123
Views
23
CrossRef citations to date
0
Altmetric
Review

Vascular abnormalities in human newborns with pulmonary hypertension

, , , , &
Pages 245-256 | Published online: 09 Jan 2014

References

  • Walsh-Sukys MC, Tyson JE, Wright LL et al. Persistent pulmonary hypertension of the newborn in the era before nitric oxide: practice variation and outcomes. Pediatrics105(1 Pt 1), 14–20 (2000).
  • Baquero H, Soliz A, Neira F, Venegas ME, Sola A. Oral sildenafil in infants with persistent pulmonary hypertension of the newborn: a pilot randomized blinded study. Pediatrics117(4), 1077–1083 (2006).
  • Leibovitch L, Matok I, Paret G. Therapeutic applications of sildenafil citrate in the management of paediatric pulmonary hypertension. Drugs67(1), 57–73 (2007).
  • Mohseni-Bod H, Bohn D. Pulmonary hypertension in congenital diaphragmatic hernia. Semin. Pediatr. Surg.16(2), 126–133 (2007).
  • Cua CL, Blankenship A, North AL, Hayes J, Nelin LD. Increased incidence of idiopathic persistent pulmonary hypertension in Down syndrome neonates. Pediatr. Cardiol.28(4), 250–254 (2007).
  • Walsh-Sukys MC. Persistent pulmonary hypertension of the newborn. The black box revisited. Clin. Perinatol.20(1), 127–143 (1993).
  • Abman SH. Recent advances in the pathogenesis and treatment of persistent pulmonary hypertension of the newborn. Neonatology91(4), 283–290 (2007).
  • Dakshinamurti S. Pathophysiologic mechanisms of persistent pulmonary hypertension of the newborn. Pediatr. Pulmonol.39(6), 492–503 (2005).
  • Geggel RL, Reid LM. The structural basis of PPHN. Clin. Perinatol.11(3), 525–549 (1984).
  • Simonneau G, Robbins IM, Beghetti M et al. Updated clinical classification of pulmonary hypertension. J. Am. Coll. Cardiol.54(Suppl. 1), S43–S54 (2009).
  • Clark RH, Huckaby JL, Kueser TJ et al. Low-dose nitric oxide therapy for persistent pulmonary hypertension: 1-year follow-up. J. Perinatol.23(4), 300–303 (2003).
  • Inhaled nitric oxide in term and near-term infants: neurodevelopmental follow-up of the neonatal inhaled nitric oxide study group (NINOS). J. Pediatr.136(5), 611–617 (2000).
  • Konduri GG, Vohr B, Robertson C et al. Early inhaled nitric oxide therapy for term and near-term newborn infants with hypoxic respiratory failure: neurodevelopmental follow-up. J. Pediatr.150(3), 235–240, e1 (2007).
  • Stenmark KR, Badesch DB, Dempsey EC et al. Regulation of pulmonary vascular wall cell growth. Eur. Respir. Rev.3, 629–637 (1993).
  • Cohen ED, Ihida-Stansbury K, Lu MM et al. Wnt signaling regulates smooth muscle precursor development in the mouse lung via a tenascin C/PDGFR pathway. J. Clin. Invest.119(9), 2538–2549 (2009).
  • Shannon JM, Hyatt BA. Epithelial–mesenchymal interactions in the developing lung. Annu. Rev. Physiol.66, 625–645 (2004).
  • Cardoso WV, Lu J. Regulation of early lung morphogenesis: questions, facts and controversies. Development133(9), 1611–1624 (2006).
  • Boyd JD. Development of the heart. In: Handbook of Physiology: A Critical, Comprehensive Presentation of Physiological Knowledge and Concepts. Section 2: Circulation. Hamilton WF, Dow P (Eds). Lippincott Williams & Wilkins, Washington, DC, USA, 2511–2544 (1965).
  • Congdon ED. Transformation of the aortic arc system during the development of the human embryo. Carnegie Inst. Contrib. Embryology14, 47–110 (1922).
  • Stenmark KR, Abman SH. Lung vascular development: implications for the pathogenesis of bronchopulmonary dysplasia. Annu. Rev. Physiol.67, 623–661 (2005).
