224
Views
35
CrossRef citations to date
0
Altmetric
Perspective

Viral infection and pulmonary hypertension: is there an association?

, &
Pages 207-216 | Published online: 09 Jan 2014

References

  • Simonneau G, Robbins IM, Beghetti M et al. Updated clinical classification of pulmonary hypertension. J. Am. Coll. Cardiol.54, S43–S54 (2009).
  • BMPR2 gene Aldred MA, Vijayakrishnan J, James V et al. rearrangements account for a significant proportion of mutations in familial and idiopathic pulmonary arterial hypertension. Hum. Mutat.27, 212–213 (2006).
  • Nana-Sinkam P, Oyer RJ, Stearman RS et al. Prostacyclin synthase promoter regulation and familial pulmonary arterial hypertension. Chest128, 612S (2005).
  • Cogan JD, Pauciulo MW, Batchman AP et al. High frequency of BMPRT2 exonic deleteions/duplications in familial pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med.174, 590–598 (2006).
  • Hatano S, Strasser T. Primary Pulmonary Hypertension: Report on a WHO Meeting. October 15–17, 1973. World Health Organization, Geneva, Switzerland (1975).
  • Simonneau G, Galiè N, Rubin LJ et al. Clinical classification of pulmonary hypertension. J. Am. Coll. Cardiol.43, 5S–12S (2004).
  • Cool CD, Stewart JS, Werahera P et al. Three-dimensional reconstruction of pulmonary arteries in plexiform pulmonary hypertension using cell-specific markers. Evidence for a dynamic and heterogeneous process of pulmonary endothelial cell growth. Am. J. Pathol.155, 411–419 (1999).
  • Sitbon O, Humbert M, Xavier J et al. Long-term response to calcium channel blockers in idiopathic pulmonary arterial hypertension. Circulation111, 3105–3111 (2005).
  • Barst RJ, Maislin G, Fishman AP. Vasodilator therapy for primary pulmonary hypertension in children. Circulation99, 1197–1208 (1999).
  • Yung D, Widlitz AC, Rosenzweig EB et al. Outcomes in children with idiopathic pulmonary arterial hypertension. Circulation110, 660–665. (2004).
  • Beghetti M, Galiè N. Eisenmenger syndrome. A clinical perspective in a new therapeutic era of pulmonary arterial hypertension. J. Am. Coll. Cardiol.53, 733–740 (2009).
  • Sakao S, Tatsumi K, Voelkel NF. Endothelial cells and pulmonary arterial hypertension: apoptosis, proliferation, interaction and transdifferentiation. Respir. Res.10, 95–103 (2009).
  • Tuder RM, Groves B, Badesch DB et al. Exuberant endothelial cell growth and elements of inflammation are present in plexiform lesions of pulmonary hypertension. Am. J. Pathol.144, 275–285 (1994).
  • Tuder RM, Chacon M, Alger L et al. Expression of angiogenesis-related molecules in plexiform lesions in severe pulmonary hypertension: evidence for a process of disordered angiogenesis. J. Pathol.195, 367–374 (2001).
  • Du L, Sullivan CC, Chu D et al. Signaling molecules in nonfamilial pulmonary hypertension. N. Engl. J. Med.348, 500–509 (2003).
  • Mason NA, Springall DR, Burke M et al. High expression of endothelial nitric oxide synthase in plexiform lesions of pulmonary hypertension. J. Pathol.185, 313–318 (1998).
  • Xue C, Johns RA. Upregulation of nitric oxide synthase correlates temporally with onset of pulmonary vascular remodeling in the hypoxic rat. Hypertension28, 743–753 (1996).
  • Giaid A, Yanagisawa M, Langleben D et al. Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N. Engl. J. Med.328, 1732–1739 (1993).
  • Golpon HA, Geraci MW, Moore MD et al. HOX genes in human lung: altered expression in primary pulmonary hypertension and emphysema Am. J. Pathol.158, 955–966 (2001).
  • Dorfmuller P, Zarka V, Durand-Gasselin I et al. Chemokine RANTES in severe pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med.165, 534–539 (2002).
