006).
  • Truini A, Cruccu G. Pathophysiological mechanisms of neuropathic pain. Neurol. Sci.27(2), S179–S182 (2006).
  • Marchand F, Perretti M, McMahon SB. Role of the immune system in chronic pain. Nat. Rev. Neurosci.6, 521–532 (2005).
  • Moskowitz MA. Neurogenic inflammation in the pathophysiology and treatment of migraine. Neurology43(6 Suppl. 3), S16–S20 (1993).
  • Woolf CJ, Bennett GJ, Doherty M et al. Towards a mechanism-based classification of pain? Pain77(3), 227–229 (1998).
  • Craig AD. Pain mechanisms: labeled lines versus convergence in central processing. Annu. Rev. Neurosci.26, 1–30 (2003).
  • Melzack R, Casey KL. Sensory, motivational, and central control determinants of pain. In: Skin Senses. Kenshalo DR (Ed.). Thomas Springfield, IL, USA 423–443(1968).
  • Price DD. Psychological and neural mechanisms of the affective dimension of pain. Science (288), 1769–1772 (2000).
  • Craig AD. Supraspinal projections of lamina one neurons. In: Forebrain Areas Involved in Pain Processing. Besson JM, Guilbaud G, Ollat H (Eds). Libby, London, UK 13–25 (1995).
  • Treede RD, Kenshalo DR, Gracely RH, Jones AK. The cortical representation of pain. Pain (79), 105–111 (1999).
  • Valeriani M, Le Pera D, Restuccia D et al. Parallel spinal pathways generate the middle-latency N1 and the late P2 components of the laser evoked potentials. Clin. Neurophysiol. (118), 1097–1104 (2007).
  • Garcia-Larrea L, Magnin M. Pathophysiology of neuropathic pain: review of experimental models and proposed mechanisms. Presse Med.37(2), 315–340 (2008).
  • Cruccu G, Anand P, Attal N et al. EFNS guidelines on neuropathic pain assessment. Eur. J. Neurol.11(3), 153–162 (2004).
  • Leffler AS, Kosek E, Hansson P. The influence of pain intensity on somatosensory perception in patients suffering from subacute/chronic lateral epicondylalgia. Eur. J. Pain4, 57–71(2000).
  • Leffler AS, Kosek E, Lerndal T, Nordmark B, Hansson P. Somatosensory perception and function of diffuse noxious inhibitory controls (DNIC) in patients suffering from rheumatoid arthritis. Eur. J. Pain6, 161–176 (2002).
  • Siao P, Cros DP. Quantitative sensory testing. Phys. Med. Rehabil. Clin. N. Am.14(2), 261–286 (2003).
  • Bromm B, Treede RD. Nerve fiber discharges, cerebral potentials and sensations induced by CO2 laser stimulation. Hum. Neurobiol.3, 33–40 (1984).
  • Tominaga M, Julius D. Capsaicin receptor in the pain pathway. Jpn. J. Pharmacol.83(1), 20–24 (2000).
  • Greffrath W, Nemenov MI, Schwarz S et al. Inward currents in primary nociceptive neurons of the rat and pain sensations in humans elicited by infrared diode laser pulses. Pain99(1–2), 145–155 (2002).
  • Meyer RA, Walker RE, Mountcastle VB Jr. A laser stimulator for the study of cutaneous thermal and pain sensations. IEEE Trans. Biomed. Eng.23(1), 54–60 (1976).
  • Gybels J, Handwerker HO, Van Hees J. A comparison between the discharges of human nociceptive nerve fibers and the subject’s ratings of his sensations. J. Physiol.292, 193–206 (1979).
  • Iannetti GD, Truini A, Romaniello A et al. Evidence of a specific spinal pathway for the sense of warmth in humans. J. Neurophysiol.89(1), 562–570 (2003).
  • Magerl W, Ali Z, Ellrich J, Meyer RA, Treede RD. C- and A δ-fiber components of heat-evoked cerebral potentials in healthy human subjects. Pain82(2), 127–137 (1999).
