3,110
Views
33
CrossRef citations to date
0
Altmetric
Theme: Alzheimer's Disease - Review

Rationale for combining glutamatergic and cholinergic approaches in the symptomatic treatment of Alzheimer’s disease

, &
Pages 1351-1365 | Published online: 09 Jan 2014

References

  • Mesulam MM, Hersh LB, Mash DC, Geula C. Differential cholinergic innervation within functional subdivisions of the human cerebral cortex: a choline acetyltransferase study. J. Comp. Neurol. 318(3), 316–328 (1992).
  • Turrini P, Casu MA, Wong TP, De Koninck Y, Ribeiro-da-Silva A, Cuello AC. Cholinergic nerve terminals establish classical synapses in the rat cerebral cortex: synaptic pattern and age-related atrophy. Neuroscience 105(2), 277–285 (2001).
  • Chessell IP, Francis PT, Bowen DM. Changes in cortical nicotinic acetylcholine receptor numbers following unilateral destruction of pyramidal neurones by intrastriatal volkensin injection. Neurodegeneration 4(4), 415–424 (1995).
  • Chessell IP, Francis PT, Pangalos MN, Pearson RC, Bowen DM. Localisation of muscarinic (m1) and other neurotransmitter receptors on corticofugal-projecting pyramidal neurones. Brain Res. 632(1–2), 86–94 (1993).
  • Chessell IP, Humphrey PP. Nicotinic and muscarinic receptor-evoked depolarizations recorded from a novel cortical brain slice preparation. Neuropharmacology 34(10), 1289–1296 (1995).
  • Dijk SN, Francis PT, Stratmann GC, Bowen DM. Cholinomimetics increase glutamate outflow via an action on the corticostriatal pathway: implications for Alzheimer’s disease. J. Neurochem. 65(5), 2165–2169 (1995).
  • Kozhemyakin M, Rajasekaran K, Kapur J. Central cholinesterase inhibition enhances glutamatergic synaptic transmission. J. Neurophysiol. 103(4), 1748–1757 (2010).
  • Bigl V, Woolf NJ, Butcher LL. Cholinergic projections from the basal forebrain to frontal, parietal, temporal, occipital, and cingulate cortices: a combined fluorescent tracer and acetylcholinesterase analysis. Brain Res. Bull. 8(6), 727–749 (1982).
  • Carnes KM, Fuller TA, Price JL. Sources of presumptive glutamatergic/aspartatergic afferents to the magnocellular basal forebrain in the rat. J. Comp. Neurol. 302(4), 824–852 (1990).
  • Fonnum F, Walaas I. The effect of intrahippocampal kainic acid injections and surgical lesions on neurotransmitters in hippocampus and septum. J. Neurochem. 31(5), 1173–1181 (1978).
  • Francis PT, Carl R, Pearson A et al. The dementia of Alzheimer’s disease: an update. J. Neurol. Neurosurg. Psychiatr. 50(2), 242–243 (1987).
  • Mesulam MM, Mufson EJ. Neural inputs into the nucleus basalis of the substantia innominata (Ch4) in the rhesus monkey. Brain 107(Pt 1), 253–274 (1984).
  • Zilles K, Werner L, Qü M, Schleicher A, Gross G. Quantitative autoradiography of 11 different transmitter binding sites in the basal forebrain region of the rat–evidence of heterogeneity in distribution patterns. Neuroscience 42(2), 473–481 (1991).
  • Giovannini MG, Giovannelli L, Bianchi L, Kalfin R, Pepeu G. Glutamatergic modulation of cortical acetylcholine release in the rat: a combined in vivo microdialysis, retrograde tracing and immunohistochemical study. Eur. J. Neurosci. 9(8), 1678–1689 (1997).
  • Hasegawa M, Kinoshita H, Amano M, Hasegawa T, Kameyama T, Nabeshima T. MK-801 increases endogenous acetylcholine release in the rat parietal cortex: a study using brain microdialysis. Neurosci. Lett. 150(1), 53–56 (1993).
  • Ihalainen J, Sarajärvi T, Rasmusson D et al. Effects of memantine and donepezil on cortical and hippocampal acetylcholine levels and object recognition memory in rats. Neuropharmacology 61(5–6), 891–899 (2011).
  • Fournier GN, Materi LM, Semba K, Rasmusson DD. Cortical acetylcholine release and electroencephalogram activation evoked by ionotropic glutamate receptor agonists in the rat basal forebrain. Neuroscience 123(3), 785–792 (2004).