  • deMello DE, Reid LM. Embryonic and early fetal development of human lung vasculature and its functional implications. Pediatr. Dev. Pathol.3(5), 439–449 (2000).
  • deMello DE, Sawyer D, Galvin N, Reid LM. Early fetal development of lung vasculature. Am. J. Respir. Cell. Mol. Biol.16(5), 568–581 (1997).
  • Galambos C, deMello DE. Molecular mechanisms of pulmonary vascular development. Pediatr. Dev. Pathol.10(1), 1–17 (2007).
  • Parera MC, van Dooren M, van Kempen M et al. Distal angiogenesis: a new concept for lung vascular morphogenesis. Am. J. Physiol. Lung Cell. Mol. Physiol.288(1), L141–L149 (2005).
  • Schwarz MA, Caldwell L, Cafasso D, Zheng H. Emerging pulmonary vasculature lacks fate specification. Am. J. Physiol. Lung Cell. Mol. Physiol.296(1), L71–L81 (2009).
  • Eble JA, Niland S. The extracellular matrix of blood vessels. Curr. Pharm. Des.15(12), 1385–1400 (2009).
  • Daley WP, Peters SB, Larsen M. Extracellular matrix dynamics in development and regenerative medicine. J. Cell. Sci.121(Pt 3), 255–264 (2008).
  • Masumoto K, de Rooij JD, Suita S et al. The distribution of matrix metalloproteinases and tissue inhibitors of metalloproteinases in the lungs of congenital diaphragmatic hernia patients and age-matched controls. Histopathology48(5), 588–595 (2006).
  • Que J, Wilm B, Hasegawa H et al. Mesothelium contributes to vascular smooth muscle and mesenchyme during lung development. Proc. Natl Acad. Sci. USA105(43), 16626–16630 (2008).
  • Morimoto M, Liu Z, Cheng HT et al. Canonical Notch signaling in the developing lung is required for determination of arterial smooth muscle cells and selection of Clara versus ciliated cell fate. J. Cell. Sci.123(Pt 2), 213–224 (2010).
  • Rawlins EL. The building blocks of mammalian lung development. Dev. Dyn.240(3), 463–476 (2011).
  • Reid LM. Lung growth in health and disease. Br. J. Dis. Chest78(2), 113–134 (1984).
  • Reid LM. The pulmonary circulation: remodeling in growth and disease. The 1978 J. Burns Amberson lecture. Am. Rev. Respir. Dis.119(4), 531–546 (1979).
  • Hungerford JE, Little CD. Developmental biology of the vascular smooth muscle cell: building a multilayered vessel wall. J. Vasc. Res.36(1), 2–27 (1999).
  • Owens GK. Regulation of differentiation of vascular smooth muscle cells. Physiol. Rev.75(3), 487–517 (1995).
  • Maeda S, Suzuki S, Suzuki T et al. Analysis of intrapulmonary vessels and epithelial–endothelial interactions in the human developing lung. Lab. Invest.82(3), 293–301 (2002).
  • Schwarz MA, Zhang F, Gebb S, Starnes V, Warburton D. Endothelial monocyte activating polypeptide II inhibits lung neovascularization and airway epithelial morphogenesis. Mech. Dev.95(1–2), 123–132 (2000).
  • Groenman FA, Rutter M, Wang J et al. Effect of chemical stabilizers of hypoxia-inducible factors on early lung development. Am. J. Physiol. Lung Cell. Mol. Physiol.293(3), L557–L567 (2007).
  • van Tuyl M, Liu J, Wang J et al. Role of oxygen and vascular development in epithelial branching morphogenesis of the developing mouse lung. Am. J. Physiol. Lung Cell. Mol. Physiol.288(1), L167–L178 (2005).
  • Ferrara N, Carver-Moore K, Chen H et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature380(6573), 439–442 (1996).
  • Carmeliet P, Ferreira V, Breier G et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature380(6573), 435–439 (1996).
  • Fong GH, Rossant J, Gertsenstein M, Breitman ML. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature376(6535), 66–70 (1995).
