155
Views
18
CrossRef citations to date
0
Altmetric
Themed article: CNS neoplasms - Review

Multimodality intraoperative MRI for brain tumor surgery

, &
Pages 1545-1558 | Published online: 09 Jan 2014

References

  • Talos IFea. Diffusion tensor and functional MRI fusion with anatomical MRI for image-guided neurosurgery. Lect. Notes Comput. Sci.2878, 407–415 (2009).
  • Foroglou N, Zamani A, Black P. Intra-operative MRI (iop-MR) for brain tumour surgery. Br. J. Neurosurg.23(1), 14–22 (2009).
  • Dorward NL, Paleologos TS, Alberti O, Thomas DG. The advantages of frameless stereotactic biopsy over frame-based biopsy. Br. J. Neurosurg.16(2), 110–118 (2002).
  • Nimsky C, Ganslandt O, Hastreiter P, Fahlbusch R. Intraoperative compensation for brain shift. Surg. Neurol.56(6), 357–364; discussion 64–65 (2001).
  • Hill DL, Maurer CR Jr, Maciunas RJ, Barwise JA, Fitzpatrick JM, Wang MY. Measurement of intraoperative brain surface deformation under a craniotomy. Neurosurgery43(3), 514–526; discussion 27–28 (1998).
  • Maurer CR Jr, Hill DL, Martin AJ et al. Investigation of intraoperative brain deformation using a 1.5-T interventional MR system: preliminary results. IEEE Trans. Med. Imaging17(5), 817–825 (1998).
  • Hata N, Nabavi A, Wells WM 3rd et al. Three-dimensional optical flow method for measurement of volumetric brain deformation from intraoperative MR images. J. Comput. Assist. Tomogr.24(4), 531–538 (2000).
  • Nabavi A, Black PM, Gering DT et al. Serial intraoperative magnetic resonance imaging of brain shift. Neurosurgery48(4), 787–797; discussion 97–98 (2001).
  • Kekhia H, Colen RR, Oguro S, Black PM, Golby A, Jolesz FA. Assessing the significance of intraoperative MRI in glioma surgery: a controlled volumetrical analysis. Presented at: Spring 2010 Symposium for Research Excellence Awards, Brigham and Women’s Hospital, Boston, MA, USA, 25 May (2010).
  • Mamata Y, Mamata H, Nabavi A et al. Intraoperative diffusion imaging on a 0.5 Tesla interventional scanner. J. Magn. Reson. Imaging13(1), 115–119 (2001).
  • Schwartz RB, Hsu L, Wong TZ et al. Intraoperative MR imaging guidance for intracranial neurosurgery: experience with the first 200 cases. Radiology211(2), 477–488 (1999).
  • Alexander E, Moriarty TM, Kikinis R, Black P, Jolesz FM. The present and future role of intraoperative MRI in neurosurgical procedures. Stereotact. Funct. Neurosurg.68(1–4), 10–17 (1997).
  • Jolesz FA, Kikinis R, Talos IF. Neuronavigation in interventional MR imaging. Frameless stereotaxy. Neuroimaging Clin. N. Am.11(4), 685–693, ix (2001).
  • Jolesz FA. Neurosurgical suite of the future. II. Neuroimaging Clin. N. Am.11(4), 581–592 (2001).
  • Moriarty TM, Quinones-Hinojosa A, Larson PS et al. Frameless stereotactic neurosurgery using intraoperative magnetic resonance imaging: stereotactic brain biopsy. Neurosurgery47(5), 1138–1145; discussion 45–46 (2000).
  • Black PM, Alexander E 3rd, Martin C et al. Craniotomy for tumor treatment in an intraoperative magnetic resonance imaging unit. Neurosurgery45(3), 423–431; discussion 31–33 (1999).
  • Jolesz FA, Bleier AR, Jakab P, Ruenzel PW, Huttl K, Jako GJ. MR imaging of laser-tissue interactions. Radiology168(1), 249–253 (1988).
  • Jolesz FA. 1996 RSNA Eugene P. Pendergrass New Horizons Lecture. Image-guided procedures and the operating room of the future. Radiology204(3), 601–612 (1997).
  • Mislow JM, Golby AJ, Black PM. Origins of intraoperative MRI. Neurosurg. Clin. N. Am.20(2), 137–146 (2009).
