271
Views
40
CrossRef citations to date
0
Altmetric
Review

What neurophysiological recordings tell us about cognitive and behavioral functions of the human subthalamic nucleus

, &
Pages 139-149 | Published online: 09 Jan 2014

References

  • Wilson S. Modern Problems in Neurology, Arnold, London, UK (1928).
  • DeLong MR, Wichmann T. Circuits and circuit disorders of the basal ganglia. Arch. Neurol.64(1), 20–24 (2007).
  • DeLong M, Wichmann T. Update on models of basal ganglia function and dysfunction. Parkinsonism Relat. Disord.15(Suppl. 3), S237–S240 (2009).
  • Temel Y, Blokland A, Steinbusch HW, Visser-Vandewalle V. The functional role of the subthalamic nucleus in cognitive and limbic circuits. Prog. Neurobiol.76(6), 393–413 (2005).
  • Nambu A, Tokuno H, Takada M. Functional significance of the cortico-subthalamo-pallidal ‘hyperdirect’ pathway. Neurosci. Res.43(2), 111–117 (2002).
  • Benabid AL, Chabardes S, Mitrofanis J, Pollak P. Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol.8(1), 67–81 (2009).
  • Perez-Costas E, Melendez-Ferro M, Roberts RC. Basal ganglia pathology in schizophrenia: dopamine connections and anomalies. J. Neurochem.113(2), 287–302 (2010).
  • Sukhodolsky DG, Leckman JF, Rothenberger A, Scahill L. The role of abnormal neural oscillations in the pathophysiology of co-occurring Tourette syndrome and attention-deficit/hyperactivity disorder. Eur. Child Adolesc. Psychiatry16(Suppl. 1), 51–59 (2007).
  • Belin D, Jonkman S, Dickinson A, Robbins TW, Everitt BJ. Parallel and interactive learning processes within the basal ganglia: relevance for the understanding of addiction. Behav. Brain Res.199(1), 89–102 (2009).
  • Brown P, Eusebio A. Paradoxes of functional neurosurgery: clues from basal ganglia recordings. Mov. Disord.23(1), 12–20; quiz 158 (2008).
  • Marceglia S, Rossi L, Foffani G, Bianchi A, Cerutti S, Priori A. Basal ganglia local field potentials: applications in the development of new deep brain stimulation devices for movement disorders. Expert Rev. Med. Devices4(5), 605–614 (2007).
  • Priori A, Foffani G, Pesenti A et al. Rhythm-specific pharmacological modulation of subthalamic activity in Parkinson’s disease. Exp. Neurol.189(2), 369–379 (2004).
  • Fasano A, Romito LM, Daniele A et al. Motor and cognitive outcome in patients with Parkinson’s disease 8 years after subthalamic implants. Brain133(9), 2664–2676 (2010).
  • Rodriguez-Oroz MC, Obeso JA et al. Bilateral deep brain stimulation in Parkinson’s disease: a multicentre study with 4 years follow-up. Brain128(Pt 10), 2240–2249 (2005).
  • Contarino MF, Daniele A, Sibilia AH et al. Cognitive outcome 5 years after bilateral chronic stimulation of subthalamic nucleus in patients with Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry78(3), 248–252 (2007).
  • Voon V, Kubu C, Krack P, Houeto JL, Troster AI. Deep brain stimulation: neuropsychological and neuropsychiatric issues. Mov. Disord.21(Suppl. 14), S305–S327 (2006).
  • Voon V, Krack P, Lang AE et al. Parkinson’s disease, DBS and suicide: a role for serotonin? Brain DOI: 10.1093/brain/awp151 (2009) (Epub ahead of print).
  • Kleiner-Fisman G, Herzog J, Fisman DN et al. Subthalamic nucleus deep brain stimulation: summary and meta-analysis of outcomes. Mov. Disord.21(Suppl. 14), S290–S304 (2006).
  • Halpern CH, Rick JH, Danish SF, Grossman M, Baltuch GH. Cognition following bilateral deep brain stimulation surgery of the subthalamic nucleus for Parkinson’s disease. Int. J. Geriatr. Psychiatry24(5), 443–451 (2009).