  • Spiegel J, Hansen C, Treede R-D. Clinical evaluation criteria for the assessment of impaired pain sensitivity by thulium-laser evoked potentials. Clin. Neurophysiol.111, 725–735 (1999).
  • Arendt-Nielsen L, Chen CAN. Lasers and other thermal stimulators for activation of skin nociceptors in humans. Neurophysiol. Clin.33, 259–268 (2003).
  • Truini A, Galeotti F, Romaniello A, Virtuoso M, Iannetti GD, Cruccu G. Laser-evoked potentials: normative values. Clin. Neurophysiol.116(4), 821–826 (2005).
  • Bromm B, Jahnke MT, Treede R-D. Responses of human cutaneous afferents to CO2 laser stimuli causing pain. Exp. Brain Res.55, 158–166 (1984).
  • Landau W, Bishop GH. Pain from dermal, periosteal and fascial endings and from inflammation: electrophysiological study employing different nerve blocks. Arch. Neurol. Psychiatry69, 490–504 (1953).
  • Bragard D, Chen ACN, Plaghki L. Direct isolation of ultra-late (C-fiber) evoked brain potentials by CO2 laser stimulation of tiny cutaneous surface areas in man. Neurosci. Lett.209, 81–84 (1996).
  • Cruccu G, Pennisi E, Truini A et al. Unmyelinated trigeminal pathways as assessed by laser stimuli in humans. Brain126, 2246–2256 (2003).
  • Arendt-Nielsen L. Second pain event related potentials to argon laser stimuli: recording and quantification. J. Neurol. Neurosurg. Psychiatry53, 405–410 (1990).
  • Bromm B, Treede R-D. Human cerebral potentials evoked by CO2 laser stimuli causing pain. Exp. Brain Res.67, 153–162 (1987).
  • Bromm B, Treede RD. Laser-evoked cerebral potentials in the assessment of cutaneous pain sensitivity in normal subjects and patients. Rev. Neurol.147, 625–643 (1991).
  • Mouraux A, Guerit JM, Plaghki L. Refractoriness cannot explain why C-fiber laser-evoked brain potentials are recorded only if concomitant A-δ fiber activation is avoided. Pain112, 16–26 (2004).
  • Truini A, Rossi P, Galeotti F et al. Excitability of the A δ nociceptive pathways as assessed by the recovery cycle of laser evoked potentials in humans. Exp. Brain Res.155, 120–123 (2004).
  • Garcia-Larrea L. Somatosensory volleys and cortical evoked potentials: ‘First come, first served’? Pain112, 5–7 (2004).
  • Truini A, Galeotti F, Cruccu G, Garcia-Larrea L. Inhibition of cortical responses to Aδ inputs by a preceding C-related response: testing the “first come, first served” hypothesis of cortical laser evoked potentials. Pain131, 343–347 (2007).
  • Mouraux A, Iannetti GD. A review of the evidence against the “first come first served” hypothesis. Comment on Truini et al. [Pain 2007;131:43–47]. Pain136(1–2), 219–221 (2008).
  • Valeriani M, Restuccia D, Le Pera D, De Armas L, Maiese T, Tonali P. Attention-related modifications of ultra-late CO2 laser evoked potnetials to human trigeminal nerve stimulation. Neurosci. Lett.329(3), 329–333 (2002).
  • Qiu Y, Noguchi Y, Honda M et al. Brain processing of the signals ascending through unmyelinated C fibers in humans: an event-related functional magnetic resonance imaging study. Cereb. Cortex16(9), 1289–1295 (2006).
  • Kakigi R, Koyama S, Hoshiyama M, Kitamura Y, Shimojo M, Watanabe S. Pain-related magnetic fields following painful CO2 laser stimulation in man. Neurosci. Lett. (192), 4548 (1995).