  • Healy AM, Morgenthau L, Zhu X, Farber HW, Cardoso WV. VEGF is deposited in the subepithelial matrix at the leading edge of branching airways and stimulates neovascularization in the murine embryonic lung. Dev. Dyn.219(3), 341–352 (2000).
  • Voelkel NF, Vandivier RW, Tuder RM. Vascular endothelial growth factor in the lung. Am. J. Physiol. Lung Cell. Mol. Physiol.290(2), L209–L221 (2006).
  • White AC, Lavine KJ, Ornitz DM. FGF9 and SHH regulate mesenchymal VEGFA expression and development of the pulmonary capillary network. Development134(20), 3743–3752 (2007).
  • Thebaud B, Abman SH. Bronchopulmonary dysplasia: where have all the vessels gone? Roles of angiogenic growth factors in chronic lung disease. Am. J. Respir. Crit. Care Med.175(10), 978–985 (2007).
  • Oettgen P. Transcriptional regulation of vascular development. Circ. Res.89(5), 380–388 (2001).
  • Harris AL. von Hippel–Lindau syndrome: target for anti-vascular endothelial growth factor (VEGF) receptor therapy. Oncologist5(Suppl. 1), 32–36 (2000).
  • Krek W. VHL takes HIF’s breath away. Nat. Cell. Biol.2(7), E121–E123 (2000).
  • von Tell D, Armulik A, Betsholtz C. Pericytes and vascular stability. Exp. Cell. Res.312(5), 623–629 (2006).
  • Donoghue L, Tyburski JG, Steffes CP, Wilson RF. Vascular endothelial growth factor modulates contractile response in microvascular lung pericytes. Am. J. Surg.191(3), 349–352 (2006).
  • Gaengel K, Genove G, Armulik A, Betsholtz C. Endothelial–mural cell signaling in vascular development and angiogenesis. Arterioscler. Thromb. Vasc. Biol.29(5), 630–638 (2009).
  • Ribatti D, Nico B, Crivellato E. Morphological and molecular aspects of physiological vascular morphogenesis. Angiogenesis12(2), 101–111 (2009).
  • Rossant J, Howard L. Signaling pathways in vascular development. Annu. Rev. Cell. Dev. Biol.18, 541–573 (2002).
  • Jain RK. Molecular regulation of vessel maturation. Nat. Med.9(6), 685–693 (2003).
  • Hislop AA, Pierce CM. Growth of the vascular tree. Paediatr. Respir. Rev.1(4), 321–327 (2000).
  • Rudolph AM. Fetal and neonatal pulmonary circulation. Annu. Rev. Physiol.41, 383–395 (1979).
  • Haworth SG. Pathobiology of pulmonary hypertension in infants and children. Prog. Pediatr. Cardiol.12, 249–269 (2001).
  • Humbert M, Sitbon O, Simonneau G. Treatment of pulmonary arterial hypertension. N. Engl. J. Med.351(14), 1425–1436 (2004).
  • Lincoln TM, Komalavilas P, Cornwell TL. Pleiotropic regulation of vascular smooth muscle tone by cyclic GMP-dependent protein kinase. Hypertension23(6 Pt 2), 1141–1147 (1994).
  • Ivy DD, Kinsella JP, Abman SH. Physiologic characterization of endothelin A and B receptor activity in the ovine fetal pulmonary circulation. J. Clin. Invest.93(5), 2141–2148 (1994).
  • Levy M, Maurey C, Chailley-Heu B et al. Developmental changes in endothelial vasoactive and angiogenic growth factors in the human perinatal lung. Pediatr. Res.57(2), 248–253 (2004).
  • Tang JR, Markham NE, Lin YJ et al. Inhaled nitric oxide attenuates pulmonary hypertension and improves lung growth in infant rats after neonatal treatment with a VEGF receptor inhibitor. Am. J. Physiol. Lung Cell. Mol. Physiol.287(2), L344–L351 (2004).