  • Bohinski RJ, Kokkino AK, Warnick RE et al. Glioma resection in a shared-resource magnetic resonance operating room after optimal image-guided frameless stereotactic resection. Neurosurgery48(4), 731–742; discussion 42–44 (2001).
  • Kettenbach J, Kacher DF, Kanan AR et al. Intraoperative and interventional MRI: recommendations for a safe environment. Minim. Invasive Ther. Allied Technol.15(2), 53–64 (2006).
  • Moriarty TM, Kikinis R, Jolesz FA, Black PM, Alexander E 3rd. Magnetic resonance imaging therapy. Intraoperative MR imaging. Neurosurg. Clin. N. Am.7(2), 323–331 (1996).
  • DiMaio SP, Samset E, Fischer G et al. Dynamic MRI scan plane control for passive tracking of instruments and devices. Med. Image Comput. Comput. Assist. Interv.10(Pt 2), 50–58 (2007).
  • Archip N, Clatz O, Whalen S et al. Non-rigid alignment of pre-operative MRI, fMRI, and DT-MRI with intra-operative MRI for enhanced visualization and navigation in image-guided neurosurgery. Neuroimage35(2), 609–624 (2007).
  • Black PM, Alexander E, Martin C, Moriarty T. Craniotomy for tumor treatment in an intraoperative magnetic resonance imaging unit. Neurosurgery45(3), 423–431 (1999).
  • Dimaio SP, Archip N, Hata N et al. Image-guided neurosurgery at Brigham and Women’s Hospital. IEEE Eng. Med. Biol. Mag.25(5), 67–73 (2006).
  • Rothschild PA, Domesek JM, Kaufman L et al. MR imaging of the knee with a 0.064-T permanent magnet. Radiology175(3), 775–778 (1990).
  • Tronnier VM, Wirtz CR, Knauth M et al. Intraoperative diagnostic and interventional magnetic resonance imaging in neurosurgery. Neurosurgery40(5), 891–900; discussion 900–902 (1997).
  • Hadani M, Spiegelman R, Feldman Z, Berkenstadt H, Ram Z. Novel, compact, intraoperative magnetic resonance imaging-guided system for conventional neurosurgical operating rooms. Neurosurgery48(4), 799–807; discussion 807–809 (2001).
  • Salas S, Brimacombe M, Schulder M. Stereotactic accuracy of a compact intraoperative MRI system. Stereotact. Funct. Neurosurg.85(2–3), 69–74 (2007).
  • Gerlach R, du Mesnil de Rochemont R, Gasser T et al. Feasibility of Polestar N20, an ultra-low-field intraoperative magnetic resonance imaging system in resection control of pituitary macroadenomas: lessons learned from the first 40 cases. Neurosurgery63(2), 272–284; discussion 284–285 (2008).
  • Ntoukas V, Krishnan R, Seifert V. The new generation polestar n20 for conventional neurosurgical operating rooms: a preliminary report. Neurosurgery62(3 Suppl. 1), 82–89; discussion 89–90 (2008).
  • Black PM, Moriarty T, Alexander E 3rd et al. Development and implementation of intraoperative magnetic resonance imaging and its neurosurgical applications. Neurosurgery41(4), 831–842; discussion 842–845 (1997).
  • Woodard EJ, Leon SP, Moriarty TM, Quinones A, Zamani AA, Jolesz FA. Initial experience with intraoperative magnetic resonance imaging in spine surgery. Spine (Phila Pa 1976)26(4), 410–417 (2001).
  • Nimsky C, Ganslandt O, Von Keller B, Romstock J, Fahlbusch R. Intraoperative high-field-strength MR imaging: implementation and experience in 200 patients. Radiology233(1), 67–78 (2004).
  • Hatiboglu MA, Weinberg JS, Suki D et al. Impact of intraoperative high-field magnetic resonance imaging guidance on glioma surgery: a prospective volumetric analysis. Neurosurgery64(6), 1073–1081 (2009).
  • Sutherland GR, Kaibara T, Louw D, Hoult DI, Tomanek B, Saunders J. A mobile high-field magnetic resonance system for neurosurgery. J. Neurosurg.91(5), 804–813 (1999).
  • White PJ, Whalen S, Tang SC, Clement GT, Jolesz F, Golby AJ. An intraoperative brain shift monitor using shear mode transcranial ultrasound: preliminary results. J. Ultrasound Med.28(2), 191–203 (2009).