  • Kakigi R, Hoshiyama M, Shimojo M et al. The somatosensory evoked magnetic fields. Prog. Neurobiol.61, 495–523 (2000).
  • Kanda M, Nagamine T, Ikeda A et al. Primary somatosensory cortex is actively involved in pain processing in human. Brain Res.853, 282–289 (2000).
  • Nakamura Y, Paur R, Zimmermann R, Bromm B. Attentional modulation of human pain processing in the secondary somatosensory cortex: a magnetoencephalographic study. Neurosci. Lett.328, 29–32 (2002).
  • Ploner M, Schmitz F, Freund HJ, Schnitzler A. Parallel activation of primary and secondary somatosensory cortices in human pain processing. J. Neurophysiol.81, 3100–3104 (1999).
  • Timmermann L, Ploner M, Haucke K, Schmitz F, Baltissen R, Schnitzler A. Differential coding of pain intensity in the human primary and secondary somatosensory cortex. J. Neurophysiol.86, 1499–1503 (2001).
  • Yamasaki H, Kakigi R, Watanabe S, Naka D. Effects of distraction on pain perception: magneto- and electro-encephalographic studies. Brain Res. Cogn. Brain Res.8, 73–76 (1999).
  • Bornhovd K, Quante M, Glauche V, Bromm B, Weiller C, Buchel C. Painful stimuli evoke different stimulus-response functions in the amygdala, prefrontal, insula and somatosensory cortex: a single-trial fMRI study. Brain125, 1326–1336 (2002).
  • Derbyshire SW, Jones AK, Gyulai F, Clark S, Townsend D, Firestone LL. Pain processing during three levels of noxious stimulation produces differential patterns of central activity. Pain73, 431–445 (1997).
  • Peyron R, Laurent B, Garcia-Larrea L. Functional imaging of brain responses to pain. A review and meta-analysis. Neurophysiol. Clin. (30), 263–288 (2000).
  • Svensson P, Minoshima S, Beydoun A, Morrow TJ, Casey KL. Cerebral processing of acute skin and muscle pain in humans. J. Neurophysiol.78, 450–460 (1997).
  • Xu X, Fukuyama H, Yazawa S et al. Functional localization of pain perception in the human brain studied by PET. Neuroreport8, 555–559 (1997).
  • Frot M, Rambaud L, Guènot M, Mauguière F. Intracortical recordings of early pain-related CO2-laser evoked potentials in the human second somatosenosory (SII) area. Clin. Neurophysiol.110(1), 133–145 (1999).
  • Vogel H, Port JD, Lenz FA, Solaiyappan M, Krauss G, Treede RD. Dipole source analysis of laser-evoked subdural potentials recorded from parasylvian cortex in humans. J. Neurophysiol.89(6), 3051–3060 (2003)
  • Lenz FA, Krauss G, Treede RD et al. Different generators in human temporal-parasylvian cortex account for subdural laser-evoked potentials, auditory-evoked potentials, and event-related potentials. Neurosci. Lett.279(3), 153–156 (2000).
  • Lenz FA, Rios M, Zirh A, Chau D, Krauss G, Lesser RP. Painful stimuli evoke potentials recorded over the human anterior cingulate gyrus. J. Neurophysiol.79(4), 2231–2234 (1998).
  • Ohara S, Crone NE, Weiss N, Treede RD, Lenz FA. Amplitudes of laser evoked potential recorded from primary somatosensory, parasylvian and medial frontal cortex are graded with stimulus intensity. Pain110(1–2), 318–328 (2004).
  • Robinson CJ, Burton H. Somatic submodality distribution within the second somatosensory (SII), 7b, retroinsular, postauditory, and granular insular cortical areas of M. fascicularis. J. Comp. Neurol.192(1), 93–108 (1980).
  • Chudler EH, Dong WK. The role of the basal ganglia in nociception and pain. Pain60(1), 3–38 (1995).
