122
Views
30
CrossRef citations to date
0
Altmetric
Review

Design and application of oncolytic HSV vectors for glioblastoma therapy

, , , , &
Pages 505-517 | Published online: 09 Jan 2014

References

  • Louis DN, Ohgaki H, Wiestler OD et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol.114(2), 97–109 (2007).
  • McLendon RE, Halperin EC. Is the long-term survival of patients with intracranial glioblastoma multiforme overstated? Cancer98(8), 1745–1748 (2003).
  • Davis FG, Freels S, Grutsch J, Barlas S, Brem S. Survival rates in patients with primary malignant brain tumors stratified by patient age and tumor histological type: an analysis based on Surveillance, Epidemiology, and End Results (SEER) data, 1973–1991. J. Neurosurg.88(1), 1–10 (1998).
  • Trouillas P, Menaud G, De Thé G, Aimard G, Devic M. [Epidemiological study of primary tumors of the neuraxis in the Rhone-Alps region. Quantitative data on the etiology and geographical distribution of 1670 tumors]. Rev. Neurol. (Paris)131(10), 691–708 (1975).
  • Soffer D, Gomori JM, Pomeranz S, Siegal T. Gliomas following low-dose irradiation to the head report of three cases. J. Neurooncol.8(1), 67–72 (1990).
  • Li FP, Fraumeni JF Jr. Prospective study of a family cancer syndrome. JAMA247(19), 2692–2694 (1982).
  • Reifenberger G, Collins VP. Pathology and molecular genetics of astrocytic gliomas. J. Mol. Med.82(10), 656–670 (2004).
  • Ohgaki H, Kleihues P. Genetic pathways to primary and secondary glioblastoma. Am. J. Pathol.170(5), 1445–1453 (2007).
  • Gregory RI, Shiekhattar R. MicroRNA biogenesis and cancer. Cancer Res.65(9), 3509–3512 (2005).
  • He L, Thomson JM, Hemann MT et al. A microRNA polycistron as a potential human oncogene. Nature435(7043), 828–833 (2005).
  • Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res.65(14), 6029–6033 (2005).
  • Godlewski J, Nowicki MO, Bronisz A et al. Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res.68(22), 9125–9130 (2008).
  • Zhang Y, Chao T, Li R et al. MicroRNA-128 inhibits glioma cells proliferation by targeting transcription factor E2F3a. J. Mol. Med.87(1), 43–51 (2009).
  • Ciafre SA, Galardi S, Mangiola A et al. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem. Biophys. Res. Commun.334(4), 1351–1358 (2005).
  • Holland EC, Li Y, Celestino J et al. Astrocytes give rise to oligodendrogliomas and astrocytomas after gene transfer of polyoma virus middle T antigen in vivo. Am. J. Pathol.157(3), 1031–1037 (2000).
  • Sanai N, Alvarez-Buylla A, Berger MS. Neural stem cells and the origin of gliomas. N. Engl. J. Med.353(8), 811–822 (2005).
  • Singh SK, Clarke ID, Terasaki M et al. Identification of a cancer stem cell in human brain tumors. Cancer Res.63(18), 5821–5828 (2003).
  • Folkman J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med.285(21), 1182–1186 (1971).
  • Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT. Angiogenesis in brain tumours. Nat. Rev. Neurosci.8(8), 610–622 (2007).
  • Hoelzinger DB, Demuth T, Berens ME. Autocrine factors that sustain glioma invasion and paracrine biology in the brain microenvironment. J. Natl Cancer Inst.99(21), 1583–1593 (2007).
  • Ammirati M, Vick N, Liao YL, Ciric I, Mikhael M. Effect of the extent of surgical resection on survival and quality of life in patients with supratentorial glioblastomas and anaplastic astrocytomas. Neurosurgery21(2), 201–206 (1987).
  • Walker MD, Green SB, Byar DP et al. Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery. N. Engl. J. Med.303(23), 1323–1329 (1980).
  • Loeffler JS, Alexander E 3rd, Wen PY et al. Results of stereotactic brachytherapy used in the initial management of patients with glioblastoma. J. Natl Cancer Inst.82(24), 1918–1921 (1990).
