60
Views
4
CrossRef citations to date
0
Altmetric
Special Report

Targeting soluble guanylate cyclase for the treatment of pulmonary hypertension

, , &
Pages 153-161 | Published online: 09 Jan 2014

References

  • Archer SL, Weir EK, Wilkins MR. Basic science of pulmonary arterial hypertension for clinicians: new concepts and experimental therapies. Circulation121(18), 2045–2066 (2010).
  • Schermuly RT, Stasch JP, Pullamsetti SS et al. Expression and function of soluble guanylate cyclase in pulmonary arterial hypertension. Eur. Respir. J.32(4), 881–891 (2008).
  • D’Alonzo GE, Barst RJ, Ayres SM et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann. Intern. Med.115(5), 343–349 (1991).
  • Giaid A, Saleh D. Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N. Engl. J. Med.333(4), 214–221 (1995).
  • Kadowitz PJ, Chapnick BM, Feigen LP, Hyman AL, Nelson PK, Spannhake EW. Pulmonary and systemic vasodilator effects of the newly discovered prostaglandin, PGI2. J. Appl. Physiol.45(3), 408–413 (1978).
  • Hyman AL, Kadowitz PJ. Pulmonary vasodilator activity of prostacyclin (PGI2) in the cat. Circ. Res.45(3), 404–409 (1979).
  • Jones DA, Benjamin CW, Linseman DA. Activation of thromboxane and prostacyclin receptors elicits opposing effects on vascular smooth muscle cell growth and mitogen-activated protein kinase signaling cascades. Mol. Pharmacol.48(5), 890–896 (1995).
  • Galie N, Manes A, Branzi A. Prostanoids for pulmonary arterial hypertension. Am. J. Respir. Med.2(2), 123–137 (2003).
  • Christman BW, McPherson CD, Newman JH et al. An imbalance between the excretion of thromboxane and prostacyclin metabolites in pulmonary hypertension. N. Engl. J. Med.327(2), 70–75 (1992).
  • Galie N, Hoeper MM, Humbert M et al. Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur. Heart J.30(20), 2493–2537 (2009).
  • Simonneau G, Galie N, Rubin LJ et al. Clinical classification of pulmonary hypertension. J. Am. Coll. Cardiol.43(Suppl. 12), 5S–12S (2004).
  • Jamieson SW, Kapelanski DP, Sakakibara N et al. Pulmonary endarterectomy: experience and lessons learned in 1,500 cases. Ann. Thorac. Surg.76(5), 1457–1462; discussion 1462–1464 (2003).
  • Stenmark KR, Rabinovitch M. Emerging therapies for the treatment of pulmonary hypertension. Pediatr. Crit. Care Med.11(Suppl. 2), S85–S90 (2010).
  • Wharton J, Strange JW, Moller GM et al. Antiproliferative effects of phosphodiesterase type 5 inhibition in human pulmonary artery cells. Am. J. Respir. Crit. Care Med.172(1), 105–113 (2005).
  • Galie N, Ghofrani HA, Torbicki A et al. Sildenafil citrate therapy for pulmonary arterial hypertension. N. Engl. J. Med.353(20), 2148–2157 (2005).
  • Galie N, Brundage BH, Ghofrani HA et al. Tadalafil therapy for pulmonary arterial hypertension. Circulation119(22), 2894–2903 (2009).
  • Rubin LJ, Mendoza J, Hood M et al. Treatment of primary pulmonary hypertension with continuous intravenous prostacyclin (epoprostenol). Results