286
Views
89
CrossRef citations to date
0
Altmetric
Perspective

Metabolic links between diabetes and Alzheimer’s disease

&
Pages 617-630 | Published online: 09 Jan 2014

References

  • Arvanitakis Z, Wilson RS, Bienias JL, Evans DA, Bennett DA. Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Arch. Neurol.61(5), 661–666 (2004).
  • Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P. Risk of dementia in diabetes mellitus: a systemic review. Lancet Neurol.5, 64–74 (2006).
  • Cali AM, Caprio S. Prediabetes and Type 2 diabetes in youth: an emerging epidemic disease? Curr. Opin. Endocrinol. Diabetes Obes15(2), 123–127 (2008).
  • Craft S. Insulin resistance and Alzheimer’s disease pathogenesis: potential mechanisms and implications for treatment. Curr. Alzheimer Res4(2), 147–152 (2007).
  • Ott A, Stolk RP, van Harskamp F, Pols HA, Hofman A, Breteler MM. Diabetes mellitus and the risk of dementia: the Rotterdam Study. Neurology53, 1937–1942 (1999).
  • Katzman R, Aronson M, Fuld P et al. Development of dementing illnesses in an 80-year-old volunteer cohort. Ann. Neurol.25, 317–324 (1989).
  • Hassing LB, Johansson B, Nilsson SE et al. Diabetes mellitus is a risk factor for vascular dementia, but not Alzheimer’s disease: a population-based study of the oldest old. Int. Psychogeriatr.14, 239–248 (2002).
  • Bruce DG, Davis WA, Casey GP et al. Predictors of cognitive impairment and dementia in older people with diabetes. Diabetologia51, 241–248 (2008).
  • Akomolafe A, Beiser A, Meigs JB et al. Diabetes mellitus and risk of developing Alzheimer disease. Arch. Neurol.63, 1551–1555 (2006).
  • Xu W, Qiu C, Winblad B, Fratriglioni L. The effect of borderline diabetes on the risk of dementia and Alzheimer’s disease. Diabetes56, 211–216 (2007).
  • Peila R, Rodriguez BL, Launer LJ. Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies. Diabetes51, 1256–1262 (2002).
  • Luchsinger JA, Tang M-X, Shea S, Mayeux R. Hyperinsulinemia and risk of Alzheimer disease. Neurology63, 1187–1192 (2004).
  • Young SE, Mainous AG, Carnemolla M. Hyperinsulinemia and cognitive decline in a middle-aged cohort. Diabetes Care29, 2688–2693 (2006).
  • Yaffe K, Blackwell T, Kanaya AM, Davidowitz N, Barrett-Connor E, Krueger K. Diabetes, impaired fasting glucose, and development of cognitive impairment in older women. Neurology63, 658–663 (2004).
  • Luchsinger JA, Tang M-X, Stern Y, Shea S, Mayeux R. Diabetes mellitus and risk of Alzheimer’s disease and dementia with stroke in a multiethnic cohort. Am. J. Epidemiol.154, 635–641 (2001).
  • Xu W, Qiu CX, Wahlin A, Winblad B, Fratriglioni L. Diabetes mellitus and risk of dementia in the Kungsholmen project. Neurology63, 1181–1186 (2004).
  • Ronnemaa E, Zethelius B, Sundelof J et al. Impaired insulin secretion increases the risk of Alzheimer disease. Neurology71, 1065–1071 (2008).
  • Youngren JF. Regulation of insulin receptor function. Cell. Mol. Life Sci.64, 873–891 (2007).
  • Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet365, 1333–1346 (2005).
  • Cole AR, Astell A, Green C, Sutherland C. Molecular connections between dementia and diabetes. Neurosci. Biobehav. Rev.31, 1046–1063 (2007).
  • Neumann KF, Rojo L, Navarrete LP, Farias G, Reyes P, Maccioni RB. Insulin resistance and Alzheimer’s disease: molecular links & clinical implications. Curr. Alzheimer Res.5, 438–447 (2008).