  • Nieder C, Astner ST, Mehta MP, Grosu AL, Molls M. Improvement, clinical course, and quality of life after palliative radiotherapy for recurrent glioblastoma. Am. J. Clin. Oncol.31(3), 300–305 (2008).
  • Wilson CB, Boldrey EB, Enot KJ. 1,3-bis (2-chloroethyl)-1-nitrosourea (NSC-409962) in the treatment of brain tumors. Cancer Chemother. Rep.54(4), 273–281 (1970).
  • Friedman HS, Kerby T, Calvert H. Temozolomide and treatment of malignant glioma. Clin. Cancer Res.6(7), 2585–2597 (2000).
  • Stupp R, Mason WP, van den Bent MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med.352(10), 987–996 (2005).
  • Grothey A, Ellis LM. Targeting angiogenesis driven by vascular endothelial growth factors using antibody-based therapies. Cancer J.14(3), 170–177 (2008).
  • Dario A, Tomei G. The safety of the temozolomide in patients with malignant glioma. Curr. Drug Saf.1(2), 205–222 (2006).
  • Roodhart JM, Langenberg MH, Witteveen E, Voest EE. The molecular basis of class side effects due to treatment with inhibitors of the VEGF/VEGFR pathway. Curr. Clin. Pharmacol.3(2), 132–143 (2008).
  • Curran WJ Jr, Scott CB, Horton J et al. Recursive partitioning analysis of prognostic factors in three Radiation Therapy Oncology Group malignant glioma trials. J. Natl Cancer Inst.85(9), 704–710 (1993).
  • Salcman M. Survival in glioblastoma: historical perspective. Neurosurgery7(5), 435–439 (1980).
  • Lu C, Shervington A. Chemoresistance in gliomas. Mol. Cell. Biochem.312(1–2), 71–80 (2008).
  • Frampton AR Jr, Goins WF, Nakano K, Burton EA, Glorioso JC. HSV trafficking and development of gene therapy vectors with applications in the nervous system. Gene Ther.12(11), 891–901 (2005).
  • Aghi M, Visted T, Depinho RA, Chiocca EA. Oncolytic herpes virus with defective ICP6 specifically replicates in quiescent cells with homozygous genetic mutations in p16. Oncogene27(30), 4249–4254 (2008).
  • Goldstein JN, Weller SK. In vitro processing of herpes simplex virus type 1 DNA replication intermediates by the viral alkaline nuclease, UL12. J. Virol.72(11), 8772–8781 (1998).
  • Fulci G, Dmitrieva N, Gianni D et al. Depletion of peripheral macrophages and brain microglia increases brain tumor titers of oncolytic viruses. Cancer Res.67(19), 9398–9406 (2007).
  • Fulci G, Chiocca EA. The status of gene therapy for brain tumors. Expert Opin. Biol. Ther.7(2), 197–208 (2007).
  • Chambers R, Gillespie GY, Soroceanu L et al. Comparison of genetically engineered herpes simplex viruses for the treatment of brain tumors in a SCID mouse model of human malignant glioma. Proc. Natl Acad. Sci. USA92(5), 1411–1415 (1995).
  • Bradley JD, Kataoka Y, Advani S et al. Ionizing radiation improves survival in mice bearing intracranial high-grade gliomas injected with genetically modified herpes simplex virus. Clin. Cancer Res.5(6), 1517–1522 (1999).
  • Bennett JJ, Adusumilli P, Petrowsky H et al. Up-regulation of GADD34 mediates the synergistic anticancer activity of mitomycin C and a γ134.5 deleted oncolytic herpes virus (G207). FASEB J.18(9), 1001–1003 (2004).
  • Dempsey MF, Wyper D, Owens J et al. Assessment of 123I-FIAU imaging of herpes simplex viral gene expression in the treatment of glioma. Nucl. Med. Commun.27(8), 611–617 (2006).
  • Detta A, Harland J, Hanif I, Brown SM, Cruickshank G. Proliferative activity and in vitro replication of HSV1716 in human metastatic brain tumours. J. Gene Med.5(8), 681–689 (2003).
  • Quigg M, Mairs RJ, Brown SM et al. Assessment in vitro of a novel therapeutic strategy for glioma, combining herpes simplex virus HSV1716-mediated oncolysis with gene transfer and targeted radiotherapy. Med. Chem.1(5), 423–429 (2005).