  • Abman SH, Chatfield BA, Rodman DM, Hall SL, McMurtry IF. Maturational changes in endothelium-derived relaxing factor activity of ovine pulmonary arteries in vitro. Am. J. Physiol.260(4 Pt 1), L280–L285 (1991).
  • Steinhorn RH, Morin FC 3rd, Gugino SF, Giese EC, Russell JA. Developmental differences in endothelium-dependent responses in isolated ovine pulmonary arteries and veins. Am. J. Physiol.264(6 Pt 2), H2162–H2167 (1993).
  • Shaul PW. Regulation of vasodilator synthesis during lung development. Early Hum. Dev.54(3), 271–294 (1999).
  • Fineman JR, Heymann MA, Soifer SJ. N omega-nitro-l-arginine attenuates endothelium-dependent pulmonary vasodilation in lambs. Am. J. Physiol.260(4 Pt 2), H1299–H1306 (1991).
  • Davidson D, Eldemerdash A. Endothelium-derived relaxing factor: evidence that it regulates pulmonary vascular resistance in the isolated neonatal guinea pig lung. Pediatr. Res.29(6), 538–542 (1991).
  • Ivy DD, le Cras TD, Parker TA et al. Developmental changes in endothelin expression and activity in the ovine fetal lung. Am. J. Physiol. Lung Cell. Mol. Physiol.278(4), L785–L793 (2000).
  • Tulloh RM, Hislop AA, Boels PJ, Deutsch J, Haworth SG. Chronic hypoxia inhibits postnatal maturation of porcine intrapulmonary artery relaxation. Am. J. Physiol.272(5 Pt 2), H2436–H2445 (1997).
  • Badesch DB, Orton EC, Zapp LM et al. Decreased arterial wall prostaglandin production in neonatal calves with severe chronic pulmonary hypertension. Am. J. Respir. Cell. Mol. Biol.1(6), 489–498 (1989).
  • Greenough A, Khetriwal B. Pulmonary hypertension in the newborn. Paediatr. Respir. Rev.6(2), 111–116 (2005).
  • Steinhorn RH. Neonatal pulmonary hypertension. Pediatr. Crit. Care Med.11(Suppl. 2), S79–S84 (2010).
  • Morin FC 3rd. Ligating the ductus arteriosus before birth causes persistent pulmonary hypertension in the newborn lamb. Pediatr. Res.25(3), 245–250 (1989).
  • Abman SH, Accurso FJ. Acute effects of partial compression of ductus arteriosus on fetal pulmonary circulation. Am. J. Physiol.257(2 Pt 2), H626–H634 (1989).
  • Kay JM, Harris P, Heath D. Pulmonary hypertension produced in rats by ingestion of Crotalaria spectabilis seeds. Thorax22(2), 176–179 (1967).
  • Finer NN, Barrington KJ. Nitric oxide for respiratory failure in infants born at or near term. Cochrane Database Syst. Rev. (4), CD000399 (2006).
  • Farrow KN, Fliman P, Steinhorn RH. The diseases treated with ECMO: focus on PPHN. Semin. Perinatol.29(1), 8–14 (2005).
  • Steinhorn RH, Kinsella JP, Pierce C et al. Intravenous sildenafil in the treatment of neonates with persistent pulmonary hypertension. J. Pediatr.155(6), 841–847 (2009).
  • Ahsman MJ, Witjes BC, Wildschut ED et al. Sildenafil exposure in neonates with pulmonary hypertension after administration via a nasogastric tube. Arch. Dis. Child Fetal Neonatal Ed.95(2), F109–F114 (2009).
  • Kelly LK, Porta NF, Goodman DM, Carroll CL, Steinhorn RH. Inhaled prostacyclin for term infants with persistent pulmonary hypertension refractory to inhaled nitric oxide. J. Pediatr.141(6), 830–832 (2002).
  • Ehlen M, Wiebe B. Iloprost in persistent pulmonary hypertension of the newborn. Cardiol. Young.13(4), 361–363 (2003).
  • De Luca D, Zecca E, Piastra M, Romagnoli C. Iloprost as ‘rescue’ therapy for pulmonary hypertension of the neonate. Paediatr. Anaesth.17(4), 394–395 (2007).
