190
Views
30
CrossRef citations to date
0
Altmetric
Theme: Parkinson's Disease - Review

Cell-based therapies for Parkinson’s disease

&
Pages 831-844 | Published online: 09 Jan 2014

References

  • Parkinson J. An essay on the shaking palsy. J. Neuropsychiatry Clin. Neurosci.14(2), 223–236 (2002).
  • Owen AM. Cognitive dysfunction in Parkinson’s disease: the role of frontostriatal circuitry. Neuroscientist10(6), 525–537 (2004).
  • Kulisevsky J, Pagonabarraga J, Pascual-Sedano B, García-Sánchez C, Gironell A. Prevalence and correlates of neuropsychiatric symptoms in Parkinson’s disease without dementia. Mov. Disord.23(13), 1889–1896 (2008).
  • Lees AJ, Selikhova M, Andrade LA, Duyckaerts C. The black stuff and Konstantin Nikolaevich Tretiakoff. Mov. Disord.23(6), 777–783 (2008).
  • Hornykiewicz O. The discovery of dopamine deficiency in the Parkinsonian brain. In: Parkinson’s Disease and Related Disorders. Riederer P, Reichmann H, Youdim MBH, Gerlach M (Eds). Springer, Vienna, Austria, 9–15 (2006).
  • Carlsson A, Lindqvist M, Magnusson TOR. 3,4-dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature180(4596), 1200 (1957).
  • Rosegay H. An experimental investigation of the connections between the corpus striatum and substantia nigra in the cat. J. Comp. Neurol.80(3), 293–321 (1944).
  • Andén NE, Carlsson A, Dahlström A, Fuxe K, Hillarp NÅ, Larsson K. Demonstration and mapping out of nigro-neostriatal dopamine neurons. Life Sci.3(6), 523–530 (1964).
  • Andén NE, Dahlström A, Fuxe K, Larsson K. Further evidence for the presence of nigro-neostriatal dopamine neurons in the rat. Am. J. Anat.116(1), 329–333 (1965).
  • Lim SY, Lang AE. The nonmotor symptoms of Parkinson’s disease – an overview. Mov. Disord.25(S1), S123–S130 (2010).
  • Lauder JM, Bloom FE. Ontogeny of monoamine neurons in the locus coeruleus, raphe nuclei and substantia nigra of the rat. J. Comp. Neurol.163(3), 251–264 (1975).
  • Specht LA, Pickel VM, Joh TH, Reis DJ. Light-microscopic immunocytochemical localization of tyrosine hydroxylase in prenatal rat brain. II. Late ontogeny. J. Comp. Neurol.199(2), 255–276 (1981).
  • Perlow MJ, Freed WJ, Hoffer BJ, Seiger A, Olson L, Wyatt RJ. Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science204(4393), 643–647 (1979).
  • Björklund A, Stenevi U. Reconstruction of the nigrostriatal dopamine pathway by intracerebral nigral transplants. Brain Res.177(3), 555–560 (1979).
  • Björklund A, Schmidt RH, Stenevi U. Functional reinnervation of the neostriatum in the adult rat by use of intraparenchymal grafting of dissociated cell suspensions from the substantia nigra. Cell Tissue Res.212(1), 39–45 (1980).
  • Madrazo I, Leon V, Torres C et al. Transplantation of fetal substantia nigra and adrenal medulla to the caudate nucleus in two patients with Parkinson’s disease. N. Engl. J. Med.318(1), 51 (1988).
  • Lindvall O, Rehncrona S, Brundin P et al. Human fetal dopamine neurons grafted into the striatum in two patients with severe Parkinson’s disease: a detailed account of methodology and a 6-month follow-up. Arch. Neurol.46(6), 615–631 (1989).
  • Lindvall O, Gustavii B, Åstedt B et al. Fetal dopamine-rich mesencephalic grafts in Parkinson’s disease. Lancet332(8626–8627), 1483–1484 (1988).
  • Lindvall O, Brundin P, Widner H et al. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science247(4942), 574–577 (1990).