  • Shah AC, Benos D, Gillespie GY, Markert JM. Oncolytic viruses: clinical applications as vectors for the treatment of malignant gliomas. J. Neurooncol.65(3), 203–226 (2003).
  • Kramm CM, Chase M, Herrlinger U et al. Therapeutic efficiency and safety of a second-generation replication-conditional HSV1 vector for brain tumor gene therapy. Hum. Gene Ther.8(17), 2057–2068 (1997).
  • Markert JM, Gillespie GY, Weichselbaum RR, Roizman B, Whitley RJ. Genetically engineered HSV in the treatment of glioma: a review. Rev. Med. Virol.10(1), 17–30 (2000).
  • Huszthy PC, Goplen D, Thorsen F et al. Oncolytic herpes simplex virus type-1 therapy in a highly infiltrative animal model of human glioblastoma. Clin. Cancer Res.14(5), 1571–1580 (2008).
  • Dambach MJ, Trecki J, Martin N, Markovitz NS. Oncolytic viruses derived from the γ34.5-deleted herpes simplex virus recombinant R3616 encode a truncated UL3 protein. Mol. Ther.13(5), 891–898 (2006).
  • Liu BL, Robinson M, Han ZQ et al. ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther.10(4), 292–303 (2003).
  • Todo T, Martuza RL, Rabkin SD, Johnson PA. Oncolytic herpes simplex virus vector with enhanced MHC class I presentation and tumor cell killing. Proc. Natl Acad. Sci. USA98(11), 6396–6401 (2001).
  • Boviatsis EJ, Park JS, Sena-Esteves M et al. Long-term survival of rats harboring brain neoplasms treated with ganciclovir and a herpes simplex virus vector that retains an intact thymidine kinase gene. Cancer Res.54(22), 5745–5751 (1994).
  • Kramm CM, Rainov NG, Sena-Esteves M et al. Long-term survival in a rodent model of disseminated brain tumors by combined intrathecal delivery of herpes vectors and ganciclovir treatment. Hum. Gene Ther.7(16), 1989–1994 (1996).
  • Tyminski E, Leroy S, Terada K et al. Brain tumor oncolysis with replication-conditional herpes simplex virus type 1 expressing the prodrug-activating genes, CYP2B1 and secreted human intestinal carboxylesterase, in combination with cyclophosphamide and irinotecan. Cancer Res.65(15), 6850–6857 (2005).
  • Hellums EK, Markert JM, Parker JN et al. Increased efficacy of an interleukin-12-secreting herpes simplex virus in a syngeneic intracranial murine glioma model. Neuro Oncol.7(3), 213–224 (2005).
  • Parker JN, Gillespie GY, Love CE, Randall S, Whitley RJ, Markert JM. Engineered herpes simplex virus expressing IL-12 in the treatment of experimental murine brain tumors. Proc. Natl Acad. Sci. USA97(5), 2208–2213 (2000).
  • Varghese S, Rabkin SD, Liu R, Nielsen PG, Ipe T, Martuza RL. Enhanced therapeutic efficacy of IL-12, but not GM-CSF, expressing oncolytic herpes simplex virus for transgenic mouse derived prostate cancers. Cancer Gene Ther.13(3), 253–265 (2006).
  • Yang CT, Lin YC, Lin CL et al. Oncolytic herpesvirus with secretable angiostatic proteins in the treatment of human lung cancer cells. Anticancer Res25(3B), 2049–2054 (2005).
  • Liu TC, Zhang T, Fukuhara H et al. Oncolytic HSV armed with platelet factor 4, an antiangiogenic agent, shows enhanced efficacy. Mol. Ther.14(6), 789–797 (2006).
  • Liu TC, Zhang T, Fukuhara H et al. Dominant-negative fibroblast growth factor receptor expression enhances antitumoral potency of oncolytic herpes simplex virus in neural tumors. Clin. Cancer Res.12(22), 6791–6799 (2006).
  • Terada K, Wakimoto H, Tyminski E, Chiocca EA, Saeki Y. Development of a rapid method to generate multiple oncolytic HSV vectors and their in vivo evaluation using syngeneic mouse tumor models. Gene Ther.13(8), 705–714 (2006).