  • Frank MJ, Samanta J, Moustafa AA, Sherman SJ. Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism. Science318(5854), 1309–1312 (2007).
  • Witt K, Daniels C, Reiff J et al. Neuropsychological and psychiatric changes after deep brain stimulation for Parkinson’s disease: a randomised, multicentre study. Lancet Neurol.7(7), 605–614 (2008).
  • Parsons TD, Rogers SA, Braaten AJ, Woods SP, Troster AI. Cognitive sequelae of subthalamic nucleus deep brain stimulation in Parkinson’s disease: a meta-analysis. Lancet Neurol.5(7), 578–588 (2006).
  • Temel Y, Kessels A, Tan S, Topdag A, Boon P, Visser-Vandewalle V. Behavioural changes after bilateral subthalamic stimulation in advanced Parkinson disease: a systematic review. Parkinsonism Relat. Disord.12(5), 265–272 (2006).
  • Mallet L, Polosan M, Jaafari N et al. Subthalamic nucleus stimulation in severe obsessive–compulsive disorder. N. Engl. J. Med.359(20), 2121–2134 (2008).
  • Brown P, Williams D. Basal ganglia local field potential activity: character and functional significance in the human. Clin. Neurophysiol.116(11), 2510–2519 (2005).
  • Kuhn AA, Trottenberg T, Kivi A, Kupsch A, Schneider GH, Brown P. The relationship between local field potential and neuronal discharge in the subthalamic nucleus of patients with Parkinson’s disease. Exp. Neurol.194(1), 212–220 (2005).
  • Weinberger M, Mahant N, Hutchison WD et al. β oscillatory activity in the subthalamic nucleus and its relation to dopaminergic response in Parkinson's disease. J. Neurophysiol.96(6), 3248–3256 (2006).
  • Levy R, Ashby P, Hutchison WD, Lang AE, Lozano AM, Dostrovsky JO. Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson’s disease. Brain125(Pt 6), 1196–1209 (2002).
  • Foffani G, Bianchi AM, Baselli G, Priori A. Movement-related frequency modulation of β oscillatory activity in the human subthalamic nucleus. J. Physiol.568(Pt 2), 699–711 (2005).
  • Marceglia S, Bianchi AM, Baselli G et al. Interaction between rhythms in the human basal ganglia: application of bispectral analysis to local field potentials. IEEE Trans. Neural Syst. Rehabil. Eng.15(4), 483–492 (2007).
  • Marceglia S, Foffani G, Bianchi AM et al. Dopamine-dependent non-linear correlation between subthalamic rhythms in Parkinson’s disease. J. Physiol.571(Pt 3), 579–591 (2006).
  • Alonso-Frech F, Zamarbide I, Alegre M et al. Slow oscillatory activity and levodopa-induced dyskinesias in Parkinson’s disease. Brain129(Pt 7), 1748–1757 (2006).
  • Silberstein P, Kuhn AA, Kupsch A et al. Patterning of globus pallidus local field potentials differs between Parkinson’s disease and dystonia. Brain126(Pt 12), 2597–2608 (2003).
  • Marceglia S, Servello D, Foffani G et al. Thalamic single-unit and local field potential activity in Tourette syndrome. Mov. Disord.25(3), 300–308 (2010).
  • Klostermann F, Nikulin VV, Kuhn AA et al. Task-related differential dynamics of EEG α- and β-band synchronization in cortico-basal motor structures. Eur. J. Neurosci.25(5), 1604–1615 (2007).
  • Foffani G, Priori A. Deep brain stimulation in Parkinson’s disease can mimic the 300 Hz subthalamic rhythm. Brain129(Pt 12), e59; author reply e60 (2006).
  • Priori A, Ardolino G, Marceglia S et al. Low-frequency subthalamic oscillations increase after deep brain stimulation in Parkinson’s disease. Brain Res. Bull.71(1–3), 149–154 (2006).
  • Rosa M, Marceglia S, Servello D et al. Time dependent subthalamic local field potential changes after DBS surgery in Parkinson’s disease. Exp. Neurol.222(2), 184–190 (2009).