  • Brooks JC, Zambreanu L, Godinez A, Craig AD, Tracey I. Somatotopic organisation of the human insula to painful heat studied with high resolution functional imaging. Neuroimage27(1), 201–209 (2005).
  • Timmermann L, Ploner M, Haucke K, Schmitz F, Baltissen R, Schnitzler A. Differential coding of pain intensity in the human primary and secondary somatosensory cortex. J. Neurophysiol.86, 1499–1503 (2001).
  • Craig AD. Interoception: the sense of the physiological condition of the body. Curr. Opin. Neurobiol.13(4), 500–505 (2003).
  • Torquati K, Pizzella V, Della Penna S et al. Comparison between SI and SII responses as a function of stimulus intensity. Neuroreport13, 813–819 (2002).
  • Bentley DE, Youell PD, Crossman AG, Jones AK. Source localisation of 62-electrode human laser pain evoked potential data using a realistic head model. Int. J. Psychophysiol.41, 187–193 (2001).
  • Bromm B, Chen ACN. Brain electrical source analysis of laser evoked potentials in response to painful trigeminal nerve stimulation. Electroencephalogr. Clin. Neurophysiol. (95), 14–26 (1995).
  • Chen ACW, Arendt-Nielsen B, Plaghki L. Laser-evoked potentials in human pain I. Use and possible misuse. Pain Forum7, 174–184 (1998).
  • Inui K, Tran TD, Qiu Y, Wang X, Hoshiyama M, Kakigi R. Pain related magnetic fields evoked by intra-epidermal electrical stimulation in humans. Clin. Neurophysiol.113(2), 298–304 (2002).
  • Inui K, Tran TD, Qiu Y, Wang X, Hoshiyama M, Kakigi R. A comparative magnetoencephalographic study of cortical activations evoked by noxious and innocuous somatosensory stimulations. Neuroscience120(1), 235–248 (2003).
  • Ploner M, Schmitz F, Freund HJ, Schnitzler A. Differential organization of touch and pain in human primary somatosensory cortex. J. Neurophysiol.83(3), 1770–1776 (2000).
  • Ohara S, Crone NE, Weiss N, Treede RD, Lenz FA. Cutaneous painful laser stimuli evoke responses recorded directly from primary somatosensory cortex in awake humans. J. Neurophysiol.91(6), 2734–2746 (2004).
  • Valeriani M, Barba C, Le Pera D et al. Different neuronal contribution to N20 somatosensory evoked potential and to CO2 laser evoked potentials: an intracerebral recording study. Clin. Neurophysiol.115(1), 211–216 (2004).
  • Garcia-Larrea L, Frot M, Valeriani M. Brain generators of laser-evoked potentials: from dipoles to functional significance. Neurophysiol. Clin.33(6), 279–292 (2003).
  • Lenz FA, Rios M, Zirh A, Chau D, Krauss G, Lesser RP. Painful stimuli evoke potentials recorded over the human anterior cingulated gyrus. J. Neurophysiol.79(4), 2231–2234 (1998).
  • Frot M, Mauguière F, Magnin M, Garcia-Larrea L. Parallel processing of nociceptive A-δ inputs in SII and midcingulate cortex in humans. J. Neurosci.28, 944–952 (2008).
  • Koyama T, Tanaka YZ, Mikami A. Nociceptive neurons in the macaque anterior cingulate activate during anticipation of pain. Neuroreport9(11), 2663–2667 (1998).
  • Büchel C, Bornhovd K, Quante M, Glauche V, Bromm B, Weiller C. Dissociable neural responses related to pain intensity, stimulus intensity, and stimulus awareness within the anterior cingulate cortex: a parametric single-trial laser functional magnetic resonance imaging study. J. Neurosci.22(3), 970–976 (2002).
  • Kakigi R, Shibasaki H, Kuroda Y et al. Pain-related somatosensory evoked potentials in syringomyelia. Brain114(Pt 4), 1871–1889 (1991).