  • Goissen C, Ghyselen L, Tourneux P et al. Persistent pulmonary hypertension of the newborn with transposition of the great arteries: successful treatment with bosentan. Eur. J. Pediatr.167(4), 437–440 (2008).
  • van der Horst IW, Reiss I, Tibboel D. Therapeutic targets in neonatal pulmonary hypertension: linking pathophysiology to clinical medicine. Expert Rev. Respir. Med.2(1), 85–96 (2008).
  • Jeffery TK, Wanstall JC. Pulmonary vascular remodeling: a target for therapeutic intervention in pulmonary hypertension. Pharmacol. Ther.92(1), 1–20 (2001).
  • Stenmark KR, Fagan KA, Frid MG. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ. Res.99(7), 675–691 (2006).
  • Meyrick B, Reid L. Hypoxia-induced structural changes in the media and adventitia of the rat hilar pulmonary artery and their regression. Am. J. Pathol.100(1), 151–178 (1980).
  • Davie NJ, Crossno JT Jr, Frid MG et al. Hypoxia-induced pulmonary artery adventitial remodeling and neovascularization: contribution of progenitor cells. Am. J. Physiol. Lung Cell. Mol. Physiol.286(4), L668–L678 (2004).
  • Frid MG, Brunetti JA, Burke DL et al. Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage. Am. J. Pathol.168(2), 659–669 (2006).
  • Hayashida K, Fujita J, Miyake Y et al. Bone marrow-derived cells contribute to pulmonary vascular remodeling in hypoxia-induced pulmonary hypertension. Chest127(5), 1793–1798 (2005).
  • Spees JL, Whitney MJ, Sullivan DE et al. Bone marrow progenitor cells contribute to repair and remodeling of the lung and heart in a rat model of progressive pulmonary hypertension. FASEB J.22(4), 1226–1236 (2008).
  • Jones R, Steudel W, White S, Jacobson M, Low R. Microvessel precursor smooth muscle cells express head-inserted smooth muscle myosin heavy chain (SM-B) isoform in hyperoxic pulmonary hypertension. Cell Tissue Res.295(3), 453–465 (1999).
  • Zengin E, Chalajour F, Gehling UM et al. Vascular wall resident progenitor cells: a source for postnatal vasculogenesis. Development133(8), 1543–1551 (2006).
  • Sobin SS, Tremer HM, Hardy JD, Chiodi HP. Changes in arteriole in acute and chronic hypoxic pulmonary hypertension and recovery in rat. J. Appl. Physiol.55(5), 1445–1455 (1983).
  • Sartore S, Chiavegato A, Faggin E et al. Contribution of adventitial fibroblasts to neointima formation and vascular remodeling: from innocent bystander to active participant. Circ. Res.89(12), 1111–1121 (2001).
  • Arciniegas E, Frid MG, Douglas IS, Stenmark KR. Perspectives on endothelial-to-mesenchymal transition: potential contribution to vascular remodeling in chronic pulmonary hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol.293(1), L1–L8 (2007).
  • Budhiraja R, Tuder RM, Hassoun PM. Endothelial dysfunction in pulmonary hypertension. Circulation109(2), 159–165 (2004).
  • Abman SH. Abnormal vasoreactivity in the pathophysiology of persistent pulmonary hypertension of the newborn. Pediatr. Rev.20(11), e103–e109 (1999).
  • Manchester D, Margolis HS, Sheldon RE. Possible association between maternal indomethacin therapy and primary pulmonary hypertension of the newborn. Am. J. Obstet. Gynecol.126(4), 467–469 (1976).
  • Chambers CD, Hernandez-Diaz S, Van Marter LJ et al. Selective serotonin-reuptake inhibitors and risk of persistent pulmonary hypertension of the newborn. N. Engl. J. Med.354(6), 579–587 (2006).
  • Kallen B, Olausson PO. Maternal use of selective serotonin re-uptake inhibitors and persistent pulmonary hypertension of the newborn. Pharmacoepidemiol. Drug Saf.17(8), 801–806 (2008).