  • Sweatt JD. Mitogen-activated protein kinases in synaptic plasticity and memory. Curr. Opin. Neurobiol.14, 311–317 (2004).
  • Tully T, Bourtchouladze R, Scott R, Tallman J. Targeting the CREB pathway for memory enhancers. Nat. Rev. Drug Discov.2, 267–277 (2003).
  • Carlezon WA, Duman RS, Nestler EJ. The many faces of CREB. Trends Neurosci.28, 436–445 (2005).
  • Horwood JM, Dufour F, Laroche S, Davis S. Signalling mechanisms mediated by the phosphoinositide 3-kinase/Akt cascade in synaptic plasticity and memory in the rat. Eur. J. Neurosci.23, 3375–3384 (2006).
  • Phiel CJ, Wilson CA, Lee VM-Y, Klein PS. GSK-3a regulates production of Alzheimer’s disease amyloid-peptides. Nature423, 435–439 (2003).
  • Alafuzoff I, Aho L, Helisalmi S, Mannermaa A, Soininen H. β-amyloid deposition in brains of subjects with diabetes. Neuropathol. Appl. Neurobiol.35(1), 60–68 (2009).
  • Arvanitakis Z, Schneider JA, Wilson RS et al. Diabetes is related to cerebral infarction but not to AD pathology in older persons. Neurology67(11), 1960–1965 (2006).
  • Harrington LS, Findlay GM, Lamb RF. Restraining PI3K: mTOR signalling goes back to the membrane. Trends Biochem. Sci.30, 35–42 (2005).
  • Higuchi M, Onishi K, Kikuchi C, Gotoh Y. Scaffolding function of PAK in the PDK1–Akt pathway. Nat. Cell Biol.10, 1356–1364 (2008).
  • Zhao L, Ma Q-L, Calon F et al. Role of p21-activated kinase pathway defects in the cognitive deficits of Alzheimer disease. Nat. Neurosci.9, 234–242 (2006).
  • Schubert M, Gautam D, Surjo D et al. Role for neuronal insulin resistance in neurodegenerative diseases. Proc. Natl Acad. Sci. USA101, 3100–3105 (2004).
  • Mielke JG, Taghibiglou C, Liu L et al. A biochemical and functional characterization of diet-induced brain insulin resistance. J. Neurochem.93, 1568–1578 (2005).
  • Stranahan AM, Norman ED, Lee K et al. Diet-induced insulin resistance impairs hippocampal synaptic plasticity and cognition in middle-aged rats. Hippocampus18, 1085–1088 (2008).
  • Ho L, Qin W, Pompl PN et al. Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer’s disease. FASEB J.18, 902–904 (2004).
  • Farris W, Mansourian S, Chang Y et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid β-protein, and the β-amyloid precursor protein intracellular domain in vivo. Proc. Natl Acad. Sci. USA100, 4162–4167 (2003).
  • Burdo JR, Chen Q, Calcutt NA, Schubert D. The pathological interaction between diabetes and presymptomatic Alzheimer’s disease. Neurobiol. Aging (2008) (Epub ahead of print). doi:10.1016/j.neurobiolaging.2008.02.010
  • Jenkins AJ, Best JD, Klein RL, Lyons TJ. ‘Lipoproteins, glycoxidation and diabetic angiopathy’. Diabetes Metab. Res. Rev.20(5), 349–368 (2004).
  • Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet365(9468), 1415–1428 (2005).
  • Hillered L, Chan PH. Role of arachidonic acid and other free fatty acids in mitochondrial dysfunction in brain ischemia. J. Neurosci. Res.20(4), 451–456 (1988).
  • Hamel FG, Upward JL, Bennett RG. In vitro inhibition of insulin-degrading enzyme by long-chain fatty acids and their coenzyme A thioesters. Endocrinology144(6), 2404–2408 (2003).