  • Treede RD, Lankers J, Frieling A, Zangemeister WH, Kunze K, Bromm B. Cerebral potentials evoked by painful, laser stimuli in patients with syringomyelia. Brain114, 1595–1607 (1991).
  • Urban PP, Hansen C, Baumgärtner U et al. Abolished laser-evoked potentials and normal blink reflex in midlateral medullary infarction. J. Neurol.246(5), 347–352 (1999).
  • Kanda M, Mima T, Xu X et al. Pain-related somatosensory evoked potentials can quantitatively evaluate hypalgesia in Wallenberg’s syndrome. Acta Neurol. Scand.94(2), 131–136 (1996).
  • Baumann TK, Simone DA, Shain CN, LaMotte RH. Neurogenic hyperalgesia: the search for the primary cutaneous afferent fibers that contribute to capsaicin-induced pain and hyperalgesia. J. Neurophysiol.66, 212–227 (1991).
  • Treede RD, Meyer RA, Raja SN, Campbell JN. Peripheral and central mechanisms of cutaneous hyperalgesia. Prog. Neurobiol.38, 397–421 (1992).
  • Romaniello A, Arendt-Nielsen L, Cruccu G, Svensson P. Modulation of trigeminal laser evoked potentials and laser silent periods by homotopical experimental pain. Pain98(1–2), 217–228 (2002).
  • Valeriani M, Arendt-Nielsen L, Le Pera D et al. Short-term plastic changes of the human nociceptive system following acute pain induced by capsaicin. Clin. Neurophysiol.114(10), 1879–1890 (2003).
  • de Tommaso M, Losito L, Difruscolo O et al. Capsaicin failed in suppressing cortical processing of CO2 laser pain in migraine patients. Neurosci. Lett.384(1–2), 150–155 (2005).
  • Beydoun A, Dyke DB, Morrow TJ, Casey KL. Topical capsaicin selectively attenuates heat pain and A δ fiber-mediated laser-evoked potentials. Pain65(2–3), 189–196 (1996).
  • Valeriani M, Tonali P, Le Pera D et al. Modulation of laser-evoked potentials by experimental cutaneous tonic pain. Neuroscience140(4), 1301–1310 (2006).
  • Kakigi R, Shibasaki H, Tanaka K et al. CO2 laser-induced pain-related somatosensory evoked potentials in peripheral neuropathies: correlation between electrophysiological and histopathological findings. Muscle Nerve14(5), 441–450 (1991).
  • Agostino R, Cruccu G, Romaniello A, Innocenti P, Inghilleri M, Manfredi M. Dysfunction of small myelinated afferents in diabetic polyneuropathy, as assessed by laser evoked potentials. Clin. Neurophysiol.111(2), 270–276 (2000).
  • Pozzessere G, Rossi P, Gabriele A et al. Early detection of small-fiber neuropathy in diabetes: a laser-induced pain somatosensory-evoked potentials and pupillometric study. Diabetes Care25(12), 2355–2358 (2002).
  • Truini A, Haanpää M, Zucchi R et al. Laser-evoked potentials in post-herpetic neuralgia. Clin. Neurophysiol.114, 702–709 (2003).
  • Truini A, Galeotti F, Haanpää M et al. Pathophysiology of pain in postherpetic neuralgia: a clinical and neurophysiological study. Pain140(3), 405–410 (2008).
  • Quante M, Hauck M, Gromoll M, Hille E, Lorenz J. Dermatomal laser-evoked potentials: a diagnostic approach to the dorsal root. Norm data in healthy volunteers and changes in patients with radiculopathy. Eur. Spine J.16(7), 943–952 (2007).
  • Cruccu G, Leandri M, Iannetti GD et al. Small-fiber dysfunction in trigeminal neuralgia: carbamazepine effect on laser-evoked potentials. Neurology56(12), 1722–1726 (2001).
  • Garcia-Larrea L, Convers P, Magnin M et al. Laser-evoked potential abnormalities in central pain patients: the influence of spontaneous and provoked pain. Brain125(Pt 12), 2766–2781 (2002).