  • Cool CD, Groshong SD, Oakey J, Voelkel NF. Pulmonary hypertension: cellular and molecular mechanisms. Chest128, 565S–571S (2005).
  • Wright L, Tuder RM, Wang J et al. 5-lipoxygenase and 5-lipoxygenase activating protein (FLAP) immunoreactivity in lungs from patients with primary pulmonary hypertension. Am. J. Respir. Crit. Care Med.157, 219–229 (1998).
  • Tuder RM, Cool CD, Geraci MW et al. Prostacyclin synthase expression is decreased in lungs from patients with severe pulmonary hypertension. Am. J. Respir. Crit. Care Med.159, 1925–1932 (1999).
  • Achcar R, Yoshiki D, Rai PR et al. Loss of caveolin and heme oxygenase expression in severe pulmonary hypertension. Chest129, 696–705 (2006).
  • Ameshima S, Golpon H, Cool CD et al. Peroxisome proliferator-activated receptor γ (PPARγ) expression is decreased in pulmonary hypertension and affects endothelial cell growth. Circ. Res.92, 1162–1169 (2003).
  • Rai PR, Cool CD, King JA et al. The cancer paradigm of severe pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med.178, 558–564 (2008).
  • Lee SD, Shroyer KR, Markham NE et al. Monoclonal endothelial cell proliferation is present in primary but not secondary pulmonary hypertension. J. Clin. Invest.101, 927–934 (1998).
  • Yeager ME, Halley GR, Golpon HA et al. Microsatellite instability of endothelial cell growth and apoptosis genes within plexiform lesions in primary pulmonary hypertension. Circ. Res.88, e8–e11 (2001).
  • Richter A, Yeager ME, Zaiman A et al. Impaired transforming growth factor-β signaling in idiopathic pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med.170, 1340–1348 (2004).
  • Masri FA, Xu W, Comhair SA et al. Hyperproliferative apoptosis-resistant endothelial cells in idiopathic pulmonary arterial hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol.293, L548–L554 (2007).
  • Taraseviciene-Stewart L, Kasahara Y, Alger L et al. Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension. FASEB J.15, 427–438 (2001).
  • Taraseviciene-Stewart L, Scerbavicius R, Stewart JM et al. Treatment of severe pulmonary hypertension: a bradykinin receptor 2 agonist B9972 causes reduction of pulmonary artery pressure and right ventricular hypertrophy. Peptides26, 1292–1300, (2005).
  • Chang Y, Cesarman MS, Pess F et al. Identification of herpesviruslike DNA sequences in AIDS-associated Kaposi’s sarcoma. Science266, 1865–1869 (1994).
  • Memar OM, Rady PL, Tyring SK. Human herpesvirus-8: detection of novel herpesvirus-like DNA sequences in Kaposi’s sarcoma and other lesions. J. Mol. Med.73, 603–609 (1995).
  • Whitby D, Howard MR, Tenant-Flowers M et al. Detection of Kaposi sarcoma associated herpesvirus in peripheral blood of HIV-infected individuals and progression to Kaposi’s sarcoma. Lancet346, 799–802 (1995).
  • Chang Y, Antman K. Kaposi’s Sarcoma. N. Engl. J. Med.342, 1027–1038 (2000).
  • Jenner RG, Boshoff C. The molecular pathology of Kaposi’s sarcoma-associated herpesvirus. Biochim. Biophys. Acta1602, 1–22 (2002).
  • Ensoli B, Sgadari C, Barillari G, Sirianni MC, Sturzl M, Monini P. Biology of Kaposi’s sarcoma. Eur. J. Cancer37, 1251–1269 (2001).
  • Jensen KK, Manfra DJ, Grisotto MG et al. The human herpes virus 8-encoded chemokine receptor is required for angioproliferation in a murine model of Kaposi’s sarcoma. J. Immunol.174, 3686–3694 (2005).
  • Bais C, Santomasso B, Coso O et al. G-protein-coupled receptor of Kaposi’s sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature391, 86 (1998).