  • Lindvall O, Sawle G, Widner H et al. Evidence for long-term survival and function of dopaminergic grafts in progressive Parkinson’s disease. Ann. Neurol.35(2), 172–180 (1994).
  • Piccini P, Pavese N, Hagell P et al. Factors affecting the clinical outcome after neural transplantation in Parkinson’s disease. Brain128(12), 2977–2986 (2005).
  • Freed CR, Greene PE, Breeze RE et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N. Engl. J. Med.344(10), 710–719 (2001).
  • Olanow CW, Goetz CG, Kordower JH et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann. Neurol.54(3), 403–414 (2003).
  • Ma Y, Tang C, Chaly T et al. Dopamine cell implantation in Parkinson’s disease: long-term clinical and 18F-FDOPA PET outcomes. J. Nucl. Med.51(1), 7–15 (2010).
  • Hagell P, Schrag A, Piccini P et al. Sequential bilateral transplantation in Parkinson’s disease: effects of the second graft. Brain122(6), 1121–1132 (1999).
  • Brundin P, Pogarell O, Hagell P et al. Bilateral caudate and putamen grafts of embryonic mesencephalic tissue treated with lazaroids in Parkinson’s disease. Brain123(7), 1380–1390 (2000).
  • Polgar S, Morris ME, Reilly S, Bilney B, Sanberg PR. Reconstructive neurosurgery for Parkinson’s disease: a systematic review and preliminary meta-analysis. Brain Res. Bull.60(1–2), 1–24 (2003).
  • Graff-Radford J, Foote KD, Rodriguez RL et al. Deep brain stimulation of the internal segment of the globus pallidus in delayed runaway dyskinesia. Arch. Neurol.63(8), 1181–1184 (2006).
  • Herzog J, Pogarell O, Pinsker MO et al. Deep brain stimulation in Parkinson’s disease following fetal nigral transplantation. Mov. Disord.23(9), 1293–1296 (2008).
  • Carlsson T, Carta M, Munoz A et al. Impact of grafted serotonin and dopamine neurons on development of L-dopa-induced dyskinesias in parkinsonian rats is determined by the extent of dopamine neuron degeneration. Brain132(2), 319–335 (2009).
  • Politis M, Wu K, Loane C et al. Serotonergic neurons mediate dyskinesia side effects in Parkinson’s patients with neural transplants. Sci. Transl. Med.2(38), 38ra46 (2010).
  • Barker RA, Kuan W-L. Graft-induced dyskinesias in Parkinson’s disease: what is it all about? Cell Stem Cell7(2), 148–149 (2010).
  • Ma Y, Feigin A, Dhawan V et al. Dyskinesia after fetal cell transplantation for parkinsonism: a PET study. Ann. Neurol.52(5), 628–634 (2002).
  • Maries E, Kordower JH, Chu Y et al. Focal not widespread grafts induce novel dyskinetic behavior in parkinsonian rats. Neurobiol. Dis.21(1), 165–180 (2006).
  • Carlsson T, Winkler C, Lundblad M, Cenci MA, Björklund A, Kirik D. Graft placement and uneven pattern of reinnervation in the striatum is important for development of graft-induced dyskinesia. Neurobiol. Dis.21(3), 657–668 (2006).
  • Wurtman RJ, Pohorecky LA, Baliga BS. Adrenocortical control of the biosynthesis of epinephrine and proteins in the adrenal medulla. Pharmacol. Rev.24(2), 411–426 (1972).
  • Freed WJ, Morihisa JM, Spoor E et al. Transplanted adrenal chromaffin cells in rat brain reduce lesion-induced rotational behaviour. Nature292(5821), 351–352 (1981).
  • Backlund E-O, Granberg P-O, Hamberger B et al. Transplantation of adrenal medullary tissue to striatum in Parkinsonism. J. Neurosurg.62(2), 169–173 (1985).
  • Madrazo I, Drucker-Colín R, Díaz V, Martínez-Mata J, Torres C, Becerril JJ. Open microsurgical autograft of adrenal medulla to the right caudate nucleus in two patients with intractable Parkinson’s disease. N. Engl. J. Med.316(14), 831–834 (1987).