  • Siddall P, Xu CL, Cousins M. Allodynia following traumatic spinal cord injury in the rat. Neuroreport6, 1241–1244 (1995).
  • Weng HR, Lee JI, Lenz FA et al. Functional plasticity in primate somatosensory thalamus following chronic lesion of the ventral lateral spinal cord. Neuroscience101, 393–401 (2000).
  • MacGowan DJ, Janal MN, Clark WC et al. Central poststroke pain and Wallenberg’s lateral medullary infarction: frequency, character, and determinants in 63 patients. Neurology49, 120–125 (1997).
  • de Tommaso M, Guido M, Libro G et al. Abnormal brain processing of cutaneous pain in migraine patients during the attack. Neurosci. Lett.333(1), 29–32 (2002).
  • Gibson SJ, Littlejohn GO, Gorman MM, Helme RD, Granges G. Altered heat pain thresholds and cerebral event-related potentials following painful CO2 laser stimulation in subjects with fibromyalgia syndrome. Pain58(2), 185–193 (1994).
  • Granot M, Buskila D, Granovsky Y, Sprecher E, Neumann L, Yarnitsky D. Simultaneous recording of late and ultra-late pain evoked potentials in fibromyalgia. Clin. Neurophysiol.112(10), 1881–1887(2001)
  • Kakigi R, Shibasaki H, Kuroda Y et al. Pain-related somatosensory evoked potentials in syringomyelia. Brain114(Pt 4), 1871–1889 (1991).
  • Treede RD, Lankers J, Frieling A, Zangemeister WH, Kunze K, Bromm B. Cerebral potentials evoked by painful, laser stimuli in patients with syringomyelia. Brain114(Pt 4), 1595–1607 (1991).
  • Spiegel J, Hansen C, Baumgärtner U, Hopf HC, Treede RD. Sensitivity of laser-evoked potentials versus somatosensory evoked potentials in patients with multiple sclerosis. Clin. Neurophysiol.114(6), 992–1002 (2003).
  • Veciana M, Valls-Solé J, Rubio F, Callén A, Robles B. Laser evoked potentials and prepulse inhibition of the blink reflex in patients with Wallenberg’s syndrome. Pain117(3), 443–449 (2005).
  • Montes C, Magnin M, Maarrawi J et al. Thalamic thermo-algesic transmission: ventral posterior (VP) complex versus VMpo in the light of a thalamic infarct with central pain. Pain113(1–2), 223–232 (2005).
  • Greenspan JD, Lee RR, Lenz FA. Pain sensitivity alterations as a function of lesion location in the parasylvian cortex. Pain81(3), 273–282 (1999).
  • Chen AC, Niddam DM, Arendt-Nielsen L. Contact heat evoked potentials as a valid means to study nociceptive pathways in human subjects. Neurosci. Lett.316(2), 79–82 (2001).
  • Chen IA, Hung SW, Chen YH et al. Contact heat evoked potentials in normal subjects. Acta Neurol. Taiwan15(3), 184–191 (2006).
  • Valeriani M, Le Pera D, Niddam D, Chen AC, Arendt-Nielsen L. Dipolar modelling of the scalp evoked potentials to painful contact heat stimulation of the human skin. Neurosci. Lett.318(1), 44–48 (2002).
  • Granovsky Y, Matre D, Sokolik A, Lorenz J, Casey KL. Thermoreceptive innervation of human glabrous and hairy skin: a contact heat evoked potential analysis. Pain115(3), 238–247 (2005).
  • Truini A, Galeotti F, Pennisi E, Casa F, Biasiotta A, Cruccu G. Trigeminal small-fiber function assessed with contact heat evoked potentials in humans. Pain132(1–2), 102–107 (2007).