  • Pati S, Cavrois M, Guo HG et al. Activation of NF-κB by the human herpesvirus 8 chemokinereceptor ORF74: evidence for a paracrine model of Kaposi’s sarcoma pathogenesis. J. Virol.7, 8660 (2001).
  • Polson AG, Wang D, DeRisi J, Ganem D. Modulation of host gene expression by the constitutively active G protein-coupled receptor of Kaposi’s sarcoma-associated herpesvirus. Cancer Res.62, 4525 (2002).
  • Schwarz M, Murphy PM. Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor constitutively activates NF-κB and induces proinflammatory cytokine and chemokine production via a C-terminal signaling determinant. J. Immunol.167, 505 (2001).
  • Yang TY, Chen SC, Leach MW et al. Transgenic expression of the chemokine receptor encoded by human herpesvirus 8 induces an angioproliferative disease resembling Kaposi’s sarcoma. J. Exp. Med.191, 445–454 (2000).
  • Montaner S, Sodhi A, Molinolo A et al. Endothelial infection with KSHV genes in vivo reveals that vGPCR initiates Kaposi’s sarcomagenesis and can promote the tumorigenic potential of viral latent genes. Cancer Cell3, 23–36 (2003).
  • Flore O, Rafii S, Ely S et al. Transformation of primary human endothelial cells by Kaposi’s sarcoma-associated herpesvirus. Nature394, 588–592 (1998).
  • Dupin N, Fisher C, Kellam P et al. Distribution of human herpesvirus-8 latently infected cells in Kaposi’s sarcoma, multicentric Castleman’s disease, and primary effusion lymphoma. Proc. Natl Acad. Sci. USA96, 4546–4551 (1999).
  • Cesarman E, Mesri EA, Gershengorn MC. Viral G protein-coupled receptor and Kaposi’s sarcoma: a model of paracrine neoplasia? J. Exp. Med.191, 417–422 (2000).
  • Grisotto MG, Garin A, Martin AP et al. The human herpesvirus 8 chemokine receptor vGPCR triggers autonomous proliferation of endothelial cells. J. Clin. Invest.116, 1264–1273 (2006).
  • Calore EE. Herpes simplex 2 pneumonia. Braz. J. Infect. Dis.6, 305–308 (2002).
  • Smith FB, Arias JH, Elmquist TH, Mazzara JT. Microvascular cytomegalovirus endothelialitis of the lung: a possible cause of secondary pulmonary hypertension. Chest114, 337–340 (1998).
  • Marecki JC, Cool CD, Parr JE et al. HIV-1 Nef is associated with complex pulmonary vascular lesions in SHIV-Nef-infected macaques. Am. J. Respir. Crit. Care Med.174, 437–445 (2006).
  • Graziani A, Galimi F, Medico E et al. The HIV-1 Nef protein interferes with phosphatidylinositol 3-kinase activation 1. J. Biol. Chem.271, 6590–6593 (1996).
  • Linnemann T, Zheng YH, Mandic R et al. Interaction between Nef and phosphatidylinositol-3-kinase leads to activation of p21-activated kinase and increased production of HIV. Virology294, 246–255 (2002).
  • He JC, Husain M, Sunamoto M et al. Nef stimulates proliferation of glomerular podocytes through activation of Src-dependent Stat3 and MAPK1,2 pathways. J. Clin. Invest.114, 643–651 (2004).
  • Krautkramer E, Giese SI, Gasteier JE et al. Human immunodeficiency virus type 1 Nef activates p21-activated kinase via recruitment into lipid rafts. J. Virol.78, 4085–4097 (2004).
  • Olivetta E, Percario Z, Fiorucci G et al. HIV-1 Nef induces the release of inflammatory factors from human monocyte/macrophages: involvement of Nef endocytotic signals and NF-κ B activation. J. Immunol.170, 1716–1727 (2003).
  • Pellicelli AM, Barbaro G, Palmieri F et al. Primary pulmonary hypertension in HIV patients: a systematic review. Angiology52, 31–41 (2001).