  • Dahlen SE, Bjork J, Hedqvist P et al. Leukotrienes promote plasma leakage and leukocyte adhesion in postcapillary venules: in vivo effects with relevance to the acute inflammatory response. Proc. Natl Acad. Sci. USA78(6), 3887–3891 (1981).
  • Wilson DM, Binder LI. Free fatty acids stimulate the polymerization of tau and amyloid β peptides. In vitro evidence for a common effector of pathogenesis in Alzheimer’s disease. Am. J. Pathol.150(6), 2181–2195 (1997).
  • Gamblin TC, King ME, Kuret J, Berry RW, Binder LI. Oxidative regulation of fatty acid-induced tau polymerization. Biochemistry39(46), 14203–14210 (2000).
  • Craft S. Insulin resistance syndrome and Alzheimer’s disease: age- and obesity-related effects on memory, amyloid, and inflammation. Neurobiol. Aging26(Suppl. 1), 65–69 (2005).
  • Rapoport SI. Brain arachidonic and docosahexaenoic acid cascades are selectively altered by drugs, diet and disease. Prostaglandins Leukot. Essent. Fatty Acids79(3–5), 153–156 (2008).
  • Firuzi O, Zhuo J, Chinnici CM, Wisniewski T, Pratico D. 5-lipoxygenase gene disruption reduces amyloid-β pathology in a mouse model of Alzheimer’s disease. FASEB J.22(4), 1169–1178 (2008).
  • Sanchez-Mejia RO, Newman JW, Toh S et al. Phospholipase A2 reduction ameliorates cognitive deficits in a mouse model of Alzheimer’s disease. Nat. Neurosci.11(11), 1311–1318 (2008).
  • Lim GP, Calon F, Morihara T et al. A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model. J. Neurosci.25(12), 3032–3040 (2005).
  • Roland I, De Leval X, Evrard B, Pirotte B, Dogne JM, Delattre L. Modulation of the arachidonic cascade with omega3 fatty acids or analogues: potential therapeutic benefits. Mini Rev. Med. Chem.4(6), 659–668 (2004).
  • Williams JH, Errington ML, Lynch MA, Bliss TV. Arachidonic acid induces a long-term activity-dependent enhancement of synaptic transmission in the hippocampus. Nature341(6244), 739–742 (1989).
  • Massicotte G. Modification of glutamate receptors by phospholipase A2: its role in adaptive neural plasticity. Cell. Mol. Life Sci.57(11), 1542–1550 (2000).
  • Scorrano L, Penzo D, Petronilli V, Pagano F, Bernardi P. Arachidonic acid causes cell death through the mitochondrial permeability transition. Implications for tumor necrosis factor-α aopototic signaling. J. Biol. Chem.276(15), 12035–12040 (2001).
  • Penzo D, Petronilli V, Angelin A et al. Arachidonic acid released by phospholipase A(2) activation triggers Ca2+-dependent apoptosis through the mitochondrial pathway. J. Biol. Chem.279(24), 25219–25225 (2004).
  • Tanaka E, Niiyama S, Sato S, Yamada A, Higashi H. Arachidonic acid metabolites contribute to the irreversible depolarization induced by in vitro ischemia. J. Neurophysiol.90(5), 3213–3223 (2003).
  • Cherny VV, Henderson LM, Xu W, Thomas LL, DeCoursey TE. Activation of NADPH oxidase-related proton and electron currents in human eosinophils by arachidonic acid. J. Physiol.535(Pt 3), 783–794 (2001).
  • Zhu D, Lai Y, Shelat PB, Hu C, Sun GY, Lee JC. Phospholipases A2 mediate amyloid-β peptide-induced mitochondrial dysfunction. J. Neurosci.26(43), 11111–11119 (2006).
  • Bianca VD, Dusi S, Bianchini E, Dal Pra I, Rossi F. β-amyloid activates the O-2 forming NADPH oxidase in microglia, monocytes, and neutrophils. A possible inflammatory mechanism of neuronal damage in Alzheimer’s disease. J. Biol. Chem.274(22), 15493–15499 (1999).