  • Goetz CG, Stebbins GT, Klawans HL et al. United Parkinson Foundation Neurotransplantation Registry on adrenal medullary transplants. Neurology41(11), 1719 (1991).
  • Hurtig H, Joyce J, Sladek JR, Trojanowski JQ. Postmortem analysis of adrenal-medulla-to-caudate autograft in a patient with Parkinson’s disease. Ann. Neurol.25(6), 607–614 (1989).
  • Date I, Asari S, Ohmoto T. Two-year follow-up study of a patient with Parkinson’s disease and severe motor fluctuations treated by co-grafts of adrenal medulla and peripheral nerve into bilateral caudate nuclei: case report. Neurosurgery37(3), 515–519 (1995).
  • Watts RL, Subramanian T, Freeman A et al. Effect of stereotaxic intrastriatal cografts of autologous adrenal medulla and peripheral nerve in Parkinson’s disease: two-year follow-up study. Exp. Neurol.147(2), 510–517 (1997).
  • López-Lozano JJ, Bravo G, Abascal J, Brera B, Millan I. Clinical outcome of cotransplantation of peripheral nerve and adrenal medulla in patients with Parkinson’s disease. J. Neurosurg.90(5), 875–882 (1999).
  • Olson L, Backlund E-O, Ebendal T et al. Intraputaminal infusion of nerve growth factor to support adrenal medullary autografts in Parkinson’s disease: one-year follow-up of first clinical trial. Arch. Neurol.48(4), 373–381 (1991).
  • Weir EK, López-Barneo J, Buckler KJ, Archer SL. Acute oxygen-sensing mechanisms. N. Engl. J. Med.353(19), 2042–2055 (2005).
  • Lopez-Barneo J, Lopez-Lopez J, Urena J, Gonzalez C. Chemotransduction in the carotid body: K+ current modulated by PO2 in type I chemoreceptor cells. Science241(4865), 580–582 (1988).
  • Ureña J, Fernández-Chacón R, Benot AR, Alvarez de Toledo GA, López-Barneo J. Hypoxia induces voltage-dependent Ca2+ entry and quantal dopamine secretion in carotid body glomus cells. Proc. Natl Acad. Sci. USA91(21), 10208–10211 (1994).
  • Nosrat CA, Tomac A, Lindqvist E et al. Cellular expression of GDNF mRNA suggests multiple functions inside and outside the nervous system. Cell Tissue Res.286(2), 191–207 (1996).
  • Villadiego J, Mendez-Ferrer S, Valdes-Sanchez T et al. Selective glial cell line-derived neurotrophic factor production in adult dopaminergic carotid body cells in situ and after intrastriatal transplantation. J. Neurosci.25(16), 4091–4098 (2005).
  • Lin L, Doherty D, Lile J, Bektesh S, Collins F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science260(5111), 1130–1132 (1993).
  • Sinclair SR, Svendsen CN, Torres EM, Martin D, Fawcett JW, Dunnett SB. GDNF enhances dopaminergic cell survival and fibre outgrowth in embryonic nigral grafts. NeuroReport7(15–17), 2547–2552 (1996).
  • Pardal R, Ortega-Sáenz P, Durán R, López-Barneo J. Glia-like stem cells sustain physiologic neurogenesis in the adult mammalian carotid body. Cell131(2), 364–377 (2007).
  • Espejo EF, Montoro RJ, Armengol JA, López-Barneo J. Cellular and functional recovery of Parkinsonian rats after intrastriatal transplantation of carotid body cell aggregates. Neuron20(2), 197–206 (1998).
  • Toledo-Aral JJ, Mendez-Ferrer S, Pardal R, Echevarria M, Lopez-Barneo J. Trophic restoration of the nigrostriatal dopaminergic pathway in long-term carotid body-grafted Parkinsonian rats. J. Neurosci.23(1), 141–148 (2003).
