471
Views
40
CrossRef citations to date
0
Altmetric
Review

Autophagy in Alzheimer’s disease

, , , , , & show all
Pages 1209-1218 | Published online: 09 Jan 2014

References

  • Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell.6(4), 463–477 (2004).
  • Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature451(7182), 1069–1075 (2008).
  • Massey AC, Kaushik S, Sovak G, Kiffin R, Cuervo AM. Consequences of the selective blockage of chaperone-mediated autophagy. Proc. Natl. Acad. Sci. USA103(15), 5805–5810 (2006).
  • Kaushik S, Massey AC, Mizushima N, Cuervo AM. Constitutive activation of chaperone-mediated autophagy in cells with impaired macroautophagy. Mol. Biol. Cell.19(5), 2179–2192 (2008).
  • Klionsky DJ, Abeliovich H, Agostinis P et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy4(2), 1–25 (2008).
  • Bampton ET, Goemans CG, Niranjan D, Mizushima N, Tolkovsky AM. The dynamics of autophagy visualized in live cells: from autophagosome formation to fusion with endo/lysosomes. Autophagy1(1), 23–36 (2005).
  • Simonsen A, Cumming RC, Brech A, Isakson P, Schubert DR, Finley KD. Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy4(2), 176–184 (2007).
  • Tal R, Winter G, Ecker N, Klionsky DJ, Abeliovich H. Aup1p, a yeast mitochondrial protein phosphatase homolog, is required for efficient stationary phase mitophagy and cell survival. J. Biol. Chem.282(8), 5617–5624 (2007).
  • Tóth ML, Simon P, Kovács AL, Vellai T. Influence of autophagy genes on ion-channel-dependent neuronal degeneration in Caenorhabditis elegans. J. Cell Sci.120(Pt 6), 1134–1141 (2007).
  • Klionsky DJ. Autophagy: from phenomenology to molecular understanging in less than a decade. Nat. Rev. Mol. Cell Biol.8(11), 931–937 (2007).
  • Tsukada M, Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett.33(1–2), 169–174 (1993).
  • Thumm M, Egner R, Koch B et al. Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett.349(2), 275–280 (1994).
  • Xie Z, Klionsky DJ. Autophagosome formation: core machinery and adaptations. Nat. Cell Biol.9(10), 1102–1109 (2007).
  • Yue Z, Friedman L, Komatsu M, Tanaka K. The cellular pathways of neuronal autophagy and their implication in neurodegenerative diseases. Biochim. Biophys. Acta1793(9), 1496–1507 (2009).
  • Pattingre S, Espert L, Biard-Piechaczyk M, Codogno P. Regulation of autophagy by mTOR and Beclin 1 complexes. Biochimie90(2), 313–323 (2008).
  • Kamada Y, Kamada Y, Funakoshi T et al. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J. Cell Biol.150(6), 1507–1513 (2000).
  • Scott RC, Schuldiner O, Neufeld TP. Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev. Cell7(2), 167–178 (2007).
  • Young AR, Chan EY, Hu XW et al. Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J. Cell Sci.119(Pt 18), 3888–3900 (2006).
  • Chan EY, Kir S, Tooze SA. siRNA screening of the kinome identifies ULK1 as a multi-domain modulator of autophagy. J. Biol. Chem.282(35), 25464–25474 (2007).
  • Todde V, Veenhuis M, van der Klei IJ. Autophagy: principles and significance in health and disease. Biochim. Biophys. Acta1792(1), 3–13 (2009).
  • Itakura E, Kishi C, Inoue K, Mizushima N. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol. Biol. Cell.19(12), 5360–5372 (2008).
  • Zhong Y, Wang QJ, Li X et al. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat. Cell Biol.11(4), 468–476 (2009).
  • Kundu M, Thompson CB. Autophagy: basic principles and relevance to disease. Annu. Rev. Pathol.3, 427–455 (2008).
  • Tanida I, Mizushima N, Kiyooka M et al. Apg7p/Cvt2p: a novel protein-activating enzyme essential for autophagy. Mol. Biol. Cell10(5), 1367–1379 (1999).
