95
Views
13
CrossRef citations to date
0
Altmetric
Drug Profile

Sugammadex: a selective relaxant binding agent for reversal of neuromuscular block

&
Pages 599-608 | Published online: 09 Jan 2014

References

  • Griffith HR, Johnson GE. The use of curare in general anesthesia. Anesthesiology3, 418–420 (1942).
  • Gray TC. D-tubocurarine chloride. Proc. R Soc. Med.41, 559–568 (1948).
  • Foldes FF. The impact of neuromuscular blocking agents on the development of anesthesia and surgery. In: Muscle Relaxants (Second Edition). Agoston S, Bowman WC (Ed.), Elsevier, Amsterdam–New York–Oxford 1–17 (1990).
  • Durant NN, Katz RL. Suxamethonium. Br. J. Anesth.54, 195–208 (1982).
  • Bowman WC. Neuromuscular block. Br. J. Pharmacol.147(Suppl. 1), S277–S286 (2006).
  • McCourt KC, Salmela L, Mirakhur RK et al. Comparison of rocuronium and suxamethonium for use during rapid sequence induction of anesthesia. Anesthesia53, 867–871 (1998).
  • Debaene B, Plaud B, Dilly MP, Donati F. Residual paralysis in the PACU after a single intubating dose of nondepolarizing muscle relaxant with an intermediate duration of action. Anesthesiology98, 1042–1048 (2003).
  • Claudius C, Karacan H, Viby-Mogensen J. Prolonged residual paralysis after a single intubating dose of rocuronium. Br. J. Anesth.99, 514–517 (2007).
  • Eikermann M, Zaremba1 S, Malhotra A, Jordan AS, Rosow C, Chamberlin NL. Neostigmine but not sugammadex impairs upper airway dilator muscle activity and breathing. Br. J. Anes.101, 344–349 (2008).
  • Cronnelly R, Morris RB, Miller RD. Edrophonium: duration of action and atropine requirement in humans during halothane anesthesia. Anesthesiology57, 261–266 (1982).
  • Magorian TT, Lynam DP, Caldwell JE, Miller RD. Can early administration of neostigmine, in single or repeated doses, alter the course of neuromuscular recovery from a vecuronium-induced neuromuscular blockade? Anesthesiology73, 410–414 (1990).
  • van den Broek L, Proost JH, Wierda JM. Early and late reversibility of rocuronium bromide. Eur. J. Anesthesiol.11, 128–132 (1994).
  • Hayes AH, Mirakhur RK, Breslin DS, Reid JE, McCourt KC. Postoperative residual block after intermediate acting neuromuscular blocking drugs. Anesthesia56, 312–318 (2001).
  • Berg H, Roed J, Viby-Mogensen J et al. Residual neuromuscular block is a risk factor for postoperative pulmonary complications. A prospective, randomised, and blinded study of postoperative pulmonary complications after atracurium, vecuronium and pancuronium. Acta Anesthesiol. Scand.41, 1095–1103 (1997).
  • Sundman E, Witt H, Olsson R, Ekberg O, Kuylenstierna R, Eriksson LI. The incidence and mechanisms of pharyngeal and upper esophageal dysfunction in partially paralyzed humans: pharyngeal videoradiography and simultaneous manometry after atracurium. Anesthesiology92, 977–984 (2000).
  • Murphy GS, Szokol JW, Marymont JH et al. Intraoperative acceleromyographic monitoring reduces the risk of residual neuromuscular blockade and adverse respiratory events in the postanesthesia care unit. Anesthesiology109, 389–398 (2008).
  • Murphy GS, Szokol JW, Marymont JH, Greenberg SB, Avram MJ, Vender JS. Residual neuromuscular blockade and critical respiratory events in the postanesthesia care unit. Anesth. Analg.107, 130–137 (2008).
  • Loftsson T, Duchene D. Cyclodextrins and their pharmaceutical applications. Int. J. Pharm.329, 1–11 (2007).
  • Challa R, Ahula A, Ali J et al. Cyclodextrins in drug delivery: an updated review. AAPS Pharma. Sci. Tech.6, 329–357 (2005).
  • Loftsson T, Masson M. Cyclodextrins in topical drug formulations: theory and practice. Int. J. Pharm.225, 15–30 (2001).
  • Brewster ME, Loftsson T. Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev.59, 645–666 (2007).
  • Zhang M-Q. Drug-specific cyclodextrins: the future of rapid neuromuscular block reversal? Drugs Future28, 347–354 (2003).
  • Bom A, Bradley M, Cameron K. A novel concept of reversing neuromuscular block: chemical encapsulation of rocuronium bromide by a cyclodextrin-based synthetic host. Angew. Chem. Int. Ed. Engl.41, 266–270 (2002).
  • Adam JM, Bennett DJ, Bom A et al. Cyclodextrin-derived host molecules as reversal agents for the neuromuscular blocker rocuronium bromide: synthesis and structure-activity relationships. J. Med. Chem.45, 1806–1816 (2002).
