233
Views
73
CrossRef citations to date
0
Altmetric
Review

Antioxidant approaches for the treatment of Alzheimer’s disease

, , , , , , & show all
Pages 1201-1208 | Published online: 09 Jan 2014

References

  • Cummings JL, Cole G. Alzheimer disease. JAMA287, 2335–2338 (2002).
  • Alzheimer A. [An unusual disease of the cerebral cortex]. Zentralblatt fur Nervenkrankheiten25, 1134 (1906).
  • Smith MA, Casadesus G, Joseph JA et al. Amyloid-β and tau serve antioxidant functions in the aging and Alzheimer brain. Free Radic. Biol. Med.33, 1194–1199 (2002).
  • Lee HG, Perry G, Moreira PI et al. Tau phosphorylation in Alzheimer’s disease: pathogen or protector? Trends Mol. Med.11, 164–169 (2005).
  • Lee HG, Zhu X, Nunomura A et al. Amyloid β: the alternate hypothesis. Curr. Alzheimer Res.3, 75–80 (2006).
  • Selkoe DJ. Alzheimer’s disease results from the cerebral accumulation and cytotoxicity of Amyloid β-protein. J. Alzheimers Dis.3, 75–80 (2001).
  • Ashford JW. APOE genotype effects on Alzheimer’s disease onset and epidemiology. J. Mol. Neurosci.23, 157–165 (2004).
  • Teter B. ApoE-dependent plasticity in Alzheimer’s disease. J. Mol. Neurosci.23, 167–179 (2004).
  • Selkoe DJ. Alzheimer‘s disease: genotypes, phenotypes, and treatments. Science275, 630–631 (1997).
  • Bentahir M, Nyabi O, Verhamme J et al. Presenilin clinical mutations can affect γ-secretase activity by different mechanisms. J. Neurochem.96, 732–742 (2006).
  • Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science256, 184–185 (1992).
  • Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science297, 353–356 (2002).
  • Perry G, Nunomura A, Hirai K et al. Is oxidative damage the fundamental pathogenic mechanism of Alzheimer’s and other neurodegenerative diseases? Free Radic. Biol. Med.33, 1475–1479 (2002).
  • Perry G, Castellani RJ, Hirai K et al. Reactive oxygen species mediate cellular damage in Alzheimer disease. J. Alzheimers Dis.1, 45–55 (1998).
  • Harman D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol.11, 298–300 (1956).
  • Harman D, Eddy DE, Noffsinger J. Free radical theory of aging: inhibition of amyloidosis in mice by antioxidants; possible mechanism. J. Am. Geriatr. Soc.24, 203–210 (1976).
  • Smith MA, Sayre LM, Monnier VM et al. Radical ageing in Alzheimer‘s disease. Trends Neurosci.18, 172–176 (1995).
  • Schulz JB, Lindenau J, Seyfried J et al. Glutathione, oxidative stress and neurodegeneration. Eur. J. Biochem.267(16), 4904–4911 (2000).
  • Smith MA, Harris PL, Sayre LM et al. Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc. Natl Acad. Sci. USA94, 9866–9868 (1997).
  • Reddy PH, Beal MF. Are mitochondria critical in the pathogenesis of Alzheimer’s disease? Brain Res. Brain Res. Rev.49, 618–632 (2005).
  • Mattson MP. Pathways towards and away from Alzheimer’s disease. Nature430, 631–639 (2004).
  • Manczak M, Anekonda TS, Henson E et al. Mitochondria are a direct site of A β accumulation in Alzheimer's disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum. Mol. Genet.15, 1437–1449 (2006).
  • Reddy PH, Beal MF. Amyloid β, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer's disease. Trends Mol. Med.14, 45–53 (2008).
  • Hirai K, Aliev G, Nunomura A et al. Mitochondrial abnormalities in Alzheimer’s disease. J. Neurosci.21, 3017–3023 (2001).
  • Castellani R, Hirai K, Aliev G et al. Role of mitochondrial dysfunction in Alzheimer’s disease. J. Neurosci. Res.70, 357–360 (2002).
  • Wang X, Su B, Fujioka H et al. Dynamin-like protein 1 reduction underlies mitochondrial morphology and distribution abnormalities in fibroblasts from sporadic Alzheimer‘s disease patients. Am. J. Pathol.173, 470–482 (2008).
  • Wang X, Su B, Siedlak SL et al. Amyloid-β overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc. Natl Acad. Sci. USA105, 19318–19323 (2008).
  • Du H, Guo L, Fang F et al. Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer‘s disease. Nat. Med.14, 1097–1105 (2008).
  • Russell RL, Siedlak SL, Raina AK et al. Increased neuronal glucose-6-phosphate dehydrogenase and sulfhydryl levels indicate reductive compensation to oxidative stress in Alzheimer disease. Arch. Biochem. Biophys.370, 236–239 (1999).