  • Kuroda T, Martuza RL, Todo T, Rabkin SD. Flip-Flop HSV–BAC: bacterial artificial chromosome based system for rapid generation of recombinant herpes simplex virus vectors using two independent site-specific recombinases. BMC Biotechnol.6, 40 (2006).
  • Aghi M, Rabkin S, Martuza RL. Effect of chemotherapy-induced DNA repair on oncolytic herpes simplex viral replication. J. Natl Cancer Inst.98(1), 38–50 (2006).
  • Hardcastle J, Kurozumi K, Chiocca EA, Kaur B. Oncolytic viruses driven by tumor-specific promoters. Curr. Cancer Drug Targets7(2), 181–189 (2007).
  • Kambara H, Okano H, Chiocca EA, Saeki Y. An oncolytic HSV-1 mutant expressing ICP34.5 under control of a nestin promoter increases survival of animals even when symptomatic from a brain tumor. Cancer Res.65(7), 2832–2839 (2005).
  • Dahlstrand J, Collins VP, Lendahl U. Expression of the class VI intermediate filament nestin in human central nervous system tumors. Cancer Res.52(19), 5334–5341 (1992).
  • Dell’Albani P. Stem cell markers in gliomas. Neurochem. Res.33(12), 2407–2415 (2008).
  • Yao F, Schaffer PA. An activity specified by the osteosarcoma line U2OS can substitute functionally for ICP0, a major regulatory protein of herpes simplex virus type 1. J. Virol.69(10), 6249–6258 (1995).
  • Hummel JL, Safroneeva E, Mossman KL. The role of ICP0-Null HSV-1 and interferon signaling defects in the effective treatment of breast adenocarcinoma. Mol. Ther.12(6), 1101–1110 (2005).
  • Jordan R, Pepe J, Schaffer PA. Characterization of a nerve growth factor-inducible cellular activity that enhances herpes simplex virus type 1 gene expression and replication of an ICP0 null mutant in cells of neural lineage. J. Virol.72(7), 5373–5382 (1998).
  • Cai W, Astor TL, Liptak LM, Cho C, Coen DM, Schaffer PA. The herpes simplex virus type 1 regulatory protein ICP0 enhances virus replication during acute infection and reactivation from latency. J. Virol.67(12), 7501–7512 (1993).
  • Oehmig A, Fraefel C, Breakefield XO. Update on herpes virus amplicon vectors. Mol. Ther.10(4), 630–643 (2004).
  • Reinblatt M, Pin RH, Bowers WJ, Federoff HJ, Fong Y. Herpes simplex virus amplicon delivery of a hypoxia-inducible soluble vascular endothelial growth factor receptor (sFlk-1) inhibits angiogenesis and tumor growth in pancreatic adenocarcinoma. Ann. Surg. Oncol.12(12), 1025–1036 (2005).
  • Ho IA, Hui KM, Lam PY. Glioma-specific and cell cycle-regulated herpes simplex virus type 1 amplicon viral vector. Hum. Gene Ther.15(5), 495–508 (2004).
  • Epstein AL. HSV-1-based amplicon vectors: design and applications. Gene Ther.12(Suppl. 1), S154–S158 (2005).
  • Epstein AL, Marconi P, Argnani R, Manservigi R. HSV-1-derived recombinant and amplicon vectors for gene transfer and gene therapy. Curr. Gene Ther.5(5), 445–458 (2005).
  • Cuchet D, Potel C, Thomas J, Epstein AL. HSV-1 amplicon vectors: a promising and versatile tool for gene delivery. Expert Opin. Biol. Ther.7(7), 975–995 (2007).
  • Inoue R, Moghaddam KA, Ranasinghe M, Saeki Y, Chiocca EA, Wade-Martins R. Infectious delivery of the 132 kb CDKN2A/CDKN2B genomic DNA region results in correctly spliced gene expression and growth suppression in glioma cells. Gene Ther.11(15), 1195–1204 (2004).
  • Barzilai A, Zivony-Elbom I, Sarid R, Noah E, Frenkel N. The herpes simplex virus type 1 vhs-UL41 gene secures viral replication by temporarily evading apoptotic cellular response to infection: vhs-UL41 activity might require interactions with elements of cellular mRNA degradation machinery. J. Virol.80(1), 505–513 (2006).