  • Atherton DD, Facer P, Roberts KM et al. Use of the novel contact heat evoked potential stimulator (CHEPS) for the assessment of small fiber neuropathy: correlations with skin flare responses and intra-epidermal nerve fiber counts. BMC Neurol.7, 21 (2007).
  • Chao CC, Hsieh SC, Tseng MT, Chang YC, Hsieh ST. Pattern of contact heat evoked potentials (CHEPs) in neuropathy with skin denervation: correlation of CHEP amplitude with intraepidermal nerve fiber density. Clin. Neurophysiol.119, 653–661 (2008).
  • Schestatsky P, Lladó-Carbó E, Casanova-Molla J, Alvarez-Blanco S, Valls-Solé J. Small fibre function in patients with meralgia paresthetica. Pain139(2), 342–348 (2008).
  • Lantéri-Minet M. Diagnosis and principal causes of neuropathic pain. Presse Med.37(2), 341–345 (2008).
  • Mor J, Carmon A. Laser emitted radiant heat for pain research. Pain1(3), 233–237 (1975).
  • Rossi P, Morano S, Serrao M et al. Pre-perceptual pain sensory responses (N1 component) in type 1 diabetes mellitus. Neuroreport13(8), 1009–1012 (2002).
  • Pozzessere G, Rossi P, Gabriele A et al. Early detection of small-fiber neuropathy in diabetes: a laser-induced pain somatosensory-evoked potentials and pupillometric study. Diabetes Care25(12), 2355–2358 (2002).
  • Lorenz J, Hansen HC, Kunze K, Bromm B. Sensory deficits of a nerve root lesion can be objectively documented by somatosensory evoked potentials elicited by painful infrared laser stimulations: a case study. J. Neurol. Neurosurg. Psychiatry61(1), 107–110 (1996).
  • Truini A, Cruccu G. Laser evoked potentials in patients with trigeminal disease: the absence of Ad potentials does not unmask C-fibre potentials. Clin. Neurophysiol.119(8), 1905–1908 (2008).
  • de Tommaso M. Laser-evoked potentials in primary headaches and cranial neuralgias. Expert Rev Neurother.8(9), 1339–1345 (2008).
  • Valeriani M, Mariotti P, Le Pera D et al. Functional assessment of A δ and C fibers in patients with Fabry's disease. Muscle Nerve30(6), 708–713 (2004).
  • Kakigi R, Shibasaki H, Ikeda T, Neshige R, Endo C, Kuroda Y. Pain-related somatosensory evoked potentials following CO2 laser stimulation in peripheral neuropathies. Acta Neurol. Scand.85(5), 347–352 (1992).
  • Ragazzoni A, Amantini A, Lombardi M, Macucci M, Mascalchi M, Pinto F. Electric and CO2 laser SEPs in a patient with asymptomatic syringomyelia. Electroencephalogr. Clin. Neurophysiol.88(4), 335–338 (1993).
  • Kakigi R, Kuroda Y, Neshige R, Endo C, Shibasaki H. Physiological study of the spinothalamic tract conduction in multiple sclerosis. J. Neurol. Sci.107(2), 205–209 (1992).
  • Casey KL, Beydoun A, Boivie J et al. Laser-evoked cerebral potentials and sensory function in patients with central pain. Pain64(3), 485–491 (1996).
  • Hansen HC, Treede RD, Lorenz J, Kunze K, Bromm B. Recovery from brain-stem lesions involving the nociceptive pathways: comparison of clinical findings with laser-evoked potentials. J. Clin. Neurophysiol.13(4), 330–338 (1996).
  • Rousseaux M, Cassim F, Bayle B, Laureau E. Analysis of the perception of and reactivity to pain and heat in patients with wallenberg syndrome and severe spinothalamic tract dysfunction. Stroke30(10), 2223–2229 (1999).
  • Wu Q, García-Larrea L, Mertens P, Beschet A, Sindou M, Mauguière F. Hyperalgesia with reduced laser evoked potentials in neuropathic pain. Pain80(1–2), 209–214 (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.