228
Views
10
CrossRef citations to date
0
Altmetric
Theme: Pain - Review

Exploring neuroinflammation as a potential avenue to improve the clinical efficacy of opioids

&
Pages 1311-1324 | Published online: 09 Jan 2014

References

  • Watkins LR, Hutchinson MR, Rice KC, Maier SF. The ‘toll’ of opioid-induced glial activation: improving the clinical efficacy of opioids by targeting glia. Trends Pharmacol. Sci. 30(11), 581–591 (2009).
  • Johnston IN, Milligan ED, Wieseler-Frank J et al. A role for proinflammatory cytokines and fractalkine in analgesia, tolerance, and subsequent pain facilitation induced by chronic intrathecal morphine. J. Neurosci. 24(33), 7353–7365 (2004).
  • Hutchinson MR, Coats BD, Lewis SS et al. Proinflammatory cytokines oppose opioid-induced acute and chronic analgesia. Brain Behav. Immun. 22(8), 1178–1189 (2008).
  • Shavit Y, Wolf G, Goshen I, Livshits D, Yirmiya R. Interleukin-1 antagonizes morphine analgesia and underlies morphine tolerance. Pain 115(1–2), 50–59 (2005).
  • Horvath RJ, DeLeo JA. Morphine enhances microglial migration through modulation of P2X4 receptor signaling. J. Neurosci. 29(4), 998–1005 (2009).
  • Berta T, Liu T, Liu YC, Xu ZZ, Ji RR. Acute morphine activates satellite glial cells and upregulates IL-1β in dorsal root ganglia in mice via matrix metalloprotease-9. Mol. Pain 8, 18 (2012).
  • Cui Y, Chen Y, Zhi JL, Guo RX, Feng JQ, Chen PX. Activation of p38 mitogen-activated protein kinase in spinal microglia mediates morphine antinociceptive tolerance. Brain Res. 1069(1), 235–243 (2006).
  • Liu W, Wang CH, Cui Y et al. Inhibition of neuronal nitric oxide synthase antagonizes morphine antinociceptive tolerance by decreasing activation of p38 MAPK in the spinal microglia. Neurosci. Lett. 410(3), 174–177 (2006).
  • Horvath RJ, Romero-Sandoval EA, De Leo JA. Inhibition of microglial P2X4 receptors attenuates morphine tolerance, Iba1, GFAP and µ opioid receptor protein expression while enhancing perivascular microglial ED2. Pain 150(3), 401–413 (2010).
  • Xie N, Li H, Wei D et al. Glycogen synthase kinase-3 and p38 MAPK are required for opioid-induced microglia apoptosis. Neuropharmacology 59(6), 444–451 (2010).
  • Moulédous L, Diaz MF, Gutstein HB. Modulation of extracellular signal-regulated kinase (ERK) activity by acute and chronic opioid treatment in neuronal and glial cell lines. J. Neurochem. 90(6), 1371–1377 (2004).
  • Takayama N, Ueda H. Morphine-induced chemotaxis and brain-derived neurotrophic factor expression in microglia. J. Neurosci. 25(2), 430–435 (2005).
  • Guo RX, Zhang M, Liu W et al. NMDA receptors are involved in upstream of the spinal JNK activation in morphine antinociceptive tolerance. Neurosci. Lett. 467(2), 95–99 (2009).
  • Wang Z, Ma W, Chabot JG, Quirion R. Cell-type specific activation of p38 and ERK mediates calcitonin gene-related peptide involvement in tolerance to morphine-induced analgesia. FASEB J. 23(8), 2576–2586 (2009).
  • Wang Z, Ma W, Chabot JG, Quirion R. Calcitonin gene-related peptide as a regulator of neuronal CaMKII-CREB, microglial p38-NFkB and astroglial ERK–Stat1/3 cascades mediating the development of tolerance to morphine-induced analgesia. Pain 151(1), 194–205 (2010).
  • Ndengele MM, Cuzzocrea S, Masini E et al. Spinal ceramide modulates the development of morphine antinociceptive tolerance via peroxynitrite-mediated nitroxidative stress and neuroimmune activation. J. Pharmacol. Exp. Ther. 329(1), 64–75 (2009).
  • Sawaya BE, Deshmane SL, Mukerjee R, Fan S, Khalili K. TNF alpha production in morphine-treated human neural cells is NF-kappaB-dependent. J. Neuroimmune Pharmacol. 4(1), 140–149 (2009).