  • Saydam O, Glauser DL, Heid I et al. Herpes simplex virus 1 amplicon vector-mediated siRNA targeting epidermal growth factor receptor inhibits growth of human glioma cells in vivo. Mol. Ther.12(5), 803–812 (2005).
  • Santos K, Duke CM, Dewhurst S. Amplicons as vaccine vectors. Curr. Gene Ther.6(3), 383–392 (2006).
  • Lawler SE, Peruzzi PP, Chiocca EA. Genetic strategies for brain tumor therapy. Cancer Gene Ther.13(3), 225–233 (2006).
  • Schmidek HH, Nielsen SL, Schiller AL, Messer J. Morphological studies of rat brain tumors induced by N-nitrosomethylurea. J. Neurosurg.34(3), 335–340 (1971).
  • Fomchenko EI, Holland EC. Mouse models of brain tumors and their applications in preclinical trials. Clin. Cancer Res.12(18), 5288–5297 (2006).
  • Barth RF. Rat brain tumor models in experimental neuro-oncology: the 9L, C6, T9, F98, RG2 (D74), RT-2 and CNS-1 gliomas. J. Neurooncol.36(1), 91–102 (1998).
  • Shapiro WR, Basler GA, Chernik NL, Posner JB. Human brain tumor transplantation into nude mice. J. Natl Cancer Inst.62(3), 447–453 (1979).
  • Finkelstein SD, Black P, Nowak TP, Hand CM, Christensen S, Finch PW. Histological characteristics and expression of acidic and basic fibroblast growth factor genes in intracerebral xenogeneic transplants of human glioma cells. Neurosurgery34(1), 136–143 (1994).
  • Bao S, Wu Q, Sathornsumetee S et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res.66(16), 7843–7848 (2006).
  • Holland EC. Mouse models of human cancer as tools in drug development. Cancer Cell6(3), 197–198 (2004).
  • Uhrbom L, Hesselager G, Nister M, Westermark B. Induction of brain tumors in mice using a recombinant platelet-derived growth factor B-chain retrovirus. Cancer Res.58(23), 5275–5279 (1998).
  • Sakariassen PO, Prestegarden L, Wang J et al. Angiogenesis-independent tumor growth mediated by stem-like cancer cells. Proc. Natl Acad. Sci. USA103(44), 16466–16471 (2006).
  • Engebraaten O, Hjortland GO, Hirschberg H, Fodstad O. Growth of precultured human glioma specimens in nude rat brain. J. Neurosurg.90(1), 125–132 (1999).
  • Bjerkvig R, Tonnesen A, Laerum OD, Backlund EO. Multicellular tumor spheroids from human gliomas maintained in organ culture. J. Neurosurg.72(3), 463–475 (1990).
  • Chiocca EA. The host response to cancer virotherapy. Curr. Opin. Mol. Ther.10(1), 38–45 (2008).
  • Corey L, Spear PG. Infections with herpes simplex viruses (2). N. Engl. J. Med.314(12), 749–757 (1986).
  • Corey L, Spear PG. Infections with herpes simplex viruses (1). N. Engl. J. Med.314(11), 686–691 (1986).
  • Herrlinger U, Kramm CM, Aboody-Guterman KS et al. Pre-existing herpes simplex virus 1 (HSV-1) immunity decreases, but does not abolish, gene transfer to experimental brain tumors by a HSV-1 vector. Gene Ther.5(6), 809–819 (1998).
  • Ikeda K, Wakimoto H, Ichikawa T et al. Complement depletion facilitates the infection of multiple brain tumors by an intravascular, replication-conditional herpes simplex virus mutant. J. Virol.74(10), 4765–4775 (2000).
  • Mohr I. Neutralizing innate host defenses to control viral translation in HSV-1 infected cells. Int. Rev. Immunol.23(1–2), 199–220 (2004).
  • Goody RJ, Beckham JD, Rubtsova K, Tyler KL. JAK–STAT signaling pathways are activated in the brain following reovirus infection. J. Neurovirol.13(4), 373–383 (2007).
  • Otsuki A, Patel A, Kasai K et al. Histone deacetylase inhibitors augment antitumor efficacy of herpes-based oncolytic viruses. Mol. Ther.16(9), 1546–1555 (2008).