  • Luquin MR, Montoro RJ, Guillén J et al. Recovery of chronic Parkinsonian monkeys by autotransplants of carotid body cell aggregates into putamen. Neuron22(4), 743–750 (1999).
  • Mínguez-Castellanos A, Escamilla-Sevilla F, Hotton GR et al. Carotid body autotransplantation in Parkinson disease: a clinical and positron emission tomography study. J. Neurol. Neurosurg. Psychiatry78(8), 825–831 (2007).
  • Galpern WR, Burns LH, Deacon TW, Dinsmore J, Isacson O. Xenotransplantation of porcine fetal ventral mesencephalon in a rat model of parkinson’s disease: functional recovery and graft morphology. Exp. Neurol.140(1), 1–13 (1996).
  • Barker RA, Ratcliffe E, McLaughlin M, Richards A, Dunnett SB. A role for complement in the rejection of porcine ventral mesencephalic xenografts in a rat model of Parkinson’s disease. J. Neurosci.20(9), 3415–3424 (2000).
  • Isacson O, Deacon TW, Pakzaban P, Galpern WR, Dinsmore J, Burns LH. Transplanted xenogeneic neural cells in neurodegenerative disease models exhibit remarkable axonal target specificity and distinct growth patterns of glial and axonal fibres. Nat. Med.1(11), 1189–1194 (1995).
  • Kuan W-L, Hurelbrink CB, Barker RA. Increased capacity for axonal outgrowth using xenogenic tissue in vitro and in a rodent model of Parkinson’s disease. Xenotransplantation13(3), 233–247 (2006).
  • Sumitran S, Liu J, Czech KA, Christensson B, Widner H, Holgersson J. Human natural antibodies cytotoxic to pig embryonic brain cells recognize novel non-Galα1,3Gal-based xenoantigens. Exp. Neurol.159(2), 347–361 (1999).
  • Harrower TP, Richards A, Cruz G, Copeman L, Dunnett SB, Barker RA. α Gal is widely expressed in embryonic porcine stem cells and neural tissue. NeuroReport13(4), 481–485 (2002).
  • Phelps CJ, Koike C, Vaught TD et al. Production of α1,3-galactosyltransferase-deficient pigs. Science299(5605), 411–414 (2003).
  • Patience C, Takeuchi Y, Weiss RA. Infection of human cells by an endogenous retrovirus of pigs. Nat. Med.3(3), 282–286 (1997).
  • Björklund A, Dunnett SB, Brundin P et al. Neural transplantation for the treatment of Parkinson’s disease. Lancet Neurol.2(7), 437–445 (2003).
  • Schumacher JM, Ellias SA, Palmer EP et al. Transplantation of embryonic porcine mesencephalic tissue in patients with PD. Neurology54(5), 1042–1050 (2000).
  • Deacon T, Schumacher J, Dinsmore J et al. Histological evidence of fetal pig neural cell survival after transplantation into a patient with Parkinson’s disease. Nat. Med.3(3), 350–353 (1997).
  • Altman J, Bayer SA. Development of the brain stem in the rat. V. Thymidine-radiographic study of the time of origin of neurons in the midbrain tegmentum. J. Comp. Neurol.198(4), 677–716 (1981).
  • Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science255(5052), 1707–1710 (1992).
  • Svendsen CN, Caldwell MA, Shen J et al. Long-term survival of human central nervous system progenitor cells transplanted into a rat model of Parkinson’s disease. Exp. Neurol.148(1), 135–146 (1997).
  • Studer L, Tabar V, McKay R. Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nat. Neurosci.1(4), 290–295 (1998).
  • Yan J, Studer L, McKay RDG. Ascorbic acid increases the yield of dopaminergic neurons derived from basic fibroblast growth factor expanded mesencephalic precursors. J. Neurochem.76(1), 307–311 (2001).
  • Sánchez-Pernaute R, Studer L, Bankiewicz KS, Major EO, McKay RD. In vitro generation and transplantation of precursor-derived human dopamine neurons. J. Neurosci. Res.65(4), 284–288 (2001).
  • Prakash N, Wurst W. Development of dopaminergic neurons in the mammalian brain. Cell. Mol. Life Sci.63(2), 187–206 (2006).