  • Schubert D, Soucek T, Blouw B. HIF-1 protects astrocytes from activation by amyloid β peptide. Eur. J. Neurosci.29, 1323–1334 (2009).
  • Takeuchi M, Yamagishi S. Possible involvement of advanced glycation end-products (AGEs) in the pathogenesis of Alzheimer’s disease. Curr. Pharmaceut. Des.14(10), 973–978 (2008).
  • Sun GY, Horrocks LA, Farooqui AA. The roles of NADPH oxidase and phospholipases A2 in oxidative and inflammatory responses in neurodegenerative diseases. J. Neurochem.103(1), 1–16 (2007).
  • Sun GY, Xu J, Jensen MD, Simonyi A. Phospholipase A2 in the central nervous system: implications for neurodegenerative diseases. J. Lipid Res.45(2), 205–213 (2004).
  • Uz T, Pesold C, Longone P, Manev H. Aging-associated up-regulation of neuronal 5-lipoxygenase expression: putative role in neuronal vulnerability. FASEB J.12(6), 439–449 (1998).
  • Wyss-Coray T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat. Med.12(9), 1005–1015 (2006).
  • Tan S, Sagara Y, Liu Y, Maher P, Schubert D. The regulation of reactive oxygen species production during programmed cell death. J. Cell Biol.141(6), 1423–1432 (1998).
  • Mitchell DC, Gawrisch K, Litman BJ, Salem N Jr. Why is docosahexaenoic acid essential for nervous system function? Biochem. Soc. Trans.26(3), 365–370 (1998).
  • Soderberg M, Edlund C, Kristensson K, Dallner G. Fatty acid composition of brain phospholipids in aging and in Alzheimer’s disease. Lipids26(6), 421–425 (1991).
  • Prasad MR, Lovell MA, Yatin M, Dhillon H, Markesbery WR. Regional membrane phospholipid alterations in Alzheimer’s disease. Neurochem. Res.23(1), 81–88 (1998).
  • Kalmijn S, Launer LJ, Ott A, Witteman JC, Hofman A, Breteler MM. Dietary fat intake and the risk of incident dementia in the Rotterdam Study. Ann. Neurol.42(5), 776–782 (1997).
  • Hooijmans CR, Rutters F, Dederen PJ et al. Changes in cerebral blood volume and amyloid pathology in aged Alzheimer APP/PS1 mice on a docosahexaenoic acid (DHA) diet or cholesterol enriched typical Western diet (TWD). Neurobiol. Dis.28(1), 16–29 (2007).
  • Wakil SJ, Abu-Elheiga LA. Fatty acid metabolism: target for metabolic syndrome. J. Lipid Res. (2008) (Epub ahead of print) doi:10.1194/jlr.R800079-JLR200.
  • Parks EJ, Skokan LE, Timlin MT, Dingfelder CS. Dietary sugars stimulate fatty acid synthesis in adults. J. Nutr.138(6), 1039–1046 (2008).
  • Cumming RC, Dargusch R, Fischer WH, Schubert D. Increase in expression levels and resistance to sulfhydryl oxidation of peroxiredoxin isoforms in amyloid β-resistant nerve cells. J. Biol. Chem.282(42), 30523–30534 (2007).
  • Thornalley PJ. Pharmacology of methylglyoxal: formation, modification of proteins and nucleic acids, and enzymatic detoxification – a role in pathogenesis and antiproliferative chemotherapy. Gen. Pharmacol.27(4), 565–573 (1996).
  • Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature414(6865), 813–820 (2001).
  • Kuhla B, Luth HJ, Haferburg D, Boeck K, Arendt T, Munch G. Methylglyoxal, glyoxal, and their detoxification in Alzheimer’s disease. Ann. NY Acad. Sci.1043, 211–216 (2005).
  • Chen F, Wollmer MA, Hoerndli F et al. Role for glyoxalase I in Alzheimer’s disease. Proc. Natl Acad. Sci. USA101(20), 7687–7692 (2004).