  • Ruiz-Alzola J, Westin CF, Warfield SK, Alberola C, Maier S, Kikinis R. Nonrigid registration of 3D tensor medical data. Med. Image Anal.6(2), 143–161 (2002).
  • Colen RR, Hazany S, Zinn PO, Rojas R. Functional MR imaging and the neurosurgical ‘golden rule’ for brain tumors: is the ‘golden rule’ relevant today? Presented at: American Society of Neuroradiology 48th Annual Meeting. Boston, MA, USA, 15–20 May (2010).
  • Kumar AJ, Leeds NE, Fuller GN et al. Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology217(2), 377–384 (2000).
  • Chang YW, Yoon HK, Shin HJ, Roh HG, Cho JM. MR imaging of glioblastoma in children: usefulness of diffusion/perfusion-weighted MRI and MR spectroscopy. Pediatr. Radiol.33(12), 836–842 (2003).
  • Tien RD, Felsberg GJ, Friedman H, Brown M, MacFall J. MR imaging of high-grade cerebral gliomas: value of diffusion-weighted echoplanar pulse sequences. AJR Am. J. Roentgenol.162(3), 671–677 (1994).
  • Gasparetto EL, Pawlak MA, Patel SH et al. Posttreatment recurrence of malignant brain neoplasm: accuracy of relative cerebral blood volume fraction in discriminating low from high malignant histologic volume fraction. Radiology250(3), 887–896 (2009).
  • Gasser T, Ganslandt O, Sandalcioglu E, Stolke D, Fahlbusch R, Nimsky C. Intraoperative functional MRI: implementation and preliminary experience. Neuroimage26(3), 685–693 (2005).
  • Colen RR, Jolesz FA. Intraoperative MR Imaging Protocols. Brigham and Women’s Hospital Institutional Policy, MA, USA (2010).
  • Larsen S, Kikinis R, Talos IF, Weinstein D, Wells W, Golby A. Quantitative comparison of functional MRI and direct electrocortical stimulation for functional mapping. Int. J. Med. Robot.3(3), 262–270 (2007).
  • Nimsky C, Ganslandt O, Hastreiter P et al. Intraoperative diffusion-tensor MR imaging: shifting of white matter tracts during neurosurgical procedures – initial experience. Radiology234(1), 218–225 (2005).
  • Elhawary H, Liu H, Patel P et al. Intra-operative real-time querying of white matter tracts during frameless stereotactic neuronavigation. Neurosurgery (2010) (In press).
  • Kwee TC, Galban CJ, Tsien C et al. Comparison of apparent diffusion coefficients and distributed diffusion coefficients in high-grade gliomas. J. Magn. Reson. Imaging31(3), 531–537 (2010).
  • Yang I, Aghi MK. New advances that enable identification of glioblastoma recurrence. Nat. Rev. Clin. Oncol.6(11), 648–657 (2009).
  • Gerstner ER, Frosch MP, Batchelor TT. Diffusion magnetic resonance imaging detects pathologically confirmed, nonenhancing tumor progression in a patient with recurrent glioblastoma receiving bevacizumab. J. Clin. Oncol.28(6), e91–e93 (2010).
  • Gerstner ER, Chen PJ, Wen PY, Jain RK, Batchelor TT, Sorensen G. Infiltrative patterns of glioblastoma spread detected via diffusion MRI after treatment with cediranib. Neuro Oncol.12(5), 466–472 (2010).
  • Khayal IS, Polley MY, Jalbert L et al. Evaluation of diffusion parameters as early biomarkers of disease progression in glioblastoma multiforme. Neuro Oncol.12(9), 908–916 (2010).
  • Sawlani RN, Raizer J, Horowitz SW, Shin W, Grimm SA, Chandler JP et al. Glioblastoma: a method for predicting response to antiangiogenic chemotherapy by using MR perfusion imaging – pilot study. Radiology255(2), 622–628 (2010).
  • Law M, Cha S, Knopp EA, Johnson G, Arnett J, Litt AW. High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology222(3), 715–721 (2002).
  • Brandsma D, van den Bent MJ. Pseudoprogression and pseudoresponse in the treatment of gliomas. Curr. Opin. Neurol.22(6), 633–638 (2009).
  • Knauth M, Aras N, Wirtz CR, Dorfler A, Engelhorn T, Sartor K. Surgically induced intracranial contrast enhancement: potential source of diagnostic error in intraoperative MR imaging. AJNR Am. J. Neuroradiol.20(8), 1547–1553 (1999).