  • Smidt MP, Burbach JPH. How to make a mesodiencephalic dopaminergic neuron. Nat. Rev. Neurosci.8(1), 21–32 (2007).
  • Hynes M, Poulsen K, Tessier-Lavigne M, Rosenthal A. Control of neuronal diversity by the floor plate: contact-mediated induction of midbrain dopaminergic neurons. Cell80(1), 95–101 (1995).
  • Wang MZ, Jin P, Bumcrot DA, Marigo V et al. Induction of dopaminergic neuron phenotype in the midbrain by Sonic hedgehog protein. Nat. Med.1(11), 1184–1188 (1995).
  • Ye W, Shimamura K, Rubenstein JLR, Hynes MA, Rosenthal A. FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell93(5), 755–766 (1998).
  • Meyers EN, Lewandoski M, Martin GR. An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nat Genet.18(2), 136–141 (1998).
  • Smidt MP, van Schaick HSA, Lancôt C et al. A homeodomain gene Ptx3 has highly restricted brain expression in mesencephalic dopaminergic neurons. Proc. Natl Acad. Sci. USA94(24), 13305–13310 (1997).
  • Zetterström RH, Solomin L, Jansson L, Hoffer BJ, Olson L, Perlmann T. Dopamine neuron agenesis in Nurr1-deficient mice. Science276(5310), 248–250 (1997).
  • Saucedo-Cardenas O, Quintana-Hau JD, Le W-D et al. Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc. Natl Acad. Sci. USA95(7), 4013–4018 (1998).
  • O’Keeffe FE, Scott SA, Tyers P et al. Induction of A9 dopaminergic neurons from neural stem cells improves motor function in an animal model of Parkinson’s disease. Brain131(3), 630–641 (2008).
  • Parish CL, Castelo-Branco G, Rawal N et al. Wnt5a-treated midbrain neural stem cells improve dopamine cell replacement therapy in parkinsonian mice. J. Clin. Invest.118(1), 149–160 (2008).
  • Andersson EKI, Irvin DK, Ahlsiö J, Parmar M. Ngn2 and Nurr1 act in synergy to induce midbrain dopaminergic neurons from expanded neural stem and progenitor cells. Exp. Cell Res.313(6), 1172–1180 (2007).
  • Studer L, Csete M, Lee S-H et al. Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. J. Neurosci.20(19), 7377–7383 (2000).
  • Krabbe C, Courtois E, Jensen P et al. Enhanced dopaminergic differentiation of human neural stem cells by synergistic effect of Bcl-xL and reduced oxygen tension. J. Neurochem.110(6), 1908–1920 (2009).
  • Ling ZD, Potter ED, Lipton JW, Carvey PM. Differentiation of mesencephalic progenitor cells into dopaminergic neurons by cytokines. Exp.Neurol.149(2), 411–423 (1998).
  • Potter ED, Ling ZD, Carvey PM. Cytokine-induced conversion of mesencephalic-derived progenitor cells into dopamine neurons. Cell Tissue Res.296(2), 235–246 (1999).
  • Carvey PM, Ling ZD, Sortwell CE et al. A clonal line of mesencephalic progenitor cells converted to dopamine neurons by hematopoietic cytokines: a source of cells for transplantation in Parkinson’s disease. Exp. Neurol.171(1), 98–108 (2001).
  • Courtois ET, Castillo CG, Seiz EG et al. In vitro and in vivo enhanced generation of human A9 dopamine neurons from neural stem cells by Bcl-xL. J. Biol. Chem.285(13), 9881–9897 (2010).
  • Young A, Assey KS, Sturkie CD, West FD, Machacek DW, Stice SL. Glial cell line-derived neurotrophic factor enhances in vitro differentiation of mid-/hindbrain neural progenitor cells to dopaminergic-like neurons. J. Neurosci. Res.88(15), 3222–3232 (2010).
  • Rößler R, Boddeke E, Copray S. Differentiation of non-mesencephalic neural stem cells towards dopaminergic neurons. Neuroscience170(2), 417–428 (2010).