  • Mastrogiacomo F, Bergeron C, Kish SJ. Brain a-ketoglutarate dehydrogenase complex activity in Alzheimer's disease. J. Neurochem.61, 2007–2014 (1993).
  • Moreira PI, Siedlak SL, Wang X et al. Autophagocytosis of mitochondria is prominent in Alzheimer disease. J. Neuropathol. Exp. Neurol.66, 525–532 (2007).
  • Simonian NA, Hyman BT. Functional alterations in Alzheimer’s disease: selective loss of mitochondrial-encoded cytochrome oxidase mRNA in the hippocampal formation. J. Neuropathol. Exp. Neurol.53, 508–512 (1994).
  • Yates CM, Butterworth J, Tennant MC et al. Enzyme activities in relation to pH and lactate in postmortem brain in Alzheimer-type and other dementias. J. Neurochem.55, 1624–1630 (1990).
  • Sayre LM, Perry G, Harris PL et al.In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer’s disease: a central role for bound transition metals. J. Neurochem.74, 270–279 (2000).
  • Bondy SC, Guo-Ross SX, Truong AT. Promotion of transition metal-induced reactive oxygen species formation by β-amyloid. Brain Res.799, 91–96 (1998).
  • Huang X, Atwood CS, Hartshorn MA et al. The Aβ peptide of Alzheimer's disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry38, 7609–7616 (1999).
  • Nunomura A, Perry G, Pappolla MA et al. RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer’s disease. J. Neurosci.19, 1959–1964 (1999).
  • Ramassamy C, Krzywokowski P, Bastianetto S et al. Apolipoprotein E, oxidative stress and EGb 761 in Alzheimer’s disease brain. In: Ginkgo Biloba Extract (EGb 761) Study: Lesson From Cell Biology. Packer L, Christen Y (Eds). Elsevier, Paris, France, 69–83 (1998).
  • Zhu X, Lee HG, Perry G et al. Alzheimer disease, the two-hit hypothesis: an update. Biochim. Biophys. Acta1772, 494–502 (2007).
  • Zhu X, Raina AK, Perry G et al. Alzheimer’s disease: the two-hit hypothesis. Lancet Neurol.3, 219–226 (2004).
  • Zhu X, Castellani RJ, Takeda A et al. Differential activation of neuronal ERK, JNK/SAPK and p38 in Alzheimer disease: the ‘two hit’ hypothesis. Mech. Ageing Dev.123, 39–46 (2001).
  • Kasa P, Rakonczay Z, Gulya K. The cholinergic system in Alzheimer’s disease. Prog. Neurobiol.52, 511–535 (1997).
  • Sims NR, Bowen DM, Allen SJ et al. Presynaptic cholinergic dysfunction in patients with dementia. J. Neurochem.40, 503–509 (1983).
  • DeKosky ST, Harbaugh RE, Schmitt FA et al. Cortical biopsy in Alzheimer‘s disease: diagnostic accuracy and neurochemical, neuropathological, and cognitive correlations. Intraventricular Bethanecol Study Group. Ann. Neurol.32, 625–632 (1992).
  • Whitehouse PJ. Cholinergic therapy in dementia. Acta Neurol. Scand. Suppl.149, 42–45 (1993).
  • Giacobini E. Cholinesterase inhibitors stabilize Alzheimer’s disease. Ann. NY Acad. Sci.920, 321–327 (2000).
  • Giacobini E. Do cholinesterase inhibitors have disease-modifying effects in Alzheimer’s disease? CNS Drugs15, 85–91 (2001).
  • Giacobini E. Long-term stabilizing effect of cholinesterase inhibitors in the therapy of Alzheimer’ disease. J. Neural. Transm. Suppl.62, 181–187 (2002).
  • Parsons CG, Gruner R, Rozental J et al. Patch clamp studies on the kinetics and selectivity of N-methyl-D-aspartate receptor antagonism by memantine (1-amino-3,5-dimethyladamantan). Neuropharmacology32, 1337–1350 (1993).
  • Misztal M, Frankiewicz T, Parsons CG et al. Learning deficits induced by chronic intraventricular infusion of quinolinic acid – protection by MK-801 and memantine. Eur. J. Pharmacol.296, 1–8 (1996).
  • Wenk GL, Danysz W, Roice DD. Theeffects of mitochondrial failure upon cholinergic toxicity in the nucleus basalis. Neuroreport7, 1453–1456 (1996).
  • Zajaczkowski W, Quack G, Danysz W. Infusion of (+) -MK-801 and memantine – contrasting effects on radial maze learning in rats with entorhinal cortex lesion. Eur. J. Pharmacol.296, 239–246 (1996).