  • Hunt MA, Bago AG, Neuwelt EA. Single-dose contrast agent for intraoperative MR imaging of intrinsic brain tumors by using ferumoxtran-10. AJNR Am. J. Neuroradiol.26(5), 1084–1088 (2005).
  • Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng YC. Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR Am. J. Neuroradiol.30(1), 19–30 (2009).
  • Wakabayashi T, Fujii M, Kajita Y, Natsume A, Maezawa S, Yoshida J. Advanced new neurosurgical procedure using integrated system of intraoperative MRI and neuronavigation with multimodal neuroradiological images. Nagoya J. Med. Sci.71(3–4), 101–107 (2009).
  • Stupp R, Mason WP, van den Bent MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med.352(10), 987–996 (2005).
  • Lacroix M, Abi-Said D, Fourney DR et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J. Neurosurg.95(2), 190–198 (2001).
  • Sanai N, Berger MS. Glioma extent of resection and its impact on patient outcome. Neurosurgery62(4), 753–764; discussion 264–266 (2008).
  • National Comprehensive Cancer Network. Central Nervous System Cancer Guidelines. NCCN Press, PA, USA (2007).
  • Claus EB, Horlacher A, Hsu LG et al. Survival rates in patients with low-grade glioma after intraoperative magnetic resonance image guidance. Cancer103(6), 1227–1233 (2005).
  • Henderson WR. The pituitary adenomata: a follow-up study of the surgical results in 338 cases (Dr. Harvey Cushing’s series). Br. J. Surg.25, 811–821 (1939).
  • Wilson CB. A decade of pituitary microsurgery. The Herbert Olivecrona lecture. J. Neurosurg.61(5), 814–833 (1984).
  • Laws ER, Chenelle AG, Thapar K. Recurrence after transsphenoidal surgery for pituitary adenomas: clinical and basic science aspects. In: Pituitary Adenomas: From Basic Research to Diagnosis and Therapy. Von Weder K, Fahlbusch R (Eds). Elsevier, Amsterdam, The Netherlands, 3–10 (1996).
  • Pergolizzi RS Jr, Nabavi A, Schwartz RB et al. Intra-operative MR guidance during trans-sphenoidal pituitary resection: preliminary results. J. Magn. Reson. Imaging13(1), 136–141 (2001).
  • Martin CH, Schwartz R, Jolesz F, Black PM. Transsphenoidal resection of pituitary adenomas in an intraoperative MRI unit. Pituitary2(2), 155–162 (1999).
  • Fahlbusch R, Ganslandt O, Buchfelder M, Schott W, Nimsky C. Intraoperative magnetic resonance imaging during transsphenoidal surgery. J. Neurosurg.95(3), 381–390 (2001).
  • Stummer W, Reulen HJ, Meinel T et al. Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery62(3), 564–576; discussion 564–576 (2008).
  • Moore GE, Peyton WT. The clinical use of fluorescein in neurosurgery; the localization of brain tumors. J. Neurosurg.5(4), 392–398 (1948).
  • Cheng MK, McKean J, Boisvert D, Tulip J. Photoradiation therapy: current status and applications in the treatment of brain tumors. Surg. Neurol.25(5), 423–435 (1986).
  • Haglund MM, Berger MS, Hochman DW. Enhanced optical imaging of human gliomas and tumor margins. Neurosurgery38(2), 308–317 (1996).
  • Yu J, Javier D, Yaseen MA et al. Self-assembly synthesis, tumor cell targeting, and photothermal capabilities of antibody-coated indocyanine green nanocapsules. J. Am. Chem. Soc.132(6), 1929–1938 (2010).
  • Stummer W, Stocker S, Wagner S et al. Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence. Neurosurgery42(3), 518–525; discussion 525–526 (1998).
  • Liao H, Shimaya K, Wang K et al. Combination of intraoperative 5-aminolevulinic acid-induced fluorescence and 3-D MR imaging for guidance of robotic laser ablation for precision neurosurgery. Med. Image Comput. Comput. Assist. Interv.11(Pt 2), 373–380 (2008).
  • Shinoda J, Yano H, Yoshimura S et al. Fluorescence-guided resection of glioblastoma multiforme by using high-dose fluorescein sodium. Technical note. J. Neurosurg.99(3), 597–603 (2003).
  • Elhawary H, Tse ZT, Hamed A, Rea M, Davies BL, Lamperth MU. The case for MR-compatible robotics: a review of the state of the art. Int. J. Med. Robot.4(2), 105–113 (2008).