  • McKee TD, Grandi P, Mok W et al. Degradation of fibrillar collagen in a human melanoma xenograft improves the efficacy of an oncolytic herpes simplex virus vector. Cancer Res.66(5), 2509–2513 (2006).
  • Hay JG. The potential impact of hypoxia on the success of oncolytic virotherapy. Curr. Opin. Mol. Ther.7(4), 353–358 (2005).
  • Pipiya T, Sauthoff H, Huang YQ et al. Hypoxia reduces adenoviral replication in cancer cells by downregulation of viral protein expression. Gene Ther.12(11), 911–917 (2005).
  • Breitbach CJ, Paterson JM, Lemay CG et al. Targeted inflammation during oncolytic virus therapy severely compromises tumor blood flow. Mol. Ther.15(9), 1686–1693 (2007).
  • Fulci G, Breymann L, Gianni D et al. Cyclophosphamide enhances glioma virotherapy by inhibiting innate immune responses. Proc. Natl Acad. Sci. USA103(34), 12873–12878 (2006).
  • Kambara H, Saeki Y, Chiocca EA. Cyclophosphamide allows for in vivo dose reduction of a potent oncolytic virus. Cancer Res.65(24), 11255–11258 (2005).
  • Farrell CJ, Zaupa C, Barnard Z et al. Combination immunotherapy for tumors via sequential intratumoral injections of oncolytic herpes simplex virus 1 and immature dendritic cells. Clin. Cancer Res.14(23), 7711–7716 (2008).
  • Toda M, Rabkin SD, Kojima H, Martuza RL. Herpes simplex virus as an in situ cancer vaccine for the induction of specific anti-tumor immunity. Hum. Gene Ther.10(3), 385–393 (1999).
  • Todo T, Martuza RL, Dallman MJ, Rabkin SD. In situ expression of soluble B7-1 in the context of oncolytic herpes simplex virus induces potent antitumor immunity. Cancer Res.61(1), 153–161 (2001).
  • Todo T, Rabkin SD, Chahlavi A, Martuza RL. Corticosteroid administration does not affect viral oncolytic activity, but inhibits antitumor immunity in replication-competent herpes simplex virus tumor therapy. Hum. Gene Ther.10(17), 2869–2878 (1999).
  • Todo T, Rabkin SD, Sundaresan P et al. Systemic antitumor immunity in experimental brain tumor therapy using a multimutated, replication-competent herpes simplex virus. Hum. Gene Ther.10(17), 2741–2755 (1999).
  • Benencia F, Courreges MC, Conejo-Garcia JR et al. HSV oncolytic therapy upregulates interferon-inducible chemokines and recruits immune effector cells in ovarian cancer. Mol. Ther.12(5), 789–802 (2005).
  • Benencia F, Courreges MC, Conejo-Garcia JR, Mohammed-Hadley A, Coukos G. Direct vaccination with tumor cells killed with ICP4-deficient HSVd120 elicits effective antitumor immunity. Cancer Biol. Ther.5(7), 867–874 (2006).
  • Miller CG, Fraser NW. Role of the immune response during neuro-attenuated herpes simplex virus-mediated tumor destruction in a murine intracranial melanoma model. Cancer Res.60(20), 5714–5722 (2000).
  • Kondraganti S, Mohanam S, Chintala SK et al. Selective suppression of matrix metalloproteinase-9 in human glioblastoma cells by antisense gene transfer impairs glioblastoma cell invasion. Cancer Res.60(24), 6851–6855 (2000).
  • Chakraborti S, Mandal M, Das S, Mandal A, Chakraborti T. Regulation of matrix metalloproteinases: an overview. Mol. Cell. Biochem.253(1–2), 269–285 (2003).
  • Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM. Matrix metalloproteinases: biologic activity and clinical implications. J. Clin. Oncol.18(5), 1135–1149 (2000).
  • Choe G, Park JK, Jouben-Steele L et al. Active matrix metalloproteinase 9 expression is associated with primary glioblastoma subtype. Clin. Cancer Res.8(9), 2894–2901 (2002).
  • Shen Y, Nemunaitis J. Herpes simplex virus 1 (HSV-1) for cancer treatment. Cancer Gene Ther.13, 975–992 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.