  • El-Hage N, Bruce-Keller AJ, Yakovleva T et al. Morphine exacerbates HIV-1 Tat-induced cytokine production in astrocytes through convergent effects on [Ca(2+)](i), NF-kappaB trafficking and transcription. PLoS ONE 3(12), e4093 (2008).
  • Wang Z, Ma W, Chabot JG, Quirion R. Morphological evidence for the involvement of microglial p38 activation in CGRP-associated development of morphine antinociceptive tolerance. Peptides 31(12), 2179–2184 (2010).
  • Muscoli C, Doyle T, Dagostino C et al. Counter-regulation of opioid analgesia by glial-derived bioactive sphingolipids. J. Neurosci. 30(46), 15400–15408 (2010).
  • Hutchinson MR, Shavit Y, Grace PM, Rice KC, Maier SF, Watkins LR. Exploring the neuroimmunopharmacology of opioids: an integrative review of mechanisms of central immune signaling and their implications for opioid analgesia. Pharmacol. Rev. 63(3), 772–810 (2011).
  • Watkins LR, Hutchinson MR, Johnston IN, Maier SF. Glia: novel counter regulators of opioid analgesia. Trends Neurosci. 28(12), 661–669 (2005).
  • Kao SC, Zhao X, Lee CY et al. Absence of µ opioid receptor mRNA expression in astrocytes and microglia of rat spinal cord. Neuroreport 23(6), 378–384 (2012).
  • Raivich G. Like cops on the beat: the active role of resting microglia. Trends Neurosci. 28(11), 571–573 (2005).
  • Morioka T, Kalehua AN, Streit WJ. The microglial reaction in the rat dorsal hippocampus following transient forebrain ischemia. J. Cereb. Blood Flow Metab. 11(6), 966–973 (1991).
  • Buchanan MM, Hutchinson M, Watkins LR, Yin H. Toll-like receptor 4 in CNS pathologies. J. Neurochem. 114(1), 13–27 (2010).
  • Watkins LR, Hutchinson MR, Ledeboer A, Wieseler-Frank J, Milligan ED, Maier SF. Glia as the ‘bad guys’: implications for improving clinical pain control and the clinical utility of opioids. Brain Behav. Immun. 21(2), 131–146 (2007).
  • Perry VH, Hume DA, Gordon S. Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience 15(2), 313–326 (1985).
  • De Leo JA, Tawfik VL, LaCroix-Fralish ML. The tetrapartite synapse: path to CNS sensitization and chronic pain. Pain 122(1–2), 17–21 (2006).
  • Araque A, Navarrete M. Glial cells in neuronal network function. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365(1551), 2375–2381 (2010).
  • Smith K. Neuroscience: settling the great glia debate. Nature 468(7321), 160–162 (2010).
  • Ben Achour S, Pascual O. Glia: the many ways to modulate synaptic plasticity. Neurochem. Int. 57(4), 440–445 (2010).
  • Grace PM, Rolan PE, Hutchinson MR. Peripheral immune contributions to the maintenance of central glial activation underlying neuropathic pain. Brain Behav. Immun. 25(7), 1322–1332 (2011).
  • Loredo GA, Benton HP. ATP and UTP activate calcium-mobilizing P2U-like receptors and act synergistically with interleukin-1 to stimulate prostaglandin E2 release from human rheumatoid synovial cells. Arthritis Rheum. 41(2), 246–255 (1998).
  • Morioka N, Inoue A, Hanada T et al. Nitric oxide synergistically potentiates interleukin-1 β-induced increase of cyclooxygenase-2 mRNA levels, resulting in the facilitation of substance P release from primary afferent neurons: involvement of cGMP-independent mechanisms. Neuropharmacology 43(5), 868–876 (2002).
  • Song P, Zhao ZQ. The involvement of glial cells in the development of morphine tolerance. Neurosci. Res. 39(3), 281–286 (2001).
  • Cui Y, Liao XX, Liu W et al. A novel role of minocycline: attenuating morphine antinociceptive tolerance by inhibition of p38 MAPK in the activated spinal microglia. Brain Behav. Immun. 22(1), 114–123 (2008).
  • Hutchinson MR, Lewis SS, Coats BD et al. Reduction of opioid withdrawal and potentiation of acute opioid analgesia by systemic AV411 (ibudilast). Brain Behav. Immun. 23(2), 240–250 (2009).