  • Chinzei K, Miller K. Towards MRI guided surgical manipulator. Med. Sci. Monit.7(1), 153–163 (2001).
  • Sutherland GR, Latour I, Greer AD. Integrating an image-guided robot with intraoperative MRI: a review of the design and construction of neuroArm. IEEE Eng. Med. Biol. Mag.27(3), 59–65 (2008).
  • Sutherland GR, Latour I, Greer AD, Fielding T, Feil G, Newhook P. An image-guided magnetic resonance-compatible surgical robot. Neurosurgery62(2), 286–292; discussion 92–93 (2008).
  • McBeth PB, Louw DF, Rizun PR, Sutherland GR. Robotics in neurosurgery. Am. J. Surg.188(4A Suppl.), S68–S75 (2004).
  • Rizun PR, McBeth PB, Louw DF, Sutherland GR. Robot-assisted neurosurgery. Semin. Laparosc. Surg.11(2), 99–106 (2004).
  • Fried MP, Topulos G, Hsu L et al. Endoscopic sinus surgery with magnetic resonance imaging guidance: initial patient experience. Otolaryngol. Head Neck Surg.119(4), 374–380 (1998).
  • Cappabianca P, Cinalli G, Gangemi M et al. Application of neuroendoscopy to intraventricular lesions. Neurosurgery62(Suppl 2), 575–597; discussion 597–598 (2008).
  • Gaab MR, Schroeder HW. Neuroendoscopic approach to intraventricular lesions. Neurosurg. Focus6(4), e5 (1999).
  • Schroeder HW, Gaab MR. Intracranial endoscopy. Neurosurg. Focus6(4), e1 (1999).
  • Broggi G, Dones I, Ferroli P, Franzini A, Servello D, Duca S. Image guided neuroendoscopy for third ventriculostomy. Acta Neurochir. (Wien)142(8), 893–898; discussion 8–9 (2000).
  • Hsu L, Fried MP, Jolesz FA. MR-guided endoscopic sinus surgery. AJNR Am. J. Neuroradiol.19(7), 1235–1240 (1998).
  • Cavallo LM, Prevedello D, Esposito F et al. The role of the endoscope in the transsphenoidal management of cystic lesions of the sellar region. Neurosurg. Rev.31(1), 55–64; discussion 64 (2008).
  • Cavallo LM, de Divitiis O, Aydin S et al. Extended endoscopic endonasal transsphenoidal approach to the suprasellar area: anatomic considerations – part 1. Neurosurgery62(6 Suppl. 3), 1202–1212 (2008).
  • Sierra R, Dimaio SP, Wada J et al. Patient specific simulation and navigation of ventriculoscopic interventions. Stud. Health Technol. Inform.125, 433–435 (2007).
  • Tsien CI, Cao Y, Lawrence TS. Functional and metabolic magnetic resonance imaging and positron emission tomography for tumor volume definition in high-grade gliomas. Semin. Radiat. Oncol.19(3), 155–162 (2009).
  • Grosu AL, Weber WA, Riedel E et al. L-(methyl-11C) methionine positron emission tomography for target delineation in resected high-grade gliomas before radiotherapy. Int. J. Radiat. Oncol. Biol. Phys.63(1), 64–74 (2005).
  • Becherer A, Karanikas G, Szabó M et al. Brain tumour imaging with PET: a comparison between [18F]fluorodopa and [11C]methionine. Eur. J. Nucl. Med. Mol. Imaging30, 1561–1567 (2003).
  • Di Chiro G, Brooks RA, Patronas NJ et al. Issues in the in vivo measurement of glucose metabolism of human central nervous system tumors. Ann. Neurol.15(Suppl.), S138–S146 (1984).
  • Di Chiro G, DeLaPaz RL, Brooks RA et al. Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography. Neurology32(12), 1323–1329 (1982).
  • Shields AF, Grierson JR, Dohmen BM et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat. Med.4(11), 1334–1336 (1998).
  • Jacobs AH, Thomas A, Kracht LW et al.18F-fluoro-L-thymidine and 11C-methylmethionine as markers of increased transport and proliferation in brain tumors. J. Nucl. Med.46(12), 1948–1958 (2005).
  • De Witte O, Goldberg I, Wikler D et al. Positron emission tomography with injection of methionine as a prognostic factor in glioma. J. Neurosurg.95(5), 746–750 (2001).