  • Lodge D, Johnston GA. Effect of ketamine on amino acid-evoked release of acetylcholine from rat cerebral cortex in vitro. Neurosci. Lett. 56(3), 371–375 (1985).
  • Ulus IH, Buyukuysal RL, Wurtman RJ. N-methyl-d-aspartate increases acetylcholine release from rat striatum and cortex: its effect is augmented by choline. J. Pharmacol. Exp. Ther. 261(3), 1122–1128 (1992).
  • Khateb A, Fort P, Serafin M, Jones BE, Mühlethaler M. Rhythmical bursts induced by NMDA in guinea-pig cholinergic nucleus basalis neurones in vitro. J. Physiol. (Lond.) 487 (Pt 3), 623–638 (1995).
  • Toth E. Effect of nicotine on the level of extracellular amino acids in the hippocampus of rat. Neurochem. Res. 21(8), 903–907 (1996).
  • Zappettini S, Grilli M, Lagomarsino F, Cavallero A, Fedele E, Marchi M. Presynaptic nicotinic α7 and non-α7 receptors stimulate endogenous GABA release from rat hippocampal synaptosomes through two mechanisms of action. PLoS ONE 6(2), e16911 (2011).
  • Dijk SN, Francis PT, Stratmann GC, Bowen DM. NMDA-induced glutamate and aspartate release from rat cortical pyramidal neurones: evidence for modulation by a 5-HT1A antagonist. Br. J. Pharmacol. 115(7), 1169–1174 (1995).
  • Schechter LE, Smith DL, Rosenzweig-Lipson S et al. Lecozotan (SRA-333): a selective serotonin 1A receptor antagonist that enhances the stimulated release of glutamate and acetylcholine in the hippocampus and possesses cognitive-enhancing properties. J. Pharmacol. Exp. Ther. 314(3), 1274–1289 (2005).
  • Dawson LA, Nguyen HQ, Li P. The 5-HT(6) receptor antagonist SB-271046 selectively enhances excitatory neurotransmission in the rat frontal cortex and hippocampus. Neuropsychopharmacology 25(5), 662–668 (2001).
  • Francis PT, Sims NR, Procter AW, Bowen DM. Cortical pyramidal neurone loss may cause glutamatergic hypoactivity and cognitive impairment in Alzheimer’s disease: investigative and therapeutic perspectives. J. Neurochem. 60(5), 1589–1604 (1993).
  • Stanhope KJ, McLenachan AP, Dourish CT. Dissociation between cognitive and motor/motivational deficits in the delayed matching to position test: effects of scopolamine, 8-OH-DPAT and EAA antagonists. Psychopharmacology (Berl.) 122(3), 268–280 (1995).
  • Francis PT, Palmer AM, Snape M, Wilcock GK. The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J. Neurol. Neurosurg. Psychiatr. 66(2), 137–147 (1999).
  • Bowen DM, Benton JS, Spillane JA, Smith CC, Allen SJ. Choline acetyltransferase activity and histopathology of frontal neocortex from biopsies of demented patients. J. Neurol. Sci. 57(2–3), 191–202 (1982).
  • Davis KL, Mohs RC, Marin D et al. Cholinergic markers in elderly patients with early signs of Alzheimer disease. JAMA 281(15), 1401–1406 (1999).
  • DeKosky ST, Ikonomovic MD, Styren SD et al. Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann. Neurol. 51(2), 145–155 (2002).
  • Court J, Martin-Ruiz C, Piggott M, Spurden D, Griffiths M, Perry E. Nicotinic receptor abnormalities in Alzheimer’s disease. Biol. Psychiatry 49(3), 175–184 (2001).
  • Lai MK, Lai OF, Keene J et al. Psychosis of Alzheimer’s disease is associated with elevated muscarinic M2 binding in the cortex. Neurology 57(5), 805–811 (2001).
  • Warpman U, Alafuzoff I, Nordberg A. Coupling of muscarinic receptors to GTP proteins in postmortem human brain–alterations in Alzheimer’s disease. Neurosci. Lett. 150(1), 39–43 (1993).
  • Flynn DD, Weinstein DA, Mash DC. Loss of high-affinity agonist binding to M1 muscarinic receptors in Alzheimer’s disease: implications for the failure of cholinergic replacement therapies. Ann. Neurol. 29(3), 256–262 (1991).
  • Tsang SW, Pomakian J, Marshall GA et al. Disrupted muscarinic M1 receptor signaling correlates with loss of protein kinase C activity and glutamatergic deficit in Alzheimer’s disease. Neurobiol. Aging 28(9), 1381–1387 (2007).