  • Raghavendra V, Tanga FY, DeLeo JA. Attenuation of morphine tolerance, withdrawal-induced hyperalgesia, and associated spinal inflammatory immune responses by propentofylline in rats. Neuropsychopharmacology 29(2), 327–334 (2004).
  • Raghavendra V, Rutkowski MD, DeLeo JA. The role of spinal neuroimmune activation in morphine tolerance/hyperalgesia in neuropathic and sham-operated rats. J. Neurosci. 22(22), 9980–9989 (2002).
  • Hutchinson MR, Zhang Y, Brown K et al. Nonstereoselective reversal of neuropathic pain by naloxone and naltrexone: involvement of toll-like receptor 4 (TLR4). Eur. J. Neurosci. 28(1), 20–29 (2008).
  • Hutchinson MR, Northcutt AL, Chao LW et al. Minocycline suppresses morphine-induced respiratory depression, suppresses morphine-induced reward, and enhances systemic morphine-induced analgesia. Brain Behav. Immun. 22(8), 1248–1256 (2008).
  • Fairbanks CA, Wilcox GL. Spinal plasticity of acute opioid tolerance. J. Biomed. Sci. 7(3), 200–212 (2000).
  • Risdahl JM, Khanna KV, Peterson PK, Molitor TW. Opiates and infection. J. Neuroimmunol. 83(1–2), 4–18 (1998).
  • Menzebach A, Hirsch J, Nöst R, Mogk M, Hempelmann G, Welters ID. (Morphine inhibits complement receptor expression, phagocytosis and oxidative burst by a nitric oxide dependent mechanism). Anasthesiol. Intensivmed. Notfallmed. Schmerzther. 39(4), 204–211 (2004).
  • Budd K. Pain management: is opioid immunosuppression a clinical problem? Biomed. Pharmacother. 60(7), 310–317 (2006).
  • Sacerdote P, Manfredi B, Mantegazza P, Panerai AE. Antinociceptive and immunosuppressive effects of opiate drugs: a structure-related activity study. Br. J. Pharmacol. 121(4), 834–840 (1997).
  • Dunne DW, Shaw A, Bockenstedt LK et al. Increased TLR4 expression and downstream cytokine production in immunosuppressed adults compared to nonimmunosuppressed adults. PLoS ONE 5(6), e11343 (2010).
  • Takagi K, Fukuda H, Watanabe M. Studies on antitussives. III.(+)-Morphine. Yakugaku Zasshi. 80, 1506–1509 (1960).
  • Goldstein A, Lowney LI, Pal BK. Stereospecific and nonspecific interactions of the morphine congener levorphanol in subcellular fractions of mouse brain. Proc. Natl Acad. Sci. USA 68(8), 1742–1747 (1971).
  • Wu HE, Hong JS, Tseng LF. Stereoselective action of (+)-morphine over (-)-morphine in attenuating the (-)-morphine-produced antinociception via the naloxone-sensitive sigma receptor in the mouse. Eur. J. Pharmacol. 571(2–3), 145–151 (2007).
  • Wu HE, Thompson J, Sun HS, Terashvili M, Tseng LF. Antianalgesia: stereoselective action of dextro-morphine over levo-morphine on glia in the mouse spinal cord. J. Pharmacol. Exp. Ther. 314(3), 1101–1108 (2005).
  • Wu HE, Sun HS, Terashivili M et al. dextro- and levo-morphine attenuate opioid delta and kappa receptor agonist produced analgesia in µ-opioid receptor knockout mice. Eur. J. Pharmacol. 531(1–3), 103–107 (2006).
  • Juni A, Klein G, Pintar JE, Kest B. Nociception increases during opioid infusion in opioid receptor triple knockout mice. Neuroscience 147(2), 439–444 (2007).
  • Waxman AR, Arout C, Caldwell M, Dahan A, Kest B. Acute and chronic fentanyl administration causes hyperalgesia independently of opioid receptor activity in mice. Neurosci. Lett. 462(1), 68–72 (2009).
  • Hutchinson MR, Zhang Y, Shridhar M et al. Evidence that opioids may have toll-like receptor 4 and MD-2 effects. Brain Behav. Immun. 24(1), 83–95 (2010).
  • Wang X, Loram LC, Ramos K et al. Morphine activates neuroinflammation in a manner parallel to endotoxin. Proc. Natl Acad. Sci. USA 109(16), 6325–6330 (2012).