  • Bruce AJ, Boling W, Kindy MS et al. Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nat. Med.2, 788–794 (1996).
  • Melov S, Ravenscroft J, Malik S et al. Extension of life-span with superoxide dismutase/catalase mimetics. Science289, 1567–1569 (2000).
  • Adams JD, Jr., Klaidman LK, Odunze IN et al. Alzheimer’s and Parkinson’s disease. Brain levels of glutathione, glutathione disulfide, and vitamin E. Mol. Chem. Neuropathol.14, 213–226 (1991).
  • Jenner P. Oxidative damage in neurodegenerative disease. Lancet344, 796–798 (1994).
  • Lohr JB, Browning JA. Free radical involvement in neuropsychiatric illnesses. Psychopharmacol. Bull.31, 159–165 (1995).
  • Sung S, Yao Y, Uryu K et al. Early vitamin E supplementation in young but not aged mice reduces Aβ levels and amyloid deposition in a transgenic model of Alzheimer's disease. FASEB J.18, 323–325 (2004).
  • Sano M, Ernesto C, Thomas RG et al. A controlled trial of selegiline, α-tocopherol, or both as treatment for Alzheimer's disease. The Alzheimer's Disease Cooperative Study. N. Engl. J. Med.336, 1216–1222 (1997).
  • Morris MC, Evans DA, Bienias JL et al. Dietary intake of antioxidant nutrients and the risk of incident Alzheimer disease in a biracial community study. JAMA287, 3230–3237 (2002).
  • Engelhart MJ, Geerlings MI, Ruitenberg A et al. Dietary intake of antioxidants and risk of Alzheimer disease. JAMA287, 3223–3229 (2002).
  • Gray SL, Anderson ML, Crane PK et al. Antioxidant vitamin supplement use and risk of dementia or Alzheimer’s disease in older adults. J. Am. Geriatr. Soc.56(2), 291–295 (2008).
  • Isaac MG, Quinn R, Tabet N. Vitamin for Alzheimer’s disease and mild cognitive impairment. Cochrane Database Syst. Rev.16(3), CD002854 (2008).
  • Petersen RC, Thomas RG, Grundman M et al. Vitamin E and donepezil for the treatment of mild cognitive impairment. N. Engl. J. Med.352(23), 2379–2388 (2005).
  • DeKosky ST, Williamson JD, Fitzpatrick AL et al. Ginkgo biloba for prevention of dementia: a randomized controlled trial. JAMA300(19), 2253–2262 (2008).
  • Reddy PH. Mitochondrial oxidative damage in aging and Alzheimer’s disease: implications for mitochondrially targeted antioxidant therapeutics. J. Biomed. Biotechnol.2006(3), 31372 (2006).
  • Sheu SS, Nauduri D, Anders MW. Targeting antioxidants to mitochondria: a new therapeutic direction. Biochim. Biophys. Acta.1762, 256–265 (2006).
  • Murphy MP, Smith RA. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu. Rev. Pharmacol. Toxicol.47, 629–656 (2007).
  • Cochemé HM, Kelso GF, James AM et al. Mitochondrial targeting of quinines: therapeutic implications. MitochondrionS94–S102 (2007).
  • James AM, Cochemé HM, Smith RA et al. Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools. J. Biol. Chem.280, 21295–21312 (2005).
  • Salvemini D, Wang ZQ, Zweier JL et al. A nonpeptidyl mimic of superoxide dismutase with therapeutic activity in rats. Science286, 304–306 (1999).
  • Filipovska A, Kelso GF, Brown SE et al. Synthesis and characterization of a triphenylphosphonium-conjugated peroxidase mimetic: insights into the interaction of ebselen with mitochondria. J. Biol. Chem.280, 23113–23126 (2005).
  • Murphy MP, Echtay KS, Blaikie FH et al. Superoxide activates uncoupling proteins by generating carbon-centered radicals and initiating lipid peroxidation: studies using a mitochondria-targeted spin trap derived from α-phenyl-N-tert-butylnitrone. J. Biol. Chem.278(49), 48534–48545 (2003).
  • Zhao K, Zhao GM, Wu D et al. Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J. Biol. Chem.279(33), 34682–34690 (2004).
  • Massaad CA, Washington TM, Pautler RG et al. Overexpression of SOD-2 reduces hippocampal superoxide and prevents memory deficits in a mouse model of Alzheimer’s disease. Proc. Natl Acad. Sci. USA106, 13576–13581 (2009).
  • Hayashi T, Shishido N, Nakayama K et al. Lipid peroxidation and 4-hydroxy-2-nonenal formation by copper ion bound to amyloid-β peptide. Free Radic. Biol. Med.43, 1552–1559 (2007).