  • Tsang SW, Lai MK, Kirvell S et al. Impaired coupling of muscarinic M1 receptors to G-proteins in the neocortex is associated with severity of dementia in Alzheimer’s disease. Neurobiol. Aging 27(9), 1216–1223 (2006).
  • Perry EK, Morris CM, Court JA et al. Alteration in nicotine binding sites in Parkinson’s disease, Lewy body dementia and Alzheimer’s disease: possible index of early neuropathology. Neuroscience 64(2), 385–395 (1995).
  • Nordberg A. Nicotinic receptor abnormalities of Alzheimer’s disease: therapeutic implications. Biol. Psychiatry 49(3), 200–210 (2001).
  • Gotti C, Moretti M, Bohr I et al. Selective nicotinic acetylcholine receptor subunit deficits identified in Alzheimer’s disease, Parkinson’s disease and dementia with Lewy bodies by immunoprecipitation. Neurobiol. Dis. 23(2), 481–489 (2006).
  • Levin ED, McClernon FJ, Rezvani AH. Nicotinic effects on cognitive function: behavioral characterization, pharmacological specification, and anatomic localization. Psychopharmacology (Berl.) 184(3–4), 523–539 (2006).
  • Wilkinson DG, Francis PT, Schwam E, Payne-Parrish J. Cholinesterase inhibitors used in the treatment of Alzheimer’s disease: the relationship between pharmacological effects and clinical efficacy. Drugs Aging 21(7), 453–478 (2004).
  • Aricept® Summary of Product Characteristics (SPC). Eisai Ltd, NJ, USA, June 2011.
  • Exelon® Summary of Product Characteristics (SPC). Novartis Pharmaceuticals UK Ltd., April 2012.
  • Reminyl® Summary of Product Characteristics (SPC). Shire Pharmaceuticals Ltd., October 2010.
  • Reminyl® XL Summary of Product Characteristics (SPC). Shire Pharmaceuticals Ltd., August 2010.
  • Exelon® Transdermal patch Summary of Product Characteristics (SPC). Novartis Pharmaceuticals UK Ltd., April 2012.
  • Birks J. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst. Rev. 1, CD005593 (2006).
  • Gauthier S, Feldman H, Hecker J et al.; Donepezil MSAD Study Investigators Group. Efficacy of donepezil on behavioral symptoms in patients with moderate to severe Alzheimer’s disease. Int. Psychogeriatr. 14(4), 389–404 (2002).
  • Minger SL, Esiri MM, McDonald B et al. Cholinergic deficits contribute to behavioral disturbance in patients with dementia. Neurology 55(10), 1460–1467 (2000).
  • Francis PT, Ramírez MJ, Lai MK. Neurochemical basis for symptomatic treatment of Alzheimer’s disease. Neuropharmacology 59(4–5), 221–229 (2010).
  • Fonnum F. Glutamate: a neurotransmitter in mammalian brain. J. Neurochem. 42(1), 1–11 (1984).
  • Auerbach JM, Segal M. A novel cholinergic induction of long-term potentiation in rat hippocampus. J. Neurophysiol. 72(4), 2034–2040 (1994).
  • Tai SK, Leung LS. Vestibular stimulation enhances hippocampal long-term potentiation via activation of cholinergic septohippocampal cells. Behav. Brain Res. 232(1), 174–182 (2012).
  • Morrison JH, Hof PR. Life and death of neurons in the aging brain. Science 278(5337), 412–419 (1997).
  • Neary D, Snowden JS, Mann DM et al. Alzheimer’s disease: a correlative study. J. Neurol. Neurosurg. Psychiatr. 49(3), 229–237 (1986).
  • Najlerahim A, Bowen DM. Biochemical measurements in Alzheimer’s disease reveal a necessity for improved neuroimaging techniques to study metabolism. Biochem. J. 251(1), 305–308 (1988).
  • Najlerahim A, Bowen DM. Regional weight loss of the cerebral cortex and some subcortical nuclei in senile dementia of the Alzheimer type. Acta Neuropathol. 75(5), 509–512 (1988).
  • Greenamyre JT, Maragos WF, Albin RL, Penney JB, Young AB. Glutamate transmission and toxicity in Alzheimer’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 12(4), 421–430 (1988).
  • Greenamyre JT, Penney JB, Young AB, D’Amato CJ, Hicks SP, Shoulson I. Alterations in L-glutamate binding in Alzheimer’s and Huntington’s diseases. Science 227(4693), 1496–1499 (1985).
  • Greenamyre JT, Penney JB, D’Amato CJ, Young AB. Dementia of the Alzheimer’s type: changes in hippocampal L-[3H]glutamate binding. J. Neurochem. 48(2), 543–551 (1987).