  • Rossi L, Marceglia S, Foffani G et al. Subthalamic local field potential oscillations during ongoing deep brain stimulation in Parkinson’s disease. Brain Res. Bull.76(5), 512–521 (2008).
  • Kuhn AA, Kupsch A, Schneider GH, Brown P. Reduction in subthalamic 8–35 Hz oscillatory activity correlates with clinical improvement in Parkinson’s disease. Eur. J. Neurosci.23(7), 1956–1960 (2006).
  • Rossi L, Foffani G, Marceglia S, Bracchi F, Barbieri S, Priori A. An electronic device for artefact suppression in human local field potential recordings during deep brain stimulation. J. Neural Eng.4(2), 96–106 (2007).
  • Tass PA. Desynchronizing double-pulse phase resetting and application to deep brain stimulation. Biol. Cybern.85(5), 343–354 (2001).
  • Marceglia S, Fiorio M, Foffani G et al. Modulation of β oscillations in the subthalamic area during action observation in Parkinson's disease. Neuroscience161(4), 1027–1036 (2009).
  • Kuhn AA, Doyle L, Pogosyan A et al. Modulation of β oscillations in the subthalamic area during motor imagery in Parkinson's disease. Brain129(Pt 3), 695–706 (2006).
  • Balaz M, Rektor I, Pulkrabek J. Participation of the subthalamic nucleus in executive functions: an intracerebral recording study. Mov. Disord.23(4), 553–557 (2008).
  • Rektor I, Balaz M, Bockova M. Cognitive activities in the subthalamic nucleus. Invasive studies. Parkinsonism Relat. Disord.15(Suppl. 3), S83–S86 (2009).
  • Rektor I, Bares M, Brazdil M et al. Cognitive- and movement-related potentials recorded in the human basal ganglia. Mov. Disord.20(5), 562–568 (2005).
  • Fumagalli M, Giannicola G, Rosa M et al. Conflict-dependent dynamic of subthalamic nucleus oscillations during moral decision. Soc. Neurosci.8, 1–14 (2010).
  • Brucke C, Kupsch A, Schneider GH et al. The subthalamic region is activated during valence-related emotional processing in patients with Parkinson’s disease. Eur. J. Neurosci.26(3), 767–774 (2007).
  • Kuhn AA, Hariz MI, Silberstein P et al. Activation of the subthalamic region during emotional processing in Parkinson disease. Neurology65(5), 707–713 (2005).
  • Rizzolatti G, Fogassi L, Gallese V. Neurophysiological mechanisms underlying the understanding and imitation of action. Nat. Rev. Neurosci.2(9), 661–670 (2001).
  • Doyle LM, Kuhn AA, Hariz M, Kupsch A, Schneider GH, Brown P. Levodopa-induced modulation of subthalamic β oscillations during self-paced movements in patients with Parkinson's disease. Eur. J. Neurosci.21(5), 1403–1412 (2005).
  • Urgesi C, Moro V, Candidi M, Aglioti SM. Mapping implied body actions in the human motor system. J. Neurosci.26(30), 7942–7949 (2006).
  • Kilner JM, Vargas C, Duval S, Blakemore SJ, Sirigu A. Motor activation prior to observation of a predicted movement. Nat. Neurosci.7(12), 1299–1301 (2004).
  • Teagarden MA, Rebec GV. Subthalamic and striatal neurons concurrently process motor, limbic, and associative information in rats performing an operant task. J. Neurophysiol.97(3), 2042–2058 (2007).
  • Turner RS, Anderson ME. Context-dependent modulation of movement-related discharge in the primate globus pallidus. J. Neurosci.25(11), 2965–2976 (2005).
  • Reinvang I. Cognitive event-related potentials in neuropsychological assessment. Neuropsychol. Rev.9(4), 231–248 (1999).
  • Smeding HM, Speelman JD, Koning-Haanstra M et al. Neuropsychological effects of bilateral STN stimulation in Parkinson disease: a controlled study. Neurology66(12), 1830–1836 (2006).