  • Shintani T, Mizushima N, Ogawa Y, Matsuura A, Noda T, Ohsumi Y. Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast. EMBO J.18(19), 5234–5241 (1999).
  • Mizushima N, Noda T, Yoshimori T et al. A protein conjugation system essential for autophagy. Nature395(6700), 395–398 (1998).
  • Mizushima N, Noda T, Ohsumi Y. Apg16p is required for the function of the Apg12p–Apg5p conjugate in the yeast autophagy pathway. EMBO J.18(14), 3888–3896 (1999).
  • Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, Yoshimori T. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J. Cell Sci.117(Pt 13), 2805–2812 (2004).
  • Kabeya Y, Mizushima N, Ueno T et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J.19(21), 5720–5728 (2000).
  • Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y. In vivo analysis of nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell15(3), 1101–1111 (2004).
  • Fujita N, Itoh T, Fukuda M, Noda T, Yoshimori T. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol. Biol. Cell19(5), 2092–2100 (2008).
  • Mizushima N, Yamamoto A, Hatano M et al. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J. Cell Biol.152(4), 657–668 (2001).
  • Mizushima N, Kuma A, Kobayashi Y et al. Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12–Apg5 conjugate. J. Cell Sci.116(Pt 9), 1679–1688 (2003).
  • Geng J, Baba M, Nair U, Klionsky DJ. Quantitative analysis of autophagy-related protein stoichiometry by fluorescence microscopy. J. Cell Biol.182(1), 129–140 (2008).
  • Huang W-P, Scott SV, Kim J, Klionsky DJ. The itinerary of a vesicle component, Aut7p/Cvt5p, terminates in the yeast vacuole via the autophagy/Cvt pathways. J. Biol. Chem.275(8), 5845–5851 (2000).
  • Kirisako T, Baba M, Ishihara N et al. Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J. Cell Biol.147(2), 435–446 (1999).
  • Pankiv S, Clausen TH, Lamark T et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem.282(33), 24131–24145 (2007).
  • Nishida Y, Arakawa S, Fujitani K et al. Discovery of Atg5/Atg7-independent alternative autophagy. Nature461(7264), 654–658 (2009).
  • Jager S, Bucci C, Tanida I et al. Role for Rab7 in maturation of late autophagic vacuoles. J. Cell Sci.117(Pt 20), 4837–4848 (2004).
  • Eskelinen E-L. Maturation of autophagic vacuoles in mammalian cells. Autophagy1(1), 1–10 (2005).
  • Young JE, Martinez RA, La Spada AR. Nutrient deprivation induces neuronal autophagy and implicates reduced insulin signaling in neuroprotective autophagy activation. J. Biol. Chem.284(4), 2363–2373 (2009).
  • Nixon RA, Wegiel J, Kumar A et al. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J. Neuropathol. Exp. Neurol.64(2), 113–122 (2005).
  • Boland B, Nixon RA. Neuronal macroautophagy: from development to degeneration. Mol. Aspects Med.27(5–6), 503–519 (2006).
  • Cota D, Proulx K, Smith KA et al. Hypothalamic mTOR signaling regulates food intake. Science312(5775), 927–930 (2006).
  • Mizushima N, Kuma A. Autophagosomes in GFP-LC3 transgenic mice. Methods Mol. Biol.445, 119–124 (2008).
  • Hara T, Nakamura K, Matsui M et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature441(7095), 885–889 (2006).
  • Komatsu M, Waguri S, Chiba T et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature441(7095), 880–884 (2006).
  • Komatsu M, Wang QJ, Holstein GR et al. Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration.Proc. Natl. Acad. Sci. USA104(36), 14489–14494 (2007).
  • Nunomura A, Perry G, Aliev G et al. Oxidative damage is the earliest event in Alzheimer disease. J. Neuropathol. Exp. Neurol.60(8), 759–767 (2001).
  • Hirai K, Aliev G, Nunomura A et al. Mitochondrial abnormalities in Alzheimer’s disease. J. Neurosci.21(9), 3017–3023 (2001).
  • Moreira PI, Duarte AI, Santos MS, Rego AC, Oliveira CR. An integrative view of the role of oxidative stress, mitochondria and insulin in Alzheimer’s disease. J. Alzheimers Dis.16(4), 741–761 (2009).