  • Tanga FY, Nutile-McMenemy N, DeLeo JA. The CNS role of Toll-like receptor 4 in innate neuroimmunity and painful neuropathy. Proc. Natl Acad. Sci. USA 102(16), 5856–5861 (2005).
  • Kawasaki Y, Zhang L, Cheng JK, Ji RR. Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1β, interleukin-6, and tumor necrosis factor-α in regulating synaptic and neuronal activity in the superficial spinal cord. J. Neurosci. 28(20), 5189–5194 (2008).
  • Dame JB, Juul SE. The distribution of receptors for the proinflammatory cytokines interleukin (IL)-6 and IL-8 in the developing human fetus. Early Hum. Dev. 58(1), 25–39 (2000).
  • Holmes GM, Hebert SL, Rogers RC, Hermann GE. Immunocytochemical localization of TNF type 1 and type 2 receptors in the rat spinal cord. Brain Res. 1025(1–2), 210–219 (2004).
  • Ohtori S, Takahashi K, Moriya H, Myers RR. TNF-α and TNF-α receptor type 1 upregulation in glia and neurons after peripheral nerve injury: studies in murine DRG and spinal cord. Spine 29(10), 1082–1088 (2004).
  • Oka T, Aou S, Hori T. Intracerebroventricular injection of interleukin-1β enhances nociceptive neuronal responses of the trigeminal nucleus caudalis in rats. Brain Res. 656(2), 236–244 (1994).
  • Viviani B, Bartesaghi S, Gardoni F et al. Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J. Neurosci. 23(25), 8692–8700 (2003).
  • Broom DC, Samad TA, Kohno T, Tegeder I, Geisslinger G, Woolf CJ. Cyclooxygenase 2 expression in the spared nerve injury model of neuropathic pain. Neuroscience 124(4), 891–900 (2004).
  • De A, Krueger JM, Simasko SM. Tumor necrosis factor alpha increases cytosolic calcium responses to AMPA and KCl in primary cultures of rat hippocampal neurons. Brain Res. 981(1–2), 133–142 (2003).
  • Stellwagen D, Beattie EC, Seo JY, Malenka RC. Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. J. Neurosci. 25(12), 3219–3228 (2005).
  • Emch GS, Hermann GE, Rogers RC. TNF-α-induced c-Fos generation in the nucleus of the solitary tract is blocked by NBQX and MK-801. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281(5), R1394–R1400 (2001).
  • Sperlágh B, Baranyi M, Haskó G, Vizi ES. Potent effect of interleukin-1β to evoke ATP and adenosine release from rat hippocampal slices. J. Neuroimmunol. 151(1–2), 33–39 (2004).
  • Watkins LR, Hansen MK, Nguyen KT, Lee JE, Maier SF. Dynamic regulation of the proinflammatory cytokine, interleukin-1β: molecular biology for nonmolecular biologists. Life Sci. 65(5), 449–481 (1999).
  • Samad TA, Moore KA, Sapirstein A et al. Interleukin-1β-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature 410(6827), 471–475 (2001).
  • Inoue K. The function of microglia through purinergic receptors: neuropathic pain and cytokine release. Pharmacol. Ther. 109(1–2), 210–226 (2006).
  • Tawfik VL, Lacroix-Fralish ML, Bercury KK, Nutile-McMenemy N, Harris BT, Deleo JA. Induction of astrocyte differentiation by propentofylline increases glutamate transporter expression in vitro: heterogeneity of the quiescent phenotype. Glia 54(3), 193–203 (2006).
  • Murphy PM, Baggiolini M, Charo IF et al. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol. Rev. 52(1), 145–176 (2000).
  • Szabo I, Chen XH, Xin L et al. Heterologous desensitization of opioid receptors by chemokines inhibits chemotaxis and enhances the perception of pain. Proc. Natl Acad. Sci. USA 99(16), 10276–10281 (2002).
  • Chen X, Geller EB, Rogers TJ, Adler MW. Rapid heterologous desensitization of antinociceptive activity between mu or delta opioid receptors and chemokine receptors in rats. Drug Alcohol Depend. 88(1), 36–41 (2007).
  • Triantafilou M, Lepper PM, Briault CD et al. Chemokine receptor 4 (CXCR4) is part of the lipopolysaccharide ‘sensing apparatus’. Eur. J. Immunol. 38(1), 192–203 (2008).