  • Hughes JD, Rubin LJ. Primary pulmonary hypertension an analysis of 28 cases and a review of the literature. Medicine65, 56–72 (1986).
  • Speich R, Jenni R, Opravil M, Pfab M, Russi EW. Primary pulmonary hypertension in HIV infection, Chest100, 1268–1271 (1991).
  • Kim KK, Factor SM. Membranoproliferative glomerulonephritis and plexogenic pulmonary arteriopathy in a homosexual man with acquired immunodeficiency syndrome. Hum. Pathol.18, 293–296 (1987).
  • Kanmogne GD, Kennedy RC, Grammas P. Is HIV involved in the pathogenesis of non-infectious pulmonary complications in infected patients? Curr. HIV Res.4, 385–393 (2003).
  • Mette SA, Palevsky HI, Pietra GG et al. Primary pulmonary hypertension in association with human immunodeficiency virus infection. A possible viral etiology for some forms of hypertensive pulmonary arteriopathy. Am. Rev. Respir. Dis.145, 1196–1200 (1992).
  • Opravil M, Pechere M, Speich R et al. HIV-associated primary pulmonary hypertension. A case control study. Swiss HIV cohort study. Am. J. Respir. Crit. Care Med.155, 990–995 (1997).
  • Kirchhoff F, Greenough TC, Brettler DB, Sullivan JL, Desrosiers RC. Brief report: absence of intact nef sequences in a long-term survivor with nonprogressive HIV-1 infection. N. Engl. J. Med.332, 228–232 (1995).
  • Kestler HW 3rd, Ringler DJ, Mori K et al. Importance of the nef gene for maintenance of high virus loads and for development of AIDS. Cell65, 651–662 (1991).
  • James CO, Huang MB, Khan M, Garcia-Barrio M, Powell MD, Bond VC. Extracellular Nef protein targets CD4R T cells for apoptosis by interacting with CXCR4 surface receptors. J. Virol.78, 3099–3109 (2004).
  • Huang MB, Jin LL, James CO, Khan M, Powell MD, Bond VC. Characterization of Nef–CXCR4 interactions important for apoptosis induction. J. Virol.78, 11084–11096 (2004).
  • Kanmogne GD, Primeaux C, Grammas P. Induction of apoptosis and endothelin-1 secretion in primary human lung endothelial cells by HV-1 gp120 proteins. Biochem. Biophys. Res. Comm.333, 1107–1115 (2005).
  • Fagan KA, McMurtry IF, Rodman DM. Role of endothelin-1 in lung disease. Respir. Res.2, 90–101 (2001).
  • Filippatos GS, Gangopadhyay N, Lalude O et al. Regulation of apoptosis by vasoactive peptides. Am. J. Physiol. Lung Cell. Mol. Physiol.281, L749–L761 (2001).
  • Hofman FM, Wright AD, Dohadwala MM, Wong-Staal F, Walker SM. Exogenous Tat protein activates human endothelial cells. Blood82, 2774–2780 (1993).
  • Humbert M, Monti G, Brenot F et al. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. Am. J. Respir. Crit. Care Med.151, 1628–31 (1995).
  • Bull TM, Cool CD, Serls AE et al. Primary pulmonary hypertension, Castleman’s disease and human herpesvirus-8. Eur. Respir. J.22, 403–407 (2003).
  • Winter SS, Howard TA, Ritchey AK, Keller FG, Ware RE. Elevated levels of tumor necrosis factor-β, γ-interferon, and IL-6 mRNA in Castleman’s disease. Med. Pediatr. Oncol.26, 48–53 (1996).
  • Nishi J, Maruyama I. Increased expression of vascular endothelial growth factor (VEGF) in Castleman’s disease: proposed pathomechanism of vascular proliferation in the affected lymph node. Leuk. Lymphoma.38, 387–394 (2000).
  • Moore PS, Boshoff C, Weiss RA, Chang Y. Molecular mimicry of human cytokine and cytokine response pathway genes by KSHV. Science274, 1739 (1996).