  • Procter AW, Wong EH, Stratmann GC, Lowe SL, Bowen DM. Reduced glycine stimulation of [3H]MK-801 binding in Alzheimer’s disease. J. Neurochem. 53(3), 698–704 (1989).
  • Wakabayashi K, Narisawa-Saito M, Iwakura Y et al. Phenotypic down-regulation of glutamate receptor subunit GluR1 in Alzheimer’s disease. Neurobiol. Aging 20(3), 287–295 (1999).
  • Snyder EM, Nong Y, Almeida CG et al. Regulation of NMDA receptor trafficking by amyloid-b. Nat. Neurosci. 8(8), 1051–1058 (2005).
  • Danysz W, Parsons CG. Alzheimer’s disease, β-amyloid, glutamate, NMDA receptors and memantine – searching for the connections. Br. J. Pharmacol. 167(2), 324–352 (2012).
  • Kirvell SL, Esiri M, Francis PT. Down-regulation of vesicular glutamate transporters precedes cell loss and pathology in Alzheimer’s disease. J. Neurochem. 98(3), 939–950 (2006). Erratum in: J. Neurochem. 100(6), 1713 (2007).
  • Kirvell SL, Francis PT. Vesicular glutamate transporters and their possible role in Alzheimer’s disease. Poster presented at: Society for Neuroscience Annual Meeting. San Diego, California, USA, 23–27 October (2004).
  • Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82(4), 239–259 (1991).
  • Beckstrøm H, Julsrud L, Haugeto O et al. Interindividual differences in the levels of the glutamate transporters GLAST and GLT, but no clear correlation with Alzheimer’s disease. J. Neurosci. Res. 55(2), 218–229 (1999).
  • Procter AW, Palmer AM, Francis PT et al. Evidence of glutamatergic denervation and possible abnormal metabolism in Alzheimer’s disease. J. Neurochem. 50(3), 790–802 (1988).
  • Keller JN, Mark RJ, Bruce AJ et al. 4-Hydroxynonenal, an aldehydic product of membrane lipid peroxidation, impairs glutamate transport and mitochondrial function in synaptosomes. Neuroscience 80(3), 685–696 (1997).
  • Westphalen RI, Scott HL, Dodd PR. Synaptic vesicle transport and synaptic membrane transporter sites in excitatory amino acid nerve terminals in Alzheimer disease. J. Neural Transm. 110(9), 1013–1027 (2003).
  • Francis PT. Glutamatergic systems in Alzheimer’s disease. Int. J. Geriatr. Psychiatry 18(Suppl. 1), S15–S21 (2003).
  • Danysz W, Parsons CG, Mobius HJ, Stoffler A, Quack G. Neuroprotective and symptomatological action of memantine relevant for Alzheimer’s disease – a unified glutamatergic hypothesis on the mechanism of action. Neurotox. Res. 2(2–3), 85–97 (2000).
  • Francis PT. Altered glutamate neurotransmission and behaviour in dementia: evidence from studies of memantine. Curr. Mol. Pharmacol. 2(1), 77–82 (2009).
  • Kashani A, Lepicard E, Poirel O et al. Loss of VGLUT1 and VGLUT2 in the prefrontal cortex is correlated with cognitive decline in Alzheimer disease. Neurobiol. Aging 29(11), 1619–1630 (2008).
  • Chen HS, Pellegrini JW, Aggarwal SK et al. Open-channel block of N-methyl-d-aspartate (NMDA) responses by memantine: therapeutic advantage against NMDA receptor-mediated neurotoxicity. J. Neurosci. 12(11), 4427–4436 (1992).
  • Reisberg B, Doody R, Stöffler A, Schmitt F, Ferris S, Möbius HJ; Memantine Study Group. Memantine in moderate-to-severe Alzheimer’s disease. N. Engl. J. Med. 348(14), 1333–1341 (2003).
  • Tariot PN, Farlow MR, Grossberg GT, Graham SM, McDonald S, Gergel I. Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA 291(3), 317–324 (2004).
  • Winblad B, Jones RW, Wirth Y, Stöffler A, Möbius HJ. Memantine in moderate to severe Alzheimer’s disease: a meta-analysis of randomised clinical trials. Dement. Geriatr. Cogn. Disord. 24(1), 20–27 (2007).
  • Gauthier S, Loft H, Cummings J. Improvement in behavioural symptoms in patients with moderate to severe Alzheimer’s disease by memantine: a pooled data analysis. Int. J. Geriatr. Psychiatry 23(5), 537–545 (2008).