  • Asensio VC, Campbell IL. Chemokines in the CNS: plurifunctional mediators in diverse states. Trends Neurosci. 22(11), 504–512 (1999).
  • Verge GM, Milligan ED, Maier SF, Watkins LR, Naeve GS, Foster AC. Fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) distribution in spinal cord and dorsal root ganglia under basal and neuropathic pain conditions. Eur. J. Neurosci. 20(5), 1150–1160 (2004).
  • Chapman GA, Moores K, Harrison D, Campbell CA, Stewart BR, Strijbos PJ. Fractalkine cleavage from neuronal membranes represents an acute event in the inflammatory response to excitotoxic brain damage. J. Neurosci. 20(15), RC87 (2000).
  • Stievano L, Piovan E, Amadori A. C and CX3C chemokines: cell sources and physiopathological implications. Crit. Rev. Immunol. 24(3), 205–228 (2004).
  • Milligan ED, Zapata V, Chacur M et al. Evidence that exogenous and endogenous fractalkine can induce spinal nociceptive facilitation in rats. Eur. J. Neurosci. 20(9), 2294–2302 (2004).
  • Milligan E, Zapata V, Schoeniger D et al. An initial investigation of spinal mechanisms underlying pain enhancement induced by fractalkine, a neuronally released chemokine. Eur. J. Neurosci. 22(11), 2775–2782 (2005).
  • Rock RB, Hu S, Sheng WS, Peterson PK. Morphine stimulates CCL2 production by human neurons. J. Neuroinflammation 3, 32 (2006).
  • Zhang J, Shi XQ, Echeverry S, Mogil JS, De Koninck Y, Rivest S. Expression of CCR2 in both resident and bone marrow-derived microglia plays a critical role in neuropathic pain. J. Neurosci. 27(45), 12396–12406 (2007).
  • Grimm MC. Opiates transdeactivate chemokine receptors: delta and opiate receptor-mediated heterologous desensitization. J. Exp. Med. 188(2), 317–325 (1998).
  • Steele AD, Szabo I, Bednar F, Rogers TJ. Interactions between opioid and chemokine receptors: heterologous desensitization. Cytokine Growth Factor Rev. 13(3), 209–222 (2002).
  • Rogers TJ, Steele AD, Howard OM, Oppenheim JJ. Bidirectional heterologous desensitization of opioid and chemokine receptors. Ann. NY Acad. Sci. 917, 19–28 (2000).
  • Chen X, Geller EB, Rogers TJ, Adler MW. The chemokine CX3CL1/fractalkine interferes with the antinociceptive effect induced by opioid agonists in the periaqueductal grey of rats. Brain Res. 1153, 52–57 (2007).
  • Zhang N, Rogers TJ, Caterina M, Oppenheim JJ. Proinflammatory chemokines, such as C-C chemokine ligand 3, desensitize µ-opioid receptors on dorsal root ganglia neurons. J. Immunol. 173(1), 594–599 (2004).
  • Raiteri M, Paudice P, Vallebuona F. Release of cholecystokinin in the central nervous system. Neurochem. Int. 22(6), 519–527 (1993).
  • Vanderhaeghen JJ, Signeau JC, Gepts W. New peptide in the vertebrate CNS reacting with antigastrin antibodies. Nature 257(5527), 604–605 (1975).
  • Wiesenfeld-Hallin Z, Xu XJ. The role of cholecystokinin in nociception, neuropathic pain and opiate tolerance. Regul. Pept. 65(1), 23–28 (1996).
  • Ossipov MH, Lai J, Vanderah TW, Porreca F. Induction of pain facilitation by sustained opioid exposure: relationship to opioid antinociceptive tolerance. Life Sci. 73(6), 783–800 (2003).
  • Mantyh PW, Hunt SP. Evidence for cholecystokinin-like immunoreactive neurons in the rat medulla oblongata which project to the spinal cord. Brain Res. 291(1), 49–54 (1984).
  • Xie JY, Herman DS, Stiller CO et al. Cholecystokinin in the rostral ventromedial medulla mediates opioid-induced hyperalgesia and antinociceptive tolerance. J. Neurosci. 25(2), 409–416 (2005).
  • Itoh S, Katsuura G, Maeda Y. Caerulein and cholecystokinin suppress β-endorphin-induced analgesia in the rat. Eur. J. Pharmacol. 80(4), 421–425 (1982).