  • Murphy JD, Rabinovitch M, Goldstein JD, Reid LM. The structural basis of persistent pulmonary hypertension of the newborn infant. J. Pediatr.98(6), 962–967 (1981).
  • Haworth SG. Pulmonary vascular remodeling in neonatal pulmonary hypertension. State of the art. Chest93(Suppl. 3), S133–S138 (1988).
  • Villanueva ME, Zaher FM, Svinarich DM, Konduri GG. Decreased gene expression of endothelial nitric oxide synthase in newborns with persistent pulmonary hypertension. Pediatr. Res.44(3), 338–343 (1998).
  • Pearson DL, Dawling S, Walsh WF et al. Neonatal pulmonary hypertension–urea-cycle intermediates, nitric oxide production, and carbamoyl-phosphate synthetase function. N. Engl. J. Med.344(24), 1832–1838 (2001).
  • Kumar P, Kazzi NJ, Shankaran S. Plasma immunoreactive endothelin-1 concentrations in infants with persistent pulmonary hypertension of the newborn. Am. J. Perinatol.13(6), 335–341 (1996).
  • Rosenberg AA, Kennaugh J, Koppenhafer SL et al. Elevated immunoreactive endothelin-1 levels in newborn infants with persistent pulmonary hypertension. J. Pediatr.123(1), 109–114 (1993).
  • Lassus P, Turanlahti M, Heikkila P et al. Pulmonary vascular endothelial growth factor and Flt-1 in fetuses, in acute and chronic lung disease, and in persistent pulmonary hypertension of the newborn. Am. J. Respir. Crit. Care Med.164(10 Pt 1), 1981–1987 (2001).
  • Klaassens M, de Klein A, Tibboel D. The etiology of congenital diaphragmatic hernia: still largely unknown? Eur. J. Med. Genet.52(5), 281–286 (2009).
  • Beurskens LW, Tibboel D, Lindemans J et al. Retinol status of newborn infants is associated with congenital diaphragmatic hernia. Pediatrics13(8), 547–549 (2010).
  • Rottier R, Tibboel D. Fetal lung and diaphragm development in congenital diaphragmatic hernia. Semin. Perinatol.29(2), 86–93 (2005).
  • Boucherat O, Franco-Montoya ML, Delacourt C et al. Defective angiogenesis in hypoplastic human fetal lungs correlates with nitric oxide synthase deficiency that occurs despite enhanced angiopoietin-2 and VEGF. Am. J. Physiol. Lung Cell. Mol. Physiol.298(6), L849–L856 (2010).
  • Taira Y, Yamataka T, Miyazaki E, Puri P. Comparison of the pulmonary vasculature in newborns and stillborns with congenital diaphragmatic hernia. Pediatr. Surg. Int.14(1–2), 30–35 (1998).
  • Shehata SM, Tibboel D, Sharma HS, Mooi WJ. Impaired structural remodelling of pulmonary arteries in newborns with congenital diaphragmatic hernia: a histological study of 29 cases. J. Pathol.189(1), 112–118 (1999).
  • Yamataka T, Puri P. Pulmonary artery structural changes in pulmonary hypertension complicating congenital diaphragmatic hernia. J. Pediatr. Surg.32(3), 387–390 (1997).
  • Shehata SM, Sharma HS, van der Staak FH et al. Remodeling of pulmonary arteries in human congenital diaphragmatic hernia with or without extracorporeal membrane oxygenation. J. Pediatr. Surg.35(2), 208–215 (2000).
  • Unger S, Copland I, Tibboel D, Post M. Down-regulation of sonic hedgehog expression in pulmonary hypoplasia is associated with congenital diaphragmatic hernia. Am. J. Pathol.162(2), 547–555 (2003).
  • de Rooij JD, Hosgor M, Ijzendoorn Y et al. Expression of angiogenesis-related factors in lungs of patients with congenital diaphragmatic hernia and pulmonary hypoplasia of other causes. Pediatr. Dev. Pathol.7(5), 468–477 (2004).
  • de Lagausie P, de Buys-Roessingh A, Ferkdadji L et al. Endothelin receptor expression in human lungs of newborns with congenital diaphragmatic hernia. J. Pathol.205(1), 112–118 (2005).