  • Fukunaga M, Miyata S, Higo S, Hamada Y, Ueyama S, Kasuga M. Methylglyoxal induces apoptosis through oxidative stress-mediated activation of p38 mitogen-activated protein kinase in rat Schwann cells. Ann. NY Acad. Sci.1043, 151–157 (2005).
  • Hipkiss AR. On the mechanisms of ageing suppression by dietary restriction-is persistent glycolysis the problem? Mec. Ageing Dev.127(1), 8–15 (2006).
  • Morcos M, Du X, Pfisterer F et al. Glyoxalase-1 prevents mitochondrial protein modification and enhances lifespan in Caenorhabditis elegans. Aging Cell7(2), 260–269 (2008).
  • Schubert D. Glucose metabolism and Alzheimer’s disease. Ageing Res. Rev.4, 240–257 (2005).
  • Soucek T, Cumming R, Dargusch R, Maher P, Schubert D. The regulation of glucose metabolism by HIF-1 mediates a neuroprotective response to amyloid β peptide. Neuron39(1), 43–56 (2003).
  • Ishige K, Schubert D, Sagara Y. Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic. Biol. Med.30, 433–446 (2001).
  • Thornalley PJ. Glycation in diabetic neuropathy: characteristics, consequences, causes, and therapeutic options. Int. Rev. Neurobiol.50, 37–57 (2002).
  • Thurston JH, McDougal DB Jr, Hauhart RE, Schulz DW. Effects of acute, subacute, and chronic diabetes on carbohydrate and energy metabolism in rat sciatic nerve. Relation to mechanisms of peripheral neuropathy. Diabetes44(2), 190–195 (1995).
  • Williamson JR, Chang K, Frangos M et al. Hyperglycemic pseudohypoxia and diabetic complications. Diabetes42(6), 801–813 (1993).
  • Munch G, Kuhla B, Luth HJ, Arendt T, Robinson SR. Anti-AGEing defences against Alzheimer’s disease. Biochem. Soc. Trans.31(Pt 6), 1397–1399 (2003).
  • Smith MA, Taneda S, Richey PL et al. Advanced Maillard reaction end products are associated with Alzheimer disease pathology. Proc. Natl Acad. Sci. USA91(12), 5710–5714 (1994).
  • Yan SD, Yan SF, Chen X et al. Non-enzymatically glycated tau in Alzheimer’s disease induces neuronal oxidant stress resulting in cytokine gene expression and release of amyloid β-peptide. Nat. Med.1(7), 693–699 (1995).
  • Choei H, Sasaki N, Takeuchi M et al. Glyceraldehyde-derived advanced glycation end products in Alzheimer’s disease. Acta Neuropathol.108(3), 189–193 (2004).
  • Li ZG, Zhang W, Sima AA. Alzheimer-like changes in rat models of spontaneous diabetes. Diabetes56(7), 1817–1824 (2007).
  • Vitek MP, Bhattacharya K, Glendening JM et al. Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proc. Natl Acad. Sci. USA91(11), 4766–4770 (1994).
  • Ledesma MD, Bonay P, Colaco C, Avila J. Analysis of microtubule-associated protein tau glycation in paired helical filaments. J. Biol. Chem.269(34), 21614–21619 (1994).
  • Yan SD, Chen X, Schmidt AM et al. Glycated tau protein in Alzheimer disease: a mechanism for induction of oxidant stress. Proc. Natl Acad. Sci. USA91(16), 7787–7791 (1994).
  • Takeuchi M, Bucala R, Suzuki T et al. Neurotoxicity of advanced glycation end-products for cultured cortical neurons. J. Neuropathol. Exp. Neurol.59(12), 1094–1105 (2000).
  • Dyck PJ, Hansen S, Karnes J et al. Capillary number and percentage closed in human diabetic sural nerve. Proc. Natl Acad. Sci. USA82(8), 2513–2517 (1985).