  • Weintraub D, Potenza MN. Impulse control disorders in Parkinson’s disease. Curr. Neurol. Neurosci. Rep.6(4), 302–306 (2006).
  • Ballanger B, van Eimeren T, Moro E et al. Stimulation of the subthalamic nucleus and impulsivity: release your horses. Ann. Neurol.66(6), 817–824 (2009).
  • Foffani G, Ardolino G, Meda B et al. Altered subthalamo-pallidal synchronisation in parkinsonian dyskinesias. J. Neurol. Neurosurg. Psychiatry76(3), 426–428 (2005).
  • Brown P, Chen CC, Wang S et al. Involvement of human basal ganglia in offline feedback control of voluntary movement. Curr. Biol.16(21), 2129–2134 (2006).
  • Schnitzler A, Gross J. Normal and pathological oscillatory communication in the brain. Nat. Rev. Neurosci.6(4), 285–296 (2005).
  • Foffani G, Ardolino G, Rampini P et al. Physiological recordings from electrodes implanted in the basal ganglia for deep brain stimulation in Parkinson’s disease. the relevance of fast subthalamic rhythms. Acta Neurochir. Suppl.93, 97–99 (2005).
  • Lalo E, Thobois S, Sharott A et al. Patterns of bidirectional communication between cortex and basal ganglia during movement in patients with Parkinson disease. J. Neurosci.28(12), 3008–3016 (2008).
  • Brucke C, Kempf F, Kupsch A et al. Movement-related synchronization of gamma activity is lateralized in patients with dystonia. Eur. J. Neurosci.27(9), 2322–2329 (2008).
  • Windels F, Carcenac C, Poupard A, Savasta M. Pallidal origin of GABA release within the substantia nigra pars reticulata during high-frequency stimulation of the subthalamic nucleus. J. Neurosci.25(20), 5079–5086 (2005).
  • Xu W, Russo GS, Hashimoto T, Zhang J, Vitek JL. Subthalamic nucleus stimulation modulates thalamic neuronal activity. J. Neurosci.28(46), 11916–11924 (2008).
  • Hashimoto T, Elder CM, Okun MS, Patrick SK, Vitek JL. Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J. Neurosci.23(5), 1916–1923 (2003).
  • Jech R, Ruzicka E, Urgosik D et al. Deep brain stimulation of the subthalamic nucleus affects resting EEG and visual evoked potentials in Parkinson’s disease. Clin. Neurophysiol.117(5), 1017–1028 (2006).
  • Bronte-Stewart H, Barberini C, Koop MM, Hill BC, Henderson JM, Wingeier B. The STN β-band profile in Parkinson's disease is stationary and shows prolonged attenuation after deep brain stimulation. Exp. Neurol.215(1), 20–28 (2009).
  • Wingeier B, Tcheng T, Koop MM, Hill BC, Heit G, Bronte-Stewart HM. Intra-operative STN DBS attenuates the prominent β rhythm in the STN in Parkinson's disease. Exp. Neurol.197(1), 244–251 (2006).
  • Brown P, Mazzone P, Oliviero A et al. Effects of stimulation of the subthalamic area on oscillatory pallidal activity in Parkinson’s disease. Exp. Neurol.188(2), 480–490 (2004).
  • Kuhn AA, Kempf F, Brucke C et al. High-frequency stimulation of the subthalamic nucleus suppresses oscillatory β activity in patients with Parkinson's disease in parallel with improvement in motor performance. J. Neurosci.28(24), 6165–6173 (2008).
  • Foffani G, Ardolino G, Egidi M, Caputo E, Bossi B, Priori A. Subthalamic oscillatory activities at β or higher frequency do not change after high-frequency DBS in Parkinson's disease. Brain Res. Bull.69(2), 123–130 (2006).
  • Giannicola G, Marceglia S, Rossi L et al. The effects of levodopa and ongoing deep brain stimulation on subthalamic β oscillations in Parkinson's disease. Exp. Neurol. (2010) (In press).
  • Bell E, Mathieu G, Racine E. Preparing the ethical future of deep brain stimulation. Surg. Neurol.72(6), 577–586; discussion 586 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.