  • Moreira PI, Zhu X, Wang X et al. Mitochondria: a therapeutic target in neurodegeneration. Biochim. Biophys. Acta1802(1), 212–220 (2010).
  • Ohta K, Mizuno A, Ueda M et al. Autophagy impairment stimulates PS1 expression and γ-secretase activity. Autophagy6(3), 345–352 (2010).
  • Hung SY, Huang WP, Liou HC, Fu WM. Autophagy protects neuron from Aβ-induced cytotoxicity. Autophagy5(4), 502–510 (2009).
  • Cheung YT, Zhang NQ, Hung CH. Temporal relationship of autophagy and apoptosis in neurons challenged by low molecular weight β-amyloid peptide. J. Cell Mol. Med. DOI: 10.1111/j.1582-4934.2009.00990.x (2009) (Epub ahead of print).
  • Ling D, Song HJ, Garza D, Neufeld TP, Salvaterra PM. Aβ42-induced neurodegeneration via an age-dependent autophagic-lysosomal injury in Drosophila. PLoS One4(1), e4201 (2009).
  • Hamano T, Gendron TF, Causevic E et al. Autophagic-lysosomal perturbation enhances tau aggregation in transfectants with induced wild-type tau expression. Eur. J. Neurosci.27(5), 1119–1130 (2008).
  • Yu WH, Kumar A, Peterhoff C et al. Autophagic vacuoles are enriched in amyloid precursor protein-secretase activities: implications for β-amyloid peptide over-production and localization in Alzheimer’s disease. Int. J. Biochem. Cell Biol.36(12), 2531–2540 (2004).
  • Yu WH, Cuervo AM, Kumar A et al. Macroautophagy-A novel β-amyloid peptide-generating pathway activated in Alzheimer’s disease. J. Cell Biol.171(1), 87–98 (2005).
  • Cataldo AM, Barnett JL, Berman SA et al. Gene expression and cellular content of cathepsin D in Alzheimer’s disease brain: evidence for early upregulation of the endosomal-lysosomal system. Neuron14(3), 671–680 (1995).
  • Cataldo AM, Barnett JL, Pieroni C, Nixon RA. Increased neuronal endocytosis and protease delivery to early endosomes in sporadic Alzheimer’s disease: neuropathologic evidence for a mechanism of increased β amyloidogenesis. J. Neurosci.17(16), 6142–6151 (1997).
  • Cataldo AM, Peterhoff CM, Troncoso JC, Gomez-Isla T, Hyman BT, Nixon RA. Endocytic pathway abnormalities precede amyloid β deposition in sporadic Alzheimer’s disease and Down syndrome: differential effects of APOE genotype and presenilin mutations. Am. J. Pathol.157(1), 277–286 (2000).
  • Mathews PM, Guerra CB, Jiang Y et al. Alzheimer’s disease-related overexpression of the cation-dependent mannose 6-phosphate receptor increases Aβ secretion: role for altered lysosomal hydrolase distribution in β-amyloidogenesis. J. Biol. Chem.277(7), 5299–5307 (2002).
  • Koo EH, Squazzo SL. Evidence that production and release of amyloid β-protein involves the endocytic pathway. J. Biol. Chem.269(26), 17386–17389 (1994).
  • Suzuki K, Terry RD. Fine structural localization of acid phosphatase in senile plaques in Alzheimer’s presenile dementia. Acta Neuropathol.8(3), 276–284 (1967).
  • Masliah EM, Mallory T, Deerinck T et al. Re-evaluation of the structural organization of the neuritic plaques in Alzheimer’s disease. J. Neuropathol. Exp. Neurol.52(6), 619–632 (1993).
  • Yang DS, Kumar A, Stavrides P et al. Neuronal apoptosis and autophagy cross talk in aging PS/APP mice, a model of Alzheimer’s disease. Am. J. Pathol.173(3), 665–681 (2008).
  • Moreira PI, Siedlak SL, Wang X et al. Autophagocytosis of mitochondria is prominent in Alzheimer disease. J. Neuropathol. Exp. Neurol.66(6), 525–532 (2007).
  • Moreira PI, Siedlak SL, Wang X et al. Increased autophagic degradation of mitochondria in Alzheimer disease. Autophagy3(6), 614–615 (2007).