  • Gauthier S, Wirth Y, Möbius HJ. Effects of memantine on behavioural symptoms in Alzheimer’s disease patients: an analysis of the Neuropsychiatric Inventory (NPI) data of two randomised, controlled studies. Int. J. Geriatr. Psychiatry 20(5), 459–464 (2005).
  • Cummings JL, Schneider E, Tariot PN, Graham SM; Memantine MEM-MD-02 Study Group. Behavioral effects of memantine in Alzheimer disease patients receiving donepezil treatment. Neurology 67(1), 57–63 (2006).
  • Kendall I, Slotten HA, Codony X et al. E-6801, a 5-HT6 receptor agonist, improves recognition memory by combined modulation of cholinergic and glutamatergic neurotransmission in the rat. Psychopharmacology (Berl.) 213(2–3), 413–430 (2011).
  • Lieben CK, Blokland A, Sik A, Sung E, van Nieuwenhuizen P, Schreiber R. The selective 5-HT6 receptor antagonist Ro4368554 restores memory performance in cholinergic and serotonergic models of memory deficiency in the rat. Neuropsychopharmacology 30(12), 2169–2179 (2005).
  • Prickaerts J, Sik A, van der Staay FJ, de Vente J, Blokland A. Dissociable effects of acetylcholinesterase inhibitors and phosphodiesterase type 5 inhibitors on object recognition memory: acquisition versus consolidation. Psychopharmacology (Berl.) 177(4), 381–390 (2005).
  • Scali C, Giovannini MG, Bartolini L et al. Effect of metrifonate on extracellular brain acetylcholine and object recognition in aged rats. Eur. J. Pharmacol. 325(2–3), 173–180 (1997).
  • Hunsaker MR, Rogers JL, Kesner RP. Behavioral characterization of a transection of dorsal CA3 subcortical efferents: comparison with scopolamine and physostigmine infusions into dorsal CA3. Neurobiol. Learn. Mem. 88(1), 127–136 (2007).
  • Lindner MD, Hogan JB, Hodges DB Jr et al. Donepezil primarily attenuates scopolamine-induced deficits in psychomotor function, with moderate effects on simple conditioning and attention, and small effects on working memory and spatial mapping. Psychopharmacology (Berl.) 188(4), 629–640 (2006).
  • Romberg C, Mattson MP, Mughal MR, Bussey TJ, Saksida LM. Impaired attention in the 3xTgAD mouse model of Alzheimer’s disease: rescue by donepezil (Aricept). J. Neurosci. 31(9), 3500–3507 (2011).
  • Parsons CG, Stöffler A, Danysz W. Memantine: a NMDA receptor antagonist that improves memory by restoration of homeostasis in the glutamatergic system – too little activation is bad, too much is even worse. Neuropharmacology 53(6), 699–723 (2007).
  • Nyakas C, Granic I, Halmy LG, Banerjee P, Luiten PG. The basal forebrain cholinergic system in aging and dementia. Rescuing cholinergic neurons from neurotoxic amyloid-β42 with memantine. Behav. Brain Res. 221(2), 594–603 (2011).
  • Van Dam D, Abramowski D, Staufenbiel M, De Deyn PP. Symptomatic effect of donepezil, rivastigmine, galantamine and memantine on cognitive deficits in the APP23 model. Psychopharmacology (Berl.) 180(1), 177–190 (2005).
  • Van Dam D, Coen K, De Deyn PP. Cognitive evaluation of disease-modifying efficacy of donepezil in the APP23 mouse model for Alzheimer’s disease. Psychopharmacology (Berl.) 197(1), 37–43 (2008).
  • Van Dam D, De Deyn PP. Cognitive evaluation of disease-modifying efficacy of galantamine and memantine in the APP23 model. Eur. Neuropsychopharmacol. 16(1), 59–69 (2006).
  • Enz A, Gentsch C. Co-administration of memantine has no effect on the in vitro or ex vivo determined acetylcholinesterase inhibition of rivastigmine in the rat brain. Neuropharmacology 47(3), 408–413 (2004).
  • Wenk GL, Quack G, Moebius HJ, Danysz W. No interaction of memantine with acetylcholinesterase inhibitors approved for clinical use. Life Sci. 66(12), 1079–1083 (2000).
  • Zoladz PR, Campbell AM, Park CR, Schaefer D, Danysz W, Diamond DM. Enhancement of long-term spatial memory in adult rats by the noncompetitive NMDA receptor antagonists, memantine and neramexane. Pharmacol. Biochem. Behav. 85(2), 298–306 (2006).