  • Neipel F, Albrecht JC, Ensser A et al. Human herpesvirus 8 encodes a homolog of interleukin-6. J. Virol.71, 839 (1997).
  • Nicholas J, Ruvolo VR, Burns WH et al. Kaposi’s sarcoma associated human herpesvirus-8 encodes homologues of macrophage inflammatory protein-1 and interleukin-6. Nat. Med.3, 287 (1997).
  • Burger R, Neipel F, Fleckenstein B et al. Human herpesvirus type 8 interleukin-6 homologue is functionally active on human myeloma cells. Blood91, 1858–1863 (1998).
  • Cohen T, Nahari D, Cerem LW, Neufeld G, Levi BZ. Interleukin 6 induces the expression of vascular endothelial growth factor. J. Biol. Chem.271, 736 (1996).
  • Cool CD, Rai PR, Yeager ME et al. Expression of human herpesvirus 8 in primary pulmonary hypertension. N. Engl. J. Med.349, 1113–1122 (2003).
  • Henke-Gendo C, Mengel M, Hoeper MM, Alkharsah K, Schulz TF. Absence of Kaposi’s sarcoma-associated herpesvirus in patients with pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med.172, 1581–1585 (2005).
  • Nicastri E. Human herpesvirus 8 and pulmonary hypertension. Emerg. Infect. Dis.11, 480–482 (2005).
  • Laney AS, De Marco T, Peters JS et al. Kaposi sarcoma-associated herpesvirus and primary and secondary pulmonary hypertension. Chest127, 762–767 (2005).
  • Montani D, Achouh L, Marcelin AG et al. Reversibility of pulmonary arterial hypertension in HIV/HHV8-associated Castleman’s disease. Eur. Respir. J.26, 969–972 (2005).
  • Opravil M, Sereni D. Natural history of HIV-associated pulmonary arterial hypertension: trends in the HAART era. AIDS3, 35–40 (2008).
  • Bélec L, Mohamed AS, Authier FJ et al. Human herpesvirus 8 infection in patients with POEMS syndrome-associated multicentric Castleman’s disease. Blood9, 3643–3653 (1999).
  • Lesprit P, Godeau B, Authier FJ et al. Pulmonary hypertension in POEMS syndrome: a new feature mediated by cytokines. Am. J. Respir. Crit. Care Med.157, 907–911 (1998).
  • Bull TM, Meadows CA, Coldren CD et al. Human herpesvirus-8 infection of pulmonary microvascular endothelial cells. Am. J. Respir. Cell Mol. Biol.39, 706–716 (2008).
  • Humbert M, Morrell NW, Archer SL et al. Cellular and molecular pathobiology of pulmonary arterial hypertension. J. Am. Coll. Cardiol.43, 13S–24S (2004).
  • Voelkel NF, Cool C, Taraceviene-Stewart L et al. Janus face of vascular endothelial growth factor: the obligatory survival factor for lung vascular endothelium controls precapillary artery remodeling in severe pulmonary hypertension. Crit. Care Med.30, S251–S256 (2002).
  • Durrington HJ, Upton PD, Hoer S et al. Identification of a lysosomal pathway regulating degradation of the bone morphogenetic protein receptor II. J. Biol. Chem.285, 37641–37649 (2010).
  • Dias Batista M, Ferreira S, Sauer MM et al. High human herpesvirus 8 (HHV-8) prevalence, clinical correlates and high incidence among recently HIV-1-infected subjects in Sao Paulo, Brazil. PloS ONE4(5), e5613 (2009).
  • Young RH, Mark GJ. Pulmonary vascular changes in scleroderma. Am. J. Med.64, 998–1004 (1978).
  • Kcomt W, Nahavandi AA, Myaing M, Alkhalil C, Stein D. Hepatitis C and the heart: to beat or not to beat. Int. J. Cardiol.96, 147–149 (2003).
  • Moorman J, Saad M, Kosseifi S, Krishnaswamy G. Hepatitis C virus and the lung: implications for therapy. Chest128, 2882–2892 (2005).