  • Donaldson AE, Marshall CE, Yang M, Suon S, Iacovitti L. Purified mouse dopamine neurons thrive and function after transplantation into brain but require novel glial factors for survival in culture. Mol. Cell. Neurosci.30(1), 108–117 (2005).
  • Hedlund E, Pruszak J, Lardaro T et al. Embryonic stem cell-derived Pitx3-enhanced green fluorescent protein midbrain dopamine neurons survive enrichment by fluorescence-activated cell sorting and function in an animal model of Parkinson’s disease. Stem Cells26(6), 1526–1536 (2008).
  • Jain M, Armstrong RJE, Tyers P, Barker RA, Rosser AE. GABAergic immunoreactivity is predominant in neurons derived from expanded human neural precursor cells in vitro. Exp. Neurol.182(1), 113–123 (2003).
  • Chung S, Shin BS, Hwang M et al. Neural precursors derived from embryonic stem cells, but not those from fetal ventral mesencephalon, maintain the potential to differentiate into dopaminergic neurons after expansion in vitro. Stem Cells24(6), 1583–1593 (2006).
  • Jensen P, Pedersen EG, Zimmer J, Widmer HR, Meyer M. Functional effect of FGF2- and FGF8-expanded ventral mesencephalic precursor cells in a rat model of Parkinson’s disease. Brain Res.1218, 13–20 (2008).
  • Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature292(5819), 154–156 (1981).
  • Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl Acad. Sci. USA78(12), 7634–7638 (1981).
  • Thomson JA, Kalishman J, Golos TG et al. Isolation of a primate embryonic stem cell line. Proc. Natl Acad. Sci. USA92(17), 7844–7848 (1995).
  • Thomson JA, Itskovitz-Eldor J, Shapiro SS et al. Embryonic stem cell lines derived from human blastocysts. Science282(5391), 1145–1147 (1998).
  • Park S, Lee KS, Lee YJ et al. Generation of dopaminergic neurons in vitro from human embryonic stem cells treated with neurotrophic factors. Neurosci. Lett.359(1–2), 99–103 (2004).
  • Perrier AL, Tabar V, Barberi T et al. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc. Natl Acad. Sci. USA101(34), 12543–12548 (2004).
  • Lee S-H, Lumelsky N, Studer L, Auerbach JM, McKay RD. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat. Biotech.18(6), 675–679 (2000).
  • Cho MS, Lee Y-E, Kim JY et al. Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells. Proc. Natl Acad. Sci. USA105(9), 3392–3397 (2008).
  • Cho M-S, Hwang D-Y, Kim D-W. Efficient derivation of functional dopaminergic neurons from human embryonic stem cells on a large scale. Nat. Protocols3(12), 1888–1894 (2008).
  • Kim J-H, Auerbach JM, Rodriguez-Gomez JA et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature418(6893), 50–56 (2002).
  • Zhang Z-J, Yang D, Oldenburg M, Ayala M, Zhang S-C. Human embryonic stem cell-derived dopaminergic neurons reverse functional deficit in Parkinsonian rats. Stem Cells26(1), 55–63 (2008).
  • Ben-Hur T, Idelson M, Khaner H et al. Transplantation of human embryonic stem cell-derived neural progenitors improves behavioral deficit in parkinsonian rats. Stem Cells22(7), 1246–1255 (2004).
  • Brederlau A, Correia AS, Anisimov SV et al. Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson’s disease: effect of in vitro differentiation on graft survival and teratoma formation. Stem Cells24(6), 1433–1440 (2006).
  • Kim D, Kim C-H, Moon J-I, Chung Y-G et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell4(6), 472–476 (2009).
  • Jönsson ME, Ono Y, Björklund A, Thompson LH. Identification of transplantable dopamine neuron precursors at different stages of midbrain neurogenesis. Exp. Neurol.219(1), 341–354 (2009).
  • Amit M, Carpenter MK, Inokuma MS et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev. Biol.227(2), 271–278 (2000).
  • Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosci. Res.61(4), 364–370 (2000).
  • Woodbury D, Reynolds K, Black IB. Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis. J. Neurosci. Res.69(6), 908–917 (2002).
  • Sanchez-Ramos J, Song S, Cardozo-Pelaez F et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp. Neurol.164(2), 247–256 (2000).
  • Munoz-Elias G, Marcus AJ, Coyne TM, Woodbury D, Black IB. Adult bone marrow stromal cells in the embryonic brain: engraftment, migration, differentiation, and long-term survival. J. Neurosci.24(19), 4585–4595 (2004).
  • Li Y, Chen J, Wang L, Zhang L, Lu M, Chopp M. Intracerebral transplantation of bone marrow stromal cells in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Neurosci. Lett.316(2), 67–70 (2001).
  • Dezawa M, Kanno H, Hoshino M et al. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J. Clin. Invest.113(12), 1701–1710 (2004).
  • Offen D, Barhum Y, Levy YS et al. Intrastriatal transplantation of mouse bone marrow-derived stem cells improves motor behavior in a mouse model of Parkinson’s disease. In: Neuropsychiatric Disorders: An Integrative Approach. Gerlach M, Deckert J, Double K, Koutsilieri E (Eds). Springer, Vienna, Austria, 133–143 (2007).
  • Jin G-Z, Cho S-J, Choi E-G et al. Rat mesenchymal stem cells increase tyrosine hydroxylase expression and dopamine content in ventral mesencephalic cells in vitro. Cell Biol. Int.32(11), 1433–1438 (2008).
  • Bouchez G, Sensebé L, Vourc’h P et al. Partial recovery of dopaminergic pathway after graft of adult mesenchymal stem cells in a rat model of Parkinson’s disease. Neurochem. Int.52(7), 1332–1342 (2008).
  • Fumagalli F, Racagni G, Riva MA. Shedding light into the role of BDNF in the pharmacotherapy of Parkinson’s disease. Pharmacogenomics J.6(2), 95–104 (2006).
  • Björklund A, Rosenblad C, Winkler C, Kirik D. Studies on neuroprotective and regenerative effects of GDNF in a partial lesion model of Parkinson’s disease. Neurobiol. Dis.4(3–4), 186–200 (1997).
  • Wang F, Yasuhara T, Shingo T et al. Intravenous administration of mesenchymal stem cells exerts therapeutic effects on parkinsonian model of rats: focusing on neuroprotective effects of stromal cell-derived factor-1α. BMC Neurosci.11(1), 52 (2010).
  • Venkataramana NK, Kumar SKV, Balaraju S et al. Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease. Transl. Res.155(2), 62–70 (2010).
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126(4), 663–676 (2006).
  • Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev.17(1), 126–140 (2003).
  • Nichols J, Zevnik B, Anastassiadis K et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell95(3), 379–391 (1998).
  • Niwa H, Miyazaki J-I, Smith AG. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet.24(4), 372–376 (2000).
  • Li Y, McClintick J, Zhong L, Edenberg HJ, Yoder MC, Chan RJ. Murine embryonic stem cell differentiation is promoted by SOCS-3 and inhibited by the zinc finger transcription factor Klf4. Blood105(2), 635–637 (2005).
  • Takahashi K, Tanabe K, Ohnuki M et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131(5), 861–872 (2007).
  • Yu J, Vodyanik MA, Smuga-Otto K et al. Induced pluripotent stem cell lines derived from human somatic cells. Science318(5858), 1917–1920 (2007).
  • Nakagawa M, Koyanagi M, Tanabe K et al. Generation of induced pluripotent stem cells without myc from mouse and human fibroblasts. Nat. Biotech.26(1), 101–106 (2008).
  • Soldner F, Hockemeyer D, Beard C et al. Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell136(5), 964–977 (2009).
  • Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature458(7239), 771–775 (2009).
  • Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. Induced pluripotent stem cells generated without viral integration. Science322(5903), 945–949 (2008).
  • Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science322(5903), 949–953 (2008).
  • Woltjen K, Michael IP, Mohseni P et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature458(7239), 766–770 (2009).