  • Nakamura M, Shishido N, Nunomura A et al. Three histidine residues of amyloid-β peptide control the redox activity of copper and iron. Biochemistry46, 12737–12743 (2007).
  • Cherny RA, Atwood CS, Xilinas ME et al. Treatment with a copper-zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer's disease transgenic mice. Neuron30, 665–676 (2001).
  • Crapper McLachlan DR, Dalton AJ, Kruck TP et al. Intramuscular desferrioxamine in patients with Alzheimer’s disease. Lancet337, 1304–1308 (1991).
  • McLachlan DR, Smith WL, Kruck TPA. Desferrioxamine and Alzheimer’s disease: video home behavior assessment of clinical course and measures of brain aluminum. Ther. Drug Monit.15, 602–607 (1993).
  • Liu G, Men P, Harris PL et al. Nanoparticle iron chelators: a new therapeutic approach in Alzheimer disease and other neurologic disorders associated with trace metal imbalance. Neurosci. Lett.406, 189–193 (2006).
  • Liu G, Men P, Perry G, Smith MA. Nanoparticle and iron chelators as a potential novel Alzheimer therapy. Methods Mol. Biol.610, 123–144 (2010).
  • Doody RS, Gavrilova SI, Sano M et al. Effect of Dimebon on cognition, activities of daily living, behaviour, and global function in patients with mild-to-moderate Alzheimer’s disease: a randomised, double-blind, placebo-controlled study. Lancet372, 207–215 (2008).
  • Grigorev VV, Dranyi OA, Bachurin SO. Comparative study of action mechanisms of dimebon and memantin on AMPA-and NMDA-subtypes glutamate receptors in rat cerebral neurons. Bull. Exp. Biol. Med.136(5), 474–477 (2003).
  • Lermontova NN, Redkozubov AE, Shevtsova EF et al. Dimebon and tacrine inhibit neurotoxic action of β-amyloid in culture and block L-type Ca(2+) channels. Bull. Exp. Biol. Med.132(5), 1079–1083 (2001).
  • Bachurin SO, Shevtsova EP, Kireeva EG et al. Mitochondria as a target for neurotoxins and neuroprotective agents. Ann. NY Acad. Sci.993, 334–344 (2003).
  • Nunomura A, Perry G, Aliev G et al. Oxidative damage is the earliest event in Alzheimer disease. J. Neuropathol. Exp. Neurol.60, 759–767 (2001).
  • Chan A, Paskavitz J, Remington R et al. Efficacy of a vitamin/nutriceutical formulation for early-stage Alzheimer’s disease: a 1-year, open-label pilot study with an 16 month caregiver extension. Am. J. Alzheimers Dis. Other Demen.23(6), 571–585 (2009).
  • Risner ME, Saunders AM, Altman JF et al. Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer’s disease. Pharmacogenomics J.6, 246–254 (2006).
  • Iadecola C, Goldman SS, Harder DR et al. Recommendations of the National Heart, Lung, and Blood Institute working group on cerebrovascular biology and disease. Stroke37, 1578–1581 (2006).
  • Touyz RM, Schiffrin EL. Reactive oxygen species in vascular biology: implications in hypertension. Histochem. Cell Biol.,122, 339–352 (2004).
  • Vasdev S, Gill V, Singal P. Role of advanced glycation end products in hypertension and atherosclerosis: therapeutic implications. Cell Biochem. Biophys.49, 48–63 (2007).
  • Vaziri ND, Wang XQ, Oveisi F et al. Induction of oxidative stress by glutathione depletion causes severe hypertension in normal rats. Hypertension36, 142–146 (2000).
  • Vaziri ND, Rodriguez-Iturbe B. Mechanisms of disease: oxidative stress and inflammation in the pathogenesis of hypertension. Nat. Clin. Pract. Nephrol.2, 582–593 (2006).
  • Touyz RM. Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: what is the clinical significance? Hypertension44, 248–252 (2004).
  • Casserly I, Topol E. Convergence of atherosclerosis and Alzheimer’s disease: inflammation, cholesterol, and misfolded proteins. Lancet363, 1139–1146 (2004).
  • Hasnain BI, Mooradian AD. Recent trials of antioxidant therapy: what should we be telling our patients? Cleve. Clin. J. Med.71, 327–334 (2004).
  • Tribble DL. AHA Science Advisory. Antioxidant consumption and risk of coronary heart disease: emphasison vitamin C, vitamin E, and β-carotene: a statement for healthcare professionals from the American Heart Association. Circulation99, 591–595 (1999).
  • Castellani RJ, Lee HG, Zhu X et al. Neuropathology of Alzheimer disease: pathognomonic but not pathogenic. Acta Neuropathol.111, 503–509 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.