  • Feitelson MA, Duan LX. Hepatitis B virus X antigen in the pathogenesis of chronic infections and the development of hepatocellular carcinoma. Am. J. Pathol.150, 1141–1157 (1997).
  • Su Q, Schröder CH, Hofmann WJ, Otto G, Pichlmayr R, Bannasch P. Expression of hepatitis B virus X protein in HBV-infected human livers and hepatocellular carcinomas. Hepatology27, 1109–1120 (1998).
  • Kandemir O, Polat A, Kaya A. Inducible nitric oxide synthase expression in chronic viral hepatitis. J. Clin. Invest.101, 1343–1352 (1998).
  • Yoo YD, Ueda H, Park K et al. Regulation of transforming growth factor-β1 expression by the hepatitis B virus (HBV) X transactivator. J. Clin. Invest.97, 388–395 (1996).
  • Moon EJ, Jeon CH, Kim KR et al. Hepatitis B virus X protein induces angiogenesis by stabilizing hypoxia-inducible factor-1α. FASEB J.18, 382–384 (2004).
  • Suzuki T. Primary pulmonary hypertension in association with human T-cell lymphotropic virus type I in a hemophiliac. Ann. Intern. Med.123, 394 (1995).
  • Cool CD, Kennedy D, Voelkel NF, Tuder RM. Pathogenesis and evolution of plexiform lesions in pulmonary hypertension associated with scleroderma and human immunodeficiency virus infection. Hum. Pathol.28, 434–442 (1997).
  • Hachulla E, Gressin V, Guillevin L et al. Early detection of pulmonary arterial hypertension in systemic sclerosis: a French nationwide prospective multicenter study. Arthritis Rheum.52, 3792–3800 (2005).
  • Mukerjee D, St George D, Coleiro B et al. Prevalence and outcome in systemic sclerosis associated pulmonary arterial hypertension: application of a registry approach. Ann. Rheum. Dis.62, 1088–1093 (2003).
  • Tanaka E, Harigai M, Tanaka M, Kawaguchi Y, Hara M, Kamatani N. Pulmonary hypertension in systemic lupus erythematosus: evaluation of clinical characteristics and response to immunosuppressive treatment. J. Rheumatol.29, 282–287 (2002).
  • Asherson RA, Higenbottam TW, Dinh Xuan AT, Khamashta MA, Huges GR. Pulmonary hypertension in a lupus clinic: experience with twenty-four patients. J. Rheumatol.17, 1292–1298 (1990).
  • Burdt MA, Hoffman RW, Deutscher SL, Wang GS, Johnson JC, Sharp GC. Long-term outcome in mixed connective tissue disease: longitudinal clinical and serologic findings. Arthritis Rheum.42, 899–909 (1999).
  • Jais X, Launay D, Yaici A et al. Immunosuppressive therapy in lupus- and mixed connective tissue disease-associated pulmonary arterial hypertension: a retrospective analysis of twenty-three cases. Arthritis Rheum.58, 521–531 (2008).
  • Taraseviciene-Stewart L, Scerbavicius DK, Burns N, Cool CD, Nicolls MR, Voelkel NF. The protective role of T-lymphocytes in pulmonary vascular remodeling. Chest128, S571–S572 (2005).
  • Tamosiuniene R, Long C, Ambler K et al. Immune reconstitution prevents autoimmune inflammation and right ventricular remodeling in immunodeficiency-associated pulmonary hypertension. Circulation120, S1135 (2009).
  • Hamamdzic D, Kasman LM, LeRoy EC. The role of infectious agents in the pathogenesis of systemic sclerosis. Curr. Opin. Rheumatol.14, 694–698 (2002)
  • Harel L, Straussberg R, Rudich H, Cohen AH, Amir J. Raynaud’s phenomenon as a manifestation of parvovirus B19 infection: case reports and review of parvovirus B19 infection: case reports and review of parvovirus B19 rheumatic and vasculitic syndromes. Clin. Infect. Dis.30, 500–503 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.