  • Wise LE, Iredale PA, Stokes RJ, Lichtman AH. Combination of rimonabant and donepezil prolongs spatial memory duration. Neuropsychopharmacology 32(8), 1805–1812 (2007).
  • Wise LE, Lichtman AH. The uncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist memantine prolongs spatial memory in a rat delayed radial-arm maze memory task. Eur. J. Pharmacol. 575(1–3), 98–102 (2007).
  • Woodruff-Pak DS, Tobia MJ, Jiao X, Beck KD, Servatius RJ. Preclinical investigation of the functional effects of memantine and memantine combined with galantamine or donepezil. Neuropsychopharmacology 32(6), 1284–1294 (2007).
  • Yamada K, Takayanagi M, Kamei H et al. Effects of memantine and donepezil on amyloid b-induced memory impairment in a delayed-matching to position task in rats. Behav. Brain Res. 162(2), 191–199 (2005).
  • Martinez-Coria H, Green K, Banerjee PK, LaFerla FM. Combination of memantine and donepezil reverses cognitive deficits in transgenic mice with both amyloid-b plaques and neurofibrillary tangles. Poster presented at: 22nd Congress of the European College of Neuropsychopharmacology (ECNP). Istanbul, Turkey, 12–16 September 2009.
  • Neumeister KL, Riepe MW. Synergistic effects of antidementia drugs on spatial learning and recall in the APP23 transgenic mouse model of Alzheimer’s disease. J. Alzheimers Dis. 30(2), 245–251 (2012).
  • Gupta RC, Dekundy A. Memantine does not influence AChE inhibition in rat brain by donepezil or rivastigmine but does with DFP and metrifonate in in vivo studies. Drug Dev. Res. 64, 71–81 (2005).
  • Periclou AP, Ventura D, Sherman T, Rao N, Abramowitz WT. Lack of pharmacokinetic or pharmacodynamic interaction between memantine and donepezil. Ann. Pharmacother. 38(9), 1389–1394 (2004).
  • Yao C, Raoufinia A, Gold M et al. Steady-state pharmacokinetics of galantamine are not affected by addition of memantine in healthy subjects. J. Clin. Pharmacol. 45(5), 519–528 (2005).
  • Shua-Haim J, Smith J, Picard F et al. Steady-state pharmacokinetics of rivastigmine in patients with mild to moderate Alzheimer’s disease not affected by co-administration of memantine: an open-label, crossover, single-centre study. Clin. Drug Investig. 28(6), 361–374 (2008).
  • Porsteinsson AP, Grossberg GT, Mintzer J, Olin JT; Memantine MEM-MD-12 Study Group. Memantine treatment in patients with mild to moderate Alzheimer’s disease already receiving a cholinesterase inhibitor: a randomized, double-blind, placebo-controlled trial. Curr. Alzheimer Res. 5(1), 83–89 (2008).
  • Hartmann S, Möbius HJ. Tolerability of memantine in combination with cholinesterase inhibitors in dementia therapy. Int. Clin. Psychopharmacol. 18(2), 81–85 (2003).
  • Gauthier S, Molinuevo JL. Benefits of combined cholinesterase inhibitor and memantine treatment in moderate–severe Alzheimer’s disease. Alzheimers Dement. (2012) (In Press).
  • Feldman HH, Schmitt FA, Olin JT; Memantine MEM-MD-02 Study Group. Activities of daily living in moderate-to-severe Alzheimer disease: an analysis of the treatment effects of memantine in patients receiving stable donepezil treatment. Alzheimer Dis. Assoc. Disord. 20(4), 263–268 (2006).
  • Schmitt FA, van Dyck CH, Wichems CH, Olin JT; for the Memantine MEM-MD-02 Study Group. Cognitive response to memantine in moderate to severe Alzheimer disease patients already receiving donepezil: an exploratory reanalysis. Alzheimer Dis. Assoc. Disord. 20(4), 255–262 (2006).
  • van Dyck CH, Schmitt FA, Olin JT; Memantine MEM-MD-02 Study Group. A responder analysis of memantine treatment in patients with Alzheimer disease maintained on donepezil. Am. J. Geriatr. Psychiatry 14(5), 428–437 (2006).
  • Wilkinson D, Andersen HF. Analysis of the effect of memantine in reducing the worsening of clinical symptoms in patients with moderate to severe Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 24(2), 138–145 (2007).
  • Choi SH, Park KW, Na DL et al.; Expect Study Group. Tolerability and efficacy of memantine add-on therapy to rivastigmine transdermal patches in mild to moderate Alzheimer’s disease: a multicenter, randomized, open-label, parallel-group study. Curr. Med. Res. Opin. 27(7), 1375–1383 (2011).