  • Zhou H, Wu S, Joo JY et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell.4(5), 381–384 (2009).
  • Jia F, Wilson KD, Sun N et al. A nonviral minicircle vector for deriving human iPS cells. Nat. Methods7(3), 197–199 (2010).
  • Wernig M, Zhao J-P, Pruszak J et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc. Natl Acad. Sci. USA105(15), 5856–5861 (2008).
  • Swistowski A, Peng J, Liu Q et al. Efficient generation of functional dopaminergic neurons from human induced pluripotent stem cells under defined conditions. Stem Cells28(10), 1893–1904 (2010).
  • Cai J, Yang M, Poremsky E, Kidd S, Schneider JS, Iacovitti L. Dopaminergic neurons derived from human induced pluripotent stem cells survive and integrate into 6-OHDA-lesioned rats. Stem Cells Dev.19(7), 1017–1023 (2010).
  • Soldner F, Hockemeyer D, Beard C et al. Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. 136(5), 964–977 (2009).
  • Hargus G, Cooper O, Deleidi M et al. Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc. Natl Acad. Sci. USA107(36), 15921–15926 (2010).
  • Park I-H, Arora N, Huo H et al. Disease-specific induced pluripotent stem cells. Cell134(5), 877–886 (2008).
  • Urnov FD, Miller JC, Lee Y-L et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature435(7042), 646–651 (2005).
  • Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC, Wernig M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature463(7284), 1035–1041 (2010).
  • Schultzberg M, Dunnett SB, Björklund A et al. Dopamine and cholecystokinin immunoreactive neurones in mesencephalic grafts reinnervating the neostriatum: evidence for selective growth regulation. Neuroscience12(1), 17–32 (1984).
  • Grealish S, Jonsson ME, Li M, Kirik D, Bjorklund A, Thompson LH. The A9 dopamine neuron component in grafts of ventral mesencephalon is an important determinant for recovery of motor function in a rat model of Parkinson’s disease. Brain133(2), 482–495 (2010).
  • Krack P, Pollak P, Limousin P, Benazzouz A, Benabid AL. Stimulation of subthalamic nucleus alleviates tremor in Parkinson’s disease. Lancet350(9092), 1675 (1997).
  • Vingerhoets FJG, Villemure J-G, Temperli P, Pollo C, Pralong E, Ghika J. Subthalamic DBS replaces levodopa in Parkinson’s disease. Neurology58(3), 396–401 (2002).
  • Krack P, Batir A, Van Blercom N et al. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N. Engl. J. Med.349(20), 1925–1934 (2003).
  • Le Jeune F, Drapier D, Bourguignon A et al. Subthalamic nucleus stimulation in Parkinson disease induces apathy. Neurology73(21), 1746–1751 (2009).
  • Hershey T, Revilla FJ, Wernle A, Gibson PS, Dowling JL, Perlmutter JS. Stimulation of STN impairs aspects of cognitive control in PD. Neurology62(7), 1110–1114 (2004).
  • Mallet L, Schüpbach M, N’Diaye K et al. Stimulation of subterritories of the subthalamic nucleus reveals its role in the integration of the emotional and motor aspects of behavior. Proc. Natl Acad. Sci. USA104(25), 10661–10666 (2007).
  • Voon V, Krack P, Lang AE et al. A multicentre study on suicide outcomes following subthalamic stimulation for Parkinson’s disease. Brain131(10), 2720–2728 (2008).
  • Li J-Y, Englund E, Holton JL et al. Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat. Med.14(5), 501–503 (2008).
  • Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat. Med.14(5), 504–506 (2008).
  • Mendez I, Vinuela A, Astradsson A et al. Dopamine neurons implanted into people with Parkinson’s disease survive without pathology for 14 years. Nat. Med.14(5), 507–509 (2008).
  • Anderson L, Caldwell MA. Human neural progenitor cell transplants into the subthalamic nucleus lead to functional recovery in a rat model of Parkinson’s disease. Neurobiol. Dis.27(2), 133–140 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.