  • Moreira PI, Carvalho C, Zhu X, Smith MA, Perry G. Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim. Biophys. Acta1802(1), 2–10 (2010).
  • Brunk UT, Jones CB, Sohal RS. A novel hypothesis of lipofuscinogenesis and cellular aging based on interactions between oxidative stress and autophagocytosis. Mutat. Res.275(3–6), 395–403 (1992).
  • Ollinger K, Brunk UT. Cellular injury induced by oxidative stress is mediated through lysosomal damage. Free Radic. Biol. Med.19(5), 565–574 (1995).
  • Ma JF, Huang Y, Chen SD, Halliday G. Immunohistochemical evidence for macroautophagy in neurons and endothelial cells in Alzheimer’s disease. Neuropathol. Appl. Neurobiol. DOI: 10.1111/j.1365-2990.2010.01067.x (2010) (Epub ahead of print).
  • Hayashi S, Sato N, Yamamoto A et al. Alzheimer disease-associated peptide, amyloid β40, inhibits vascular regeneration with induction of endothelial autophagy. Arterioscler. Thromb. Vasc. Biol.29(11), 1909–1915 (2009).
  • Pickford F, Masliah E, Britschgi M et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid β accumulation in mice. J. Clin. Invest.118(6), 2190–2199 (2008).
  • Nixon RA. Autophagy, amyloidogenesis and Alzheimer disease. J. Cell Sci.120(Pt 23), 4081–4091 (2007).
  • Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat. Rev. Mol. Cell Biol.8(9), 741–752 (2007).
  • Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell6(4), 463–477 (2004).
  • Xue L, Fletcher GC, Tolkovsky AM. Autophagy is activated by apoptotic signalling in sympathetic neurons: an alternative mechanism of death execution. Mol. Cell Neurosci.14(3), 180–198 (1999).
  • Florez-McClure ML, Linseman DA, Chu CT et al. The p75 neurotrophin receptor can induce autophagy and death of cerebellar Purkinje neurons. J. Neurosci.24(19), 4498–4509 (2004).
  • Ravikumar B, Vacher C, Berger Z et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet.36(6), 585–595 (2004).
  • Rubinsztein DC, DiFiglia M, Heintz N et al. Autophagy and its possible roles in nervous system diseases, damage and repair. Autophagy1(1), 11–22 (2005).
  • Berger Z, Ravikumar B, Menzies FM et al. Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum. Mol. Genet.15(3), 433–442 (2006).
  • Caccamo A, Majumder S, Richardson A, Strong R, Oddo S. Molecular interplay between mTOR, Aβ and tau: effects on cognitive impairments. J. Biol. Chem.285(17), 13107–13120 (2010).
  • Sarbassov DD, Ali SM, Sabatini DM. Growing roles for the mTOR pathway. Curr. Opin. Cell Biol.17(6), 596–603 (2005).
  • Swiech L, Perycz M, Malik A, Jaworski J. Role of mTOR in physiology and pathology of the nervous system. Biochim. Biophys. Acta1784(1), 116–132 (2008).
  • Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and α-synuclein. J. Biol. Chem.282(8), 5641–5652 (2007).
  • Williams A, Sarkar S, Cuddon P et al. Novel targets for Huntington’s disease in an mTOR-independent autophagy pathway. Nat. Chem. Biol.4(5), 295–305 (2008).
  • Sarkar S, Perlstein EO, Imarisio S et al. Small molecules enhance autophagy and reduce toxicity in Huntington’s disease models. Nat. Chem. Biol.3(6), 331–338 (2007).
  • Sarkar S, Floto RA, Berger Z et al. Lithium induces autophagy by inhibiting inositol monophosphatase. J. Cell Biol.170(7), 1101–1111 (2005).
  • Sarkar S, Krishna G, Imarisio S, Saiki S, O’Kane CJ, Rubinsztein DC. A rational mechanism for combination treatment of Huntington’s disease using lithium and rapamycin. Hum. Mol. Genet.17(2), 170–178 (2008).
  • Fornai F, Longone P, Cafaro L et al. Lithium delays progression of amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. USA105(6), 2052–2057 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.