  • Huber JD. Diabetes, cognitive function, and the blood-brain barrier. Curr. Pharmaceut. Des.14(16), 1594–1600 (2008).
  • Ristow M. Neurodegenerative disorders associated with diabetes mellitus. J. Mol. Med.82(8), 510–529 (2004).
  • Zlokovic BV. The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron57(2), 178–201 (2008).
  • Biessels GJ, De Leeuw FE, Lindeboom J, Barkhof F, Scheltens P. Increased cortical atrophy in patients with Alzheimer’s disease and Type 2 diabetes mellitus. J. Neurol. Neurosurg. Psychiatry77(3), 304–307 (2006).
  • Sato T, Shimogaito N, Wu X, Kikuchi S, Yamagishi S, Takeuchi M. Toxic advanced glycation end products (TAGE) theory in Alzheimer’s disease. Am. J. Alzheimers Dis. Other Demen.21(3), 197–208 (2006).
  • Huber JD, VanGilder RL, Houser KA. Streptozotocin-induced diabetes progressively increases blood–brain barrier permeability in specific brain regions in rats. Am. J. Physiol.291(6), H2660–H2668 (2006).
  • Banks WA, Jaspan JB, Kastin AJ. Effect of diabetes mellitus on the permeability of the blood–brain barrier to insulin. Peptides18(10), 1577–1584 (1997).
  • Seaquist ER, Tkac I, Damberg G, Thomas W, Gruetter R. Brain glucose concentrations in poorly controlled diabetes mellitus as measured by high-field magnetic resonance spectroscopy. Metabolism54(8), 1008–1013 (2005).
  • Clodfelder-Miller B, De Sarno P, Zmijewska AA, Song L, Jope RS. Physiological and pathological changes in glucose regulate brain Akt and glycogen synthase kinase-3. J. Biol. Chem.280(48), 39723–39731 (2005).
  • Girouard H, Iadecola C. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J. Appl. Physiol.100(1), 328–335 (2006).
  • Koehler RC, Gebremedhin D, Harder DR. Role of astrocytes in cerebrovascular regulation. J. Appl. Physiol.100(1), 307–317 (2006).
  • Rosengarten B, Huwendiek O, Kaps M. Neurovascular coupling and cerebral autoregulation can be described in terms of a control system. Ultrasound Med. Biol.27(2), 189–193 (2001).
  • Orozco LJ, Buchleitner AM, Gimenez-Perez G, Roque IFM, Richter B, Mauricio D. Exercise or exercise and diet for preventing Type 2 diabetes mellitus. Cochrane Database Syst. Rev. (3), CD003054 (2008).
  • Taubes G. Good Calories, Bad Calories. AA Knopf, NY, USA (2008).
  • Critser G. Fat Land: How Americans Became the Fattest People in the World. Houghton Mifflin Co., MA, USA (2004).
  • Nielsen SJ, Siega-Riz AM, Popkin BM. Trends in energy intake in U.S. between 1977 and 1996: similar shifts seen across age groups. Obes. Res.10(5), 370–378 (2002).
  • Bray GA, Nielsen SJ, Popkin BM. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am. J. Clin. Nutr.79(4), 537–543 (2004).
  • Wolf A, Bray GA, Popkin BM. A short history of beverages and how our body treats them. Obes. Rev.9, 151–164 (2007).
  • Johnson RJ, Segal MS, Sautin Y et al. Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am. J. Clin. Nutr.86(4), 899–906 (2007).
  • Oates PJ. Polyol pathway and diabetic peripheral neuropathy. Int. Rev. Neurobiol.50, 325–392 (2002).
  • Cassese A, Esposito I, Fiory F et al. In skeletal muscle advanced glycation end products (AGEs) inhibit insulin action and induce the formation of multimolecular complexes including the receptor for AGEs. J. Biol. Chem.283(52), 36088–36099 (2008).