  • Farlow MR, Alva G, Meng X, Olin JT. A 25-week, open-label trial investigating rivastigmine transdermal patches with concomitant memantine in mild-to-moderate Alzheimer’s disease: a post hoc analysis. Curr. Med. Res. Opin. 26(2), 263–269 (2010).
  • Schneider LS, Insel PS, Weiner MW; Alzheimer’s Disease Neuroimaging Initiative. Treatment with cholinesterase inhibitors and memantine of patients in the Alzheimer’s Disease Neuroimaging Initiative. Arch. Neurol. 68(1), 58–66 (2011).
  • Howard R, McShane R, Lindesay J et al. Donepezil and memantine for moderate-to-severe Alzheimer’s disease. N. Engl. J. Med. 366(10), 893–903 (2012).
  • Atri A, Shaughnessy LW, Locascio JJ, Growdon JH. Long-term course and effectiveness of combination therapy in Alzheimer disease. Alzheimer Dis. Assoc. Disord. 22(3), 209–221 (2008).
  • Lopez OL, Becker JT, Wahed AS et al. Long-term effects of the concomitant use of memantine with cholinesterase inhibition in Alzheimer disease. J. Neurol. Neurosurg. Psychiatry 80(6), 600–607 (2009).
  • Lyketsos CG, Miller DS; for the Neuropsychiatric Syndromes Professional Interest Area of the International Society to Advance Alzheimer’s Research and Treatment. Addressing the Alzheimer’s disease crisis through better understanding, treatment, and eventual prevention of associated neuropsychiatric syndromes. Alzheimers Dement. 8(1), 60–64 (2012).
  • Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M. Alzheimer’s disease: clinical trials and drug development. Lancet Neurol. 10(6), 501 (2011).
  • Birks J, Harvey RJ. Donepezil for dementia due to Alzheimer’s disease. Cochrane Database Syst. Rev. (1), CD001190 (2006).
  • Aricept® Product Information (PI). Eisai Ltd, NJ, USA, February 2012.
  • Birks J, Grimley Evans J, Iakovidou V, Tsolaki M, Holt FE. Rivastigmine for Alzheimer’s disease. Cochrane Database Syst. Rev. (2), CD001191 (2009).
  • Loy C, Schneider L. Galantamine for Alzheimer’s disease and mild cognitive impairment. Cochrane Database Syst. Rev. (1), CD001747 (2006).
  • Brown FW. Cognitive enhancers (Chapter 41). In: The American Psychiatric Publishing Textbook of Psychopharmacology (4th Edition). Schatzberg AF, Nemeroff CB (Eds.). American Psychiatric Publishing, Arlington, VA, USA (2009).
  • Li J, Wu HM, Zhou RL, Liu GJ, Dong BR. Huperzine A for Alzheimer’s disease. Cochrane Database Syst. Rev. (2), CD005592 (2008).
  • Ha GT, Wong RK, Zhang Y. Huperzine A as potential treatment of Alzheimer’s disease: an assessment on chemistry, pharmacology, and clinical studies. Chem. Biodivers. 8(7), 1189–1204 (2011).
  • Rafii MS, Walsh S, Little JT et al.; Alzheimer’s Disease Cooperative Study. A Phase II trial of huperzine A in mild to moderate Alzheimer disease. Neurology 76(16), 1389–1394 (2011).
  • Mancuso C, Siciliano R, Barone E, Butterfield DA, Preziosi P. Pharmacologists and Alzheimer disease therapy: to boldly go where no scientist has gone before. Expert Opin. Investig. Drugs 20(9), 1243–1261 (2011).
  • Hilt D, Gawryl M, Koenig G; EVP-6124 Study Group. EVP-6124: Safety, tolerability and cognitive effects of a novel α7 nicotinic receptor agonist in Alzheimer’s disease patients on stable donepezil or rivastigmine therapy. Alzheimers Dement. 5( Suppl. 4), e32 (2009).
  • Weinstock M, Luques L, Bejar C, Shoham S. Ladostigil, a novel multifunctional drug for the treatment of dementia co-morbid with depression. J. Neural Transm. Suppl. 70, 443–446 (2006).
  • Shioda N, Yamamoto Y, Han F, Moriguchi S, Fukunaga K. (Neurochemical mechanisms of a novel Alzheimer’s disease therapeutics on improvement of cognition and depressive behavior). Yakugaku Zasshi 131(4), 505–511 (2011).