  • Derlon JM, Bourdet C, Bustany P et al. [11C]L-methionine uptake in gliomas. Neurosurgery25(5), 720–728 (1989).
  • Bustany P, Chatel M, Derlon JM et al. Brain tumor protein synthesis and histological grades: a study by positron emission tomography (PET) with C11-L-methionine. J. Neurooncol.3(4), 397–404 (1986).
  • Ericson K, Lilja A, Bergstrom M et al. Positron emission tomography with ([11C]methyl)-L-methionine, [11C]D-glucose, and [68Ga]EDTA in supratentorial tumors. J. Comput. Assist. Tomogr.9(4), 683–689 (1985).
  • Colen RR, Jolesz F. MRI-guided focused ultrasound: introduction and history. In: Intraoperative MR-guided Neurosurgery. Hall W, Nimsky C, Truwit C (Eds). Thieme, Suttgart, Germany, 233–240 (2010).
  • Colen RR, Jolesz FA. Future potential of MRI-guided focused ultrasound brain surgery. Neuroimaging Clin. N. Am.20(3), 355–366 (2010).
  • McDannold N, Clement GT, Black P, Jolesz F, Hynynen K. Transcranial magnetic resonance imaging- guided focused ultrasound surgery of brain tumors: initial findings in 3 patients. Neurosurgery66(2), 323–332; discussion 332 (2010).
  • Vaezy S, Martin R, Yaziji H et al. Hemostasis of punctured blood vessels using high-intensity focused ultrasound. Ultrasound Med. Biol.24(6), 903–910 (1998).
  • Medel R, Crowley RW, McKisic MS, Dumont AS, Kassell NF. Sonothrombolysis: an emerging modality for the management of stroke. Neurosurgery65(5), 979–993; discussion 993 (2009).
  • Treat LH, McDannold N, Vykhodtseva N, Zhang Y, Tam K, Hynynen K. Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound. Int. J. Cancer121(4), 901–907 (2007).
  • Kinoshita M, McDannold N, Jolesz FA, Hynynen K. Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood–brain barrier disruption. Proc. Natl Acad. Sci. USA103(31), 11719–11723 (2006).
  • Frenkel V. Ultrasound mediated delivery of drugs and genes to solid tumors. Adv. Drug Deliv. Rev.60(10), 1193–1208 (2008).
  • Kinoshita M, McDannold N, Jolesz FA, Hynynen K. Targeted delivery of antibodies through the blood–brain barrier by MRI-guided focused ultrasound. Biochem. Biophys. Res. Commun.340(4), 1085–1090 (2006).
  • Jolesz FA. MRI-guided focused ultrasound surgery. Annu. Rev. Med.60, 417–430 (2009).
  • Jolesz FA, McDannold N. Current status and future potential of MRI-guided focused ultrasound surgery. J. Magn. Reson. Imaging27(2), 391–399 (2008).
  • Bleier AR, Jolesz FA, Cohen MS et al. Real-time magnetic resonance imaging of laser heat deposition in tissue. Magn. Reson. Med.21(1), 132–137 (1991).
  • Cline HE, Schenck JF, Watkins RD, Hynynen K, Jolesz FA. Magnetic resonance-guided thermal surgery. Magn. Reson. Med.30(1), 98–106 (1993).
  • Cline HE, Hynynen K, Hardy CJ, Watkins RD, Schenck JF, Jolesz FA. MR temperature mapping of focused ultrasound surgery. Magn. Res. Med.31, 628–636 (1994).
  • Hynynen K, Jolesz FA. Demonstration of potential noninvasive ultrasound brain therapy through an intact skull. Ultrasound Med. Biol.24(2), 275–283 (1998).
  • Hynynen K, McDannold N, Clement G et al. Pre-clinical testing of a phased array ultrasound system for MRI-guided noninvasive surgery of the brain – a primate study. Eur. J. Radiol.59(2), 149–156 (2006).
  • McDannold N, Clement GT, Black P, Jolesz F, Hynynen K. Transcranial magnetic resonance imaging-guided focused ultrasound surgery of brain tumors: initial findings in 3 patients. Neurosurgery66(2), 323–332; discussion 332 (2010).
  • Martin E, Jeanmonod D, Morel A, Zadicario E, Werner B. High-intensity focused ultrasound for noninvasive functional neurosurgery. Ann. Neurol.66(6), 858–861 (2009).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.