  • Faris PL, Komisaruk BR, Watkins LR, Mayer DJ. Evidence for the neuropeptide cholecystokinin as an antagonist of opiate analgesia. Science 219(4582), 310–312 (1983).
  • Li Y, Han JS. Cholecystokinin–octapeptide antagonizes morphine analgesia in periaqueductal gray of the rat. Brain Res. 480(1–2), 105–110 (1989).
  • Watkins LR, Kinscheck IB, Kaufman EF, Miller J, Frenk H, Mayer DJ. Cholecystokinin antagonists selectively potentiate analgesia induced by endogenous opiates. Brain Res. 327(1–2), 181–190 (1985).
  • Watkins LR, Kinscheck IB, Mayer DJ. Potentiation of morphine analgesia by the cholecystokinin antagonist proglumide. Brain Res. 327(1–2), 169–180 (1985).
  • Dourish CT, O’Neill MF, Coughlan J, Kitchener SJ, Hawley D, Iversen SD. The selective CCK-B receptor antagonist l-365,260 enhances morphine analgesia and prevents morphine tolerance in the rat. Eur. J. Pharmacol. 176(1), 35–44 (1990).
  • Rezayat M, Nikfar S, Zarrindast MR. CCK receptor activation may prevent tolerance to morphine in mice. Eur. J. Pharmacol. 254(1–2), 21–26 (1994).
  • Chapman V, Honoré P, Buritova J, Besson JM. Cholecystokinin B receptor antagonism enhances the ability of a low dose of morphine to reduce c-Fos expression in the spinal cord of the rat. Neuroscience 67(3), 731–739 (1995).
  • Vanderah TW, Lai J, Yamamura HI, Porreca F. Antisense oligodeoxynucleotide to the CCKB receptor produces naltrindole- and [Leu5]enkephalin antiserum-sensitive enhancement of morphine antinociception. Neuroreport 5(18), 2601–2605 (1994).
  • Heinricher MM, Morgan MM, Tortorici V, Fields HL. Disinhibition of off-cells and antinociception produced by an opioid action within the rostral ventromedial medulla. Neuroscience 63(1), 279–288 (1994).
  • Fields HL, Vanegas H, Hentall ID, Zorman G. Evidence that disinhibition of brain stem neurones contributes to morphine analgesia. Nature 306(5944), 684–686 (1983).
  • Heinricher MM, Morgan MM, Fields HL. Direct and indirect actions of morphine on medullary neurons that modulate nociception. Neuroscience 48(3), 533–543 (1992).
  • Pan ZZ, Williams JT, Osborne PB. Opioid actions on single nucleus raphe magnus neurons from rat and guinea-pig in vitro. J. Physiol. (Lond.) 427, 519–532 (1990).
  • Fields H. Is there a facilitating component to central pain modulation? APS J. 1(2), 139–141 (1992).
  • Bederson JB, Fields HL, Barbaro NM. Hyperalgesia during naloxone-precipitated withdrawal from morphine is associated with increased on-cell activity in the rostral ventromedial medulla. Somatosens. Mot. Res. 7(2), 185–203 (1990).
  • Heinricher MM, Tortorici V. Interference with GABA transmission in the rostral ventromedial medulla: disinhibition of off-cells as a central mechanism in nociceptive modulation. Neuroscience 63(2), 533–546 (1994).
  • Heinricher MM, McGaraughty S, Tortorici V. Circuitry underlying antiopioid actions of cholecystokinin within the rostral ventromedial medulla. J. Neurophysiol. 85(1), 280–286 (2001).
  • Heinricher MM, Neubert MJ. Neural basis for the hyperalgesic action of cholecystokinin in the rostral ventromedial medulla. J. Neurophysiol. 92(4), 1982–1989 (2004).
  • de Araujo Lucas G, Alster P, Brodin E, Wiesenfeld-Hallin Z. Differential release of cholecystokinin by morphine in rat spinal cord. Neurosci. Lett. 245(1), 13–16 (1998).
  • Ding XZ, Bayer BM. Increases of CCK mRNA and peptide in different brain areas following acute and chronic administration of morphine. Brain Res. 625(1), 139–144 (1993).
  • Zhou Y, Sun YH, Zhang ZW, Han JS. Accelerated expression of cholecystokinin gene in the brain of rats rendered tolerant to morphine. Neuroreport 3(12), 1121–1123 (1992).