  • Stirban A, Negrean M, Gotting C et al. Dietary advanced glycation endproducts and oxidative stress: in vivo effects on endothelial function and adipokines. Ann. NY Acad. Sci.1126, 276–279 (2008).
  • Tan D, Wang Y, Lo CY, Sang S, Ho CT. Methylglyoxal: its presence in beverages and potential scavengers. Ann. NY Acad. Sci.1126, 72–75 (2008).
  • Koschinsky T, He CJ, Mitsuhashi T et al. Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc. Natl Acad. Sci. USA94(12), 6474–6479 (1997).
  • He C, Sabol J, Mitsuhashi T, Vlassara H. Dietary glycotoxins: inhibition of reactive products by aminoguanidine facilitates renal clearance and reduces tissue sequestration. Diabetes48(6), 1308–1315 (1999).
  • Vlassara H. Advanced glycation in health and disease: role of the modern environment. Ann. NY Acad. Sci.1043, 452–460 (2005).
  • Hightower JM. Diagnosis: Mercury: Money, Politics, and Poison Island Press, London, UK (2008).
  • Orgogozo JM, Dartigues JF, Lafont S et al. Wine consumption and dementia in the elderly: a prospective community study in the Bordeaux area. Rev. Neurol. (Paris)153(3), 185–192 (1997).
  • Collins MA, Neafsey EJ, Mukamal KJ et al. Alcohol in moderation, cardioprotection, and neuroprotection: epidemiological considerations and mechanistic studies. Alcohol Clin. Exp. Res.33(2), 206–219 (2008).
  • Wang Z, Barker TH, Fuller GM. Alcohol at moderate levels decreases fibrinogen expression in vivo and in vitro. Alcohol Clin. Exp. Res.23(12), 1927–1932 (1999).
  • Wang J, Ho L, Qin W et al. Caloric restriction attenuates β-amyloid neuropathology in a mouse model of Alzheimer’s disease. FASEB J.19(6), 659–661 (2005).
  • Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J. Neurosci.21, 8370–8377 (2001).
  • Garcia-Alloza M, Borrelli LA, Rozkalne A, Hyman BT, Bacskai BJ. Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. J. Neurochem.102(4), 1095–1104 (2007).
  • Maher P, Akaishi T, Abe K. Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory. Proc. Natl Acad. Sci. USA103(44), 16568–16573 (2006).
  • Hu G, Lakka TA, Kilpelainen TO, Tuomilehto J. Epidemiological studies of exercise in diabetes prevention. Appl. Physiol. Nutr. Metab.32(3), 583–595 (2007).
  • Balogun E, Hoque M, Gong P et al. Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem. J.371(Pt 3), 887–895 (2003).
  • Liu Y, Dargusch R, Maher P, Schubert D. A broadly neuroprotective derivative of curcumin. J. Neurochem.1051336–1345 (2008).
  • Maher P, Akaishi T, Schubert D, Abe K. A pyrazole derivative of curcumin enhances memory. Neurobiol. Aging (2008) (Epub ahead of print).
  • Peyroux J, Sternberg M. Advanced glycation endproducts (AGEs): pharmacological inhibition in diabetes. Pathol. Biol. (Paris)54(7), 405–419 (2006).
  • Wu CH, Yen GC. Inhibitory effect of naturally occurring flavonoids on the formation of advanced glycation endproducts. J. Agric. Food. Chem.53(8), 3167–3173 (2005).
  • Akaishi T, Morimoto T, Shibao M et al. Structural requirements for the flavonoid fisetin in inhibiting fibril formation of amyloid β protein. Neurosci. Lett.444(3), 280–285 (2008).
  • van Acker SA, van den Berg DJ, Tromp MN et al. Structural aspects of antioxidant activity of flavonoids. Free Radic. Biol. Med.20(3), 331–342 (1996).
  • Sagara Y, Vanhnasy J, Maher P. Induction of PC12 cell differentiation by flavonoids is dependent upon extracellular signal-regulated kinase activation. J. Neurochem.90(5), 1144–1155 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.