  • Keller RL, Tacy TA, Hendricks-Munoz K et al. Congenital diaphragmatic hernia: endothelin-1, pulmonary hypertension, and disease severity. Am. J. Respir. Crit. Care Med.182(4), 555–561 (2010).
  • Kobayashi H, Puri P. Plasma endothelin levels in congenital diaphragmatic hernia. J. Pediatr. Surg.29(9), 1258–1261 (1994).
  • Buchta RM, Viseskul C, Gilbert EF, Sarto GE, Opitz JM. Familial bilateral renal agenesis and hereditary renal adysplasia. Z Kinderheilkd.115(2), 111–129 (1973).
  • Whitehouse W, Mountrose U. Renal agenesis in nontwin siblings. Am. J. Obstet Gynecol.116(6), 880–882 (1973).
  • Cain DR, Griggs D, Lackey DA, Kagan BM. Familial renal agenesis and total dysplasia. Am. J. Dis. Child.128(3), 377–380 (1974).
  • Hack M, Jaffe J, Blankstein J, Goodman RM, Brish M. Familial aggregation in bilateral renal agenesis. Clin. Genet.5(2), 173–177 (1974).
  • Alcorn D, Adamson TM, Lambert TF et al. Morphological effects of chronic tracheal ligation and drainage in the fetal lamb lung. J. Anat.123(Pt 3), 649–660 (1977).
  • Strang LB. Growth and development of the lung: fetal and postnatal. Annu. Rev. Physiol.39, 253–276 (1977).
  • Clemmons J. Embryonic renal injury: a possible factor in fetal malnutrition (abstract). Pediatr. Res.11, 404 (1977).
  • Perlman M, Williams J, Hirsch M. Neonatal pulmonary hypoplasia after prolonged leakage of amniotic fluid. Arch. Dis. Child.51(5), 349–353 (1976).
  • Tibboel D, Gaillard JL, Spritzer R, Wallenburg HC. Pulmonary hypoplasia secondary to oligohydramnios with very premature rupture of fetal membranes. Eur. J. Pediatr.149(7), 496–499 (1990).
  • Blott M, Greenough A, Nicolaides KH. Fetal breathing movements in pregnancies complicated by premature membrane rupture in the second trimester. Early Hum. Dev.21(1), 41–48 (1990).
  • Wigglesworth JS, Desai R, Guerrini P. Fetal lung hypoplasia: biochemical and structural variations and their possible significance. Arch. Dis. Child.56(8), 606–615 (1981).
  • Hislop A, Hey E, Reid L. The lungs in congenital bilateral renal agenesis and dysplasia. Arch. Dis. Child.54(1), 32–38 (1979).
  • Fanaroff AA. Meconium aspiration syndrome: historical aspects. J. Perinatol.28(Suppl. 3), S3–S7 (2008).
  • Cleary GM, Wiswell TE. Meconium-stained amniotic fluid and the meconium aspiration syndrome. An update. Pediatr. Clin. North Am.45(3), 511–529 (1998).
  • Dargaville PA, Copnell B. Australian and New Zealand Neonatal N, the epidemiology of meconium aspiration syndrome: incidence, risk factors, therapies, and outcome. Pediatrics117(5), 1712–1721 (2006).
  • Murphy JD, Vawter GF, Reid LM. Pulmonary vascular disease in fatal meconium aspiration. J. Pediatr.104(5), 758–762 (1984).
  • Erzurum S, Rounds SI, Stevens T et al. Strategic plan for lung vascular research: an NHLBI-ORDR workshop report. Am. J. Respir. Crit. Care Med.182(12), 1554–1562 (2010).
  • Simonneau G, Galie N, Rubin LJ et al. Clinical classification of pulmonary hypertension. J. Am. Coll. Cardiol.43(12 Suppl. S), S5–S12 (2004).
  • Haworth SG, Hislop AA. Treatment and survival in children with pulmonary arterial hypertension: the UK Pulmonary Hypertension Service for Children 2001–2006. Heart95(4), 312–317 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.