  • Booij LHDJ. Cyclodextrins and the emergence of sugammadex. Anesthesia64(Suppl. 1), 31–37 (2009).
  • Gijsenbergh F, Ramael S, Houwing N, van Iersel T. First human exposure of Org 25969. A novel agent to reverse the action of rocuronium bromide. Anesthesiology103, 695–703 (2005).
  • Sorgenfrei IF, Norrild K, Larsen PB et al. Reversal of rocuronium-induced neuromuscular block by the selective relaxant binding agent sugammadex: a dose finding and safety study. Anesthesiology104, 667–674 (2007).
  • Sparr HJ, Vermeyen KM, Beaufort AM et al. Early reversal of profound rocuronium-induced neuromuscular blockade by sugammadex in a randomized multicenter study: efficacy, safety and pharmacokinetics. Anesthesiology106, 935–943 (2007).
  • de Boer HD, van Egmond J, Marcus M, Schouten P, Smeets J, Driessen JJ. Pharmacokinetics of high doses of the selective relaxant binding agent sugammadex, administered shortly after profound rocuronium-induced neuromuscular block. Eur. J. Anesthesiol.23(Suppl. 37), 143 (2006)
  • Epemolu O, Bom A, Hope F, Mason R. Reversal of neuromuscular blockade and simultaneous increase in plasma rocuronium concentration after the intravenous infusion of the novel reversal agent Org 25969. Anesthesiology99, 632–637 (2003).
  • Epemolu O, Mayer I, Hope F, Scullion P, Desmond P. Liquid chromatography/mass spectrometric bioanalysis of a modified γcyclodextrin (Org 25969) and rocuronium bromide (Org 9426) in guinea pig plasma and urine: its application to determine the plasma pharmacokinetics of Org 25969. Rapid Commun. Mass Spectrom.16, 1946–1952 (2002).
  • Naguib M. Sugammadex: another milestone in neuromuscular pharmacology. Anesth. Analg.104, 575–581 (2007).
  • Staals LM, Snoek MJ, Driessen JJ, Flockton E, Heeringa M, Hunter JM. Multicentre, parallel-group, comparative trial evaluating the efficacy and safety of sugammadex in patients with end-stage renal failure or normal renal function. Br. J. Anesth.101, 492–497 (2008).
  • Hartman J, Smeets JMW, deZwart MAH, Peters SMA. In-vitro dialysability of sugammadex (Org 25969), a selective relaxant binding agent for reversal of neuromuscular block induced by rocuronium. Eur. J. Anesthesiol.26(Suppl. 37), 144 (2006).
  • Mason R, Bom A. Org 25969 causes selective reversal of neuromuscular block induced by steroidal NMBAs in anesthetized guinea pigs. Eur. J. Anesthesiol.18, 100 (2001).
  • Bom A, Mason R, McIndewar I. Org 25969 causes rapid reversal of rocuronium-induced neuromuscular block, independent of acid-base status. Anesthesiology96, (2002) (Abstract A-1009).
  • Bom A, Van Egmond J, Hope F et al. Rapid reversal of rocuronium induced neuromuscular block by Org 25969 is independent of renal perfusion. Anesthesiology99 (2003) (Abstract A-1158).
  • de Boer HD, van Egmond J, van de Pol F, Bom A, Booij LHDJ. Sugammadex, a new reversal agent for neuromuscular block induced by rocuronium in the anesthetized Rhesus monkey. Br. J. Anesth.96, 473–479 (2006).
  • Eriksson LI. Evidence-based practice and neuromuscular monitoring: it’s time for routine quantitative assessment. Anesthesiology98, 1037–1039 (2003).
  • Debaene B, Plaud B, Dilly MP, Donati F. Residual paralysis in the PACU after a single intubating dose of nondepolarizing muscle relaxant with an intermediate duration of action. Anesthesiology98, 1042–1048 (2003).
  • Fuchs-Buder T, Claudius C, Skovgaard LT, Eriksson LI, Mirakhur RK, Viby-Mogensen J. Good clinical research practice in pharmacodynamic studies of neuromuscular blocking agents II: the Stockholm revision. Acta Anesth. Scand.51, 789–808 (2007).
  • Pühringer F, Blaszyk M, Gammu G, Sparr H, Heeringa M. Sugammadex achieves fast recovery from shallow neuromuscular blockade induced by rocuronium or vecuronium: dose-response studies. Eur. J. Anesthesiol.24(Suppl. 39), 111 (2007).
  • Suy K, Morias K, Cammu G, Hans P, van Duijnhoven WGF. Effective reversal of moderate rocuronium- or vecuronium-induced neuromuscular block with sugammadex, a selective relaxant binding agent. Anesthesiology106, 283–288 (2007).
  • Blobner M, Eriksson L, Scholz J, Hillebrand H, Pompei L. Sugammadex (2mg/kg) significantly faster reverses shallow rocuronium-induced neuromuscular blockade compared with neostigmine (50 µg/kg). Eur. J. Anesthesiol.24(Suppl. 39), 125–126 (2007).