  • Trang T, Beggs S, Wan X, Salter MW. P2X4-receptor-mediated synthesis and release of brain-derived neurotrophic factor in microglia is dependent on calcium and p38-mitogen-activated protein kinase activation. J. Neurosci. 29(11), 3518–3528 (2009).
  • Ji RR, Gereau RW 4th, Malcangio M, Strichartz GR. MAP kinase and pain. Brain Res. Rev. 60(1), 135–148 (2009).
  • McMahon SB, Malcangio M. Current challenges in glia-pain biology. Neuron 64(1), 46–54 (2009).
  • Chen Y, Sommer C. The role of mitogen-activated protein kinase (MAPK) in morphine tolerance and dependence. Mol. Neurobiol. 40(2), 101–107 (2009).
  • Snyder SH. Nitric oxide: first in a new class of neurotransmitters. Science 257(5069), 494–496 (1992).
  • González-Hernández T, Rustioni A. Expression of three forms of nitric oxide synthase in peripheral nerve regeneration. J. Neurosci. Res. 55(2), 198–207 (1999).
  • Tao F, Tao YX, Mao P et al. Intact carrageenan-induced thermal hyperalgesia in mice lacking inducible nitric oxide synthase. Neuroscience 120(3), 847–854 (2003).
  • Meller S, Pechman PS, Gebhart GF, Maves TJ. Nitric oxide mediates the thermal hyperalgesia produced in a model of neuropathic pain in the rat. Neuroscience 50, 7–10 (1992).
  • Machelska H, Ziólkowska B, Mika J, Przewlocka B, Przewlocki R. Chronic morphine increases biosynthesis of nitric oxide synthase in the rat spinal cord. Neuroreport 8(12), 2743–2747 (1997).
  • Célérier E, González JR, Maldonado R, Cabañero D, Puig MM. Opioid-induced hyperalgesia in a murine model of postoperative pain: role of nitric oxide generated from the inducible nitric oxide synthase. Anesthesiology 104(3), 546–555 (2006).
  • Kolesnikov YA, Pick CG, Ciszewska G, Pasternak GW. Blockade of tolerance to morphine but not to kappa opioids by a nitric oxide synthase inhibitor. Proc. Natl Acad. Sci. USA 90(11), 5162–5166 (1993).
  • Meller ST, Gebhart GF. Nitric oxide (NO) and nociceptive processing in the spinal cord. Pain 52(2), 127–136 (1993).
  • Freeman SE, Patil VV, Durham PL. Nitric oxide-proton stimulation of trigeminal ganglion neurons increases mitogen-activated protein kinase and phosphatase expression in neurons and satellite glial cells. Neuroscience 157(3), 542–555 (2008).
  • Holguin A, O’Connor KA, Biedenkapp J et al. HIV-1 gp120 stimulates proinflammatory cytokine-mediated pain facilitation via activation of nitric oxide synthase-I (nNOS). Pain 110(3), 517–530 (2004).
  • Bryan L, Kordula T, Spiegel S, Milstien S. Regulation and functions of sphingosine kinases in the brain. Biochim. Biophys. Acta 1781(9), 459–466 (2008).
  • Pyne S, Lee SC, Long J, Pyne NJ. Role of sphingosine kinases and lipid phosphate phosphatases in regulating spatial sphingosine 1-phosphate signalling in health and disease. Cell. Signal. 21(1), 14–21 (2009).
  • Okada T, Kajimoto T, Jahangeer S, Nakamura S. Sphingosine kinase/sphingosine 1-phosphate signalling in central nervous system. Cell. Signal. 21(1), 7–13 (2009).
  • Nayak D, Huo Y, Kwang WX et al. Sphingosine kinase 1 regulates the expression of proinflammatory cytokines and nitric oxide in activated microglia. Neuroscience 166(1), 132–144 (2010).
  • Muscoli C, Cuzzocrea S, Ndengele MM et al. Therapeutic manipulation of peroxynitrite attenuates the development of opiate-induced antinociceptive tolerance in mice. J. Clin. Invest. 117(11), 3530–3539 (2007).
  • Pautz A, Franzen R, Dorsch S et al. Cross-talk between nitric oxide and superoxide determines ceramide formation and apoptosis in glomerular cells. Kidney Int. 61(3), 790–796 (2002).
  • Schildknecht S, Pape R, Müller N et al. Neuroprotection by minocycline caused by direct and specific scavenging of peroxynitrite. J. Biol. Chem. 286(7), 4991–5002 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.