  • Yamaguchi Y, Miyashita H, Tsunekawa H et al. Effects of a novel cognitive enhancer, spiro[imidazo-[1,2-alpha]pyridine-3,2-indan]-2(3H)-one (ZSET1446), on learning impairments induced by amyloid-β1-40 in the rat. J. Pharmacol. Exp. Ther. 317(3), 1079–1087 (2006).
  • Champix® Summary of Product Characteristics (SPC). Pfizer Ltd., April 2012.
  • Togashi H, Matsumoto M, Yoshioka M, Saito Y, Saito H. Effects of a novel cholinergic M1 agonist, AF102B, on ambulation and water drinking behavior in rats. Hokkaido Igaku Zasshi. 66(1), 59–66 (1991).
  • Terry AV Jr, Buccafusco JJ, Borsini F, Leusch A. Memory-related task performance by aged rhesus monkeys administered the muscarinic M(1)-preferring agonist, talsaclidine. Psychopharmacology (Berl.) 162(3), 292–300 (2002).
  • Adamus WS, Leonard JP, Tröger W. Phase I clinical trials with WAL 2014, a new muscarinic agonist for the treatment of Alzheimer’s disease. Life Sci. 56(11–12), 883–890 (1995).
  • Higgins JP, Flicker L. Lecithin for dementia and cognitive impairment. Cochrane Database Syst. Rev. (4), CD001015 (2000).
  • López-Arrieta JM, Rodríguez JL, Sanz F. Nicotine for Alzheimer’s disease. Cochrane Database Syst. Rev. (2), CD001749 (2000).
  • Coelho F, Birks J. Physostigmine for Alzheimer’s disease. Cochrane Database Syst. Rev. (2), CD001499 (2001).
  • López-Arrieta JM, Schneider L. Metrifonate for Alzheimer’s disease. Cochrane Database Syst. Rev. (2), CD003155 (2006).
  • Birks J, Wilcock GG. Velnacrine for Alzheimer’s disease. Cochrane Database Syst. Rev. (2), CD004748 (2004).
  • McShane R, Areosa Sastre A, Minakaran N. Memantine for dementia. Cochrane Database Syst. Rev. (2), CD003154 (2006).
  • Ebixa® Summary of Product Characteristics (SPC). Lundbeck Ltd., October 2011.
  • Johnson SA, Simmon VF. Randomized, double-blind, placebo-controlled international clinical trial of the Ampakine CX516 in elderly participants with mild cognitive impairment: a progress report. J. Mol. Neurosci. 19(1–2), 197–200 (2002).
  • Jones R, Laake K, Øksengård AR. D-cycloserine for Alzheimer’s disease. Cochrane Database Syst. Rev. 2, CD003153 (2002).
  • Jones RW, Wesnes KA, Kirby J. Effects of NMDA modulation in scopolamine dementia. Ann. NY Acad. Sci. 640, 241–244 (1991).
  • Chappell AS, Gonzales C, Williams J, Witte MM, Mohs RC, Sperling R. AMPA potentiator treatment of cognitive deficits in Alzheimer disease. Neurology 68(13), 1008–1012 (2007).
  • Jones RW. Dimebon disappointment. Alzheimers. Res. Ther. 2(5), 25 (2010).
  • Narahashi T, Moriguchi S, Zhao X, Marszalec W, Yeh JZ. Mechanisms of action of cognitive enhancers on neuroreceptors. Biol. Pharm. Bull. 27(11), 1701–1706 (2004).
  • Ahmed AH, Oswald RE. Piracetam defines a new binding site for allosteric modulators of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors. J. Med. Chem. 53(5), 2197–2203 (2010).
  • Flicker L, Grimley Evans J. Piracetam for dementia or cognitive impairment. Cochrane Database Syst. Rev. 1, CD001011 (2004).
  • Dantoine T, Auriacombe S, Sarazin M, Becker H, Pere JJ, Bourdeix I. Rivastigmine monotherapy and combination therapy with memantine in patients with moderately severe Alzheimer’s disease who failed to benefit from previous cholinesterase inhibitor treatment. Int. J. Clin. Pract. 60(1), 110–118 (2006).
  • Olin JT, Bhatnagar V, Reyes P, Koumaras B, Meng X, Brannan S. Safety and tolerability of rivastigmine capsule with memantine in patients with probable Alzheimer’s disease: a 26-week, open-label, prospective trial (Study ENA713B US32). Int. J. Geriatr. Psychiatry 25(4), 419–426 (2010).
  • Riepe MW, Adler G, Ibach B, Weinkauf B, Tracik F, Gunay I. Domain-specific improvement of cognition on memantine in patients with Alzheimer’s disease treated with rivastigmine. Dement. Geriatr. Cogn. Disord. 23(5), 301–306 (2007).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.