  • Shields M, Giovannelli M, Mirakhur RK, Moppett I, Adams J, Hermens Y. Org 25969 (sugammadex), a selective relaxant binding agent for antagonism of prolonged rocuronium-induced neuromuscular block. Brit. J. Anes.96, 36–43 (2006).
  • Groudine SB, Soto R, Lien C, Drover D, Roberts K. Randomised, dose finding, Phase 2 study of the selective relaxant binding drug, sugammadex, capable of safely reversing profound rocuronium-induced neuromuscular block. Anesth. Analg.104, 555–562 (2007).
  • Duvaldestin P, Kuizenga K, Kjaer CC, Saldieen V, Debaene B. Sugammadex achieves fast recovery from profound neuromuscular blockade induced by rocuronium or vecuronium: a dose response study. Eur. J. Anesthesiol.24(Suppl. 39), 123 (2007).
  • Pühringer FK, Rex C, Sielenkamber AW et al. Reversal of profound, high dose rocuronium-induced neuromuscular blockade by sugammadex at two different time points. An international multicenter, randomised, dose finding, safety assessor-blinded, Phase 2 trial. Anesthesiology109, 188–197 (2008).
  • de Boer HD, Driessen JJ, Marcus MAE, Kerkkamp H, Heeringa M, Klimek M. Reversal of rocuronium-induced (1.2 mg/kg) profound neuromuscular block by sugammadex. Anesthesiology107, 239–244 (2007).
  • Lee C, Jahr JS, Candiotti K, Warriner B, Zornow M. Reversal of profound rocuronium NMB with sugammadex is faster than recovery from succinylcholine. Anesthesiology107, A988 (2007).
  • Alvarez-Gomez JA, Wattwil M, Vanacker B, Lora-Tamayo JI, Khunl-Brady KS. Reversal of vecuronium-induced shallow neuromuscular blockade is significantly faster with sugammadex compared with neostigmine. Eur. J. Anesthesiol.24(Suppl. 39), 124–125 (2007).
  • Jones RK, Caldwell JE, Brull S, Soto R. Reversal of profound rocuronium-induced blockade with sugammadex: a randomized comparison with neostigmine. Anesthesiology109, 816–824 (2008).
  • Lemmens HJM, El-Orbany M, Berry J, Martin G. Sugammadex reverses profound vecuronium blockade more rapidly than neostigmine. Anesthesiology107, A1578 (2007).
  • Eleveld DJ, Kuizenga K, Proost JH, Wierda JM. A temporary decrease in twitch response during reversal of rocuronium-induced muscle relaxation with a small dose of sugammadex. Anesth. Analg.104, 582–584 (2007).
  • McDonagh DL, Benedict PE, Kovac AL et al. Safety of sugammadex for reversal of rocuronium-induced blockade in elderly patients. Anesthesiology107, A1583 (2007).
  • Plaud B, Meretoja O, Hofmockel R et al. Reversal of rocuronium-induced neuromuscular blockade with sugammadex in pediatric and adult surgical patients. Anesthesiology110, 284–294 (2009).
  • Dahl V, Pendeville PE, Hollman MW et al. Reversal of rocuronium induced blockade by sugammadex in cardiac patients. Anesthesiology107, A1581 (2007).
  • Amao R, Zornow MH, Cowan MR et al. Sugammadex safely reverses rocuronium-induced blockade in patients with pulmonary disease. Anesthesiology107, A1582 (2007).
  • Monk TG, Rietbergen H, Woo T. Obesity has no clinically relevant impact upon recovery time following administration of sugammadex. Anesthesiology109, A682 (2008).
  • de Kam P-J, van Kuijk J, Smeets J et al. Single IV sugammaedx doses up to 32 mg/kg are not associated with QT/QTc prolongation. Anesthesiology107, A1580 (2007).
  • Cammu G, De Kam PJ, Demeyer I et al. Safety and tolerability of single intravenous doses of sugammadex administered simultaneously with rocuronium or vecuronium in healthy volunteers. Br. J. Anesth.100, 373–379 (2008).
  • Plaud B, van Heumen E, Zweirs A. Sugammadex is well tolerated for the reversal of rocuronium or vecuronium induced neuromuscular blockade in a pooled analysis of adverse events in 10 placebo controlled trials. Eur. J. Anesthesiol.24(Suppl. 39), 111 (2007).
  • Mirakhur RK, McCarthy GJ. Basic pharmacology of reversal agents. Anesthesiol. Clin.11, 237–250 (1993).
  • Bom A, Hope F. Neuromuscular block induced by rocuronium and reversed by the encapsulating agent Org 25969 can be re-established using the non-steroidal neuromuscular blockers succinylcholine and cis-atracurium. Eur. J. Anesthesiol.22(Suppl. 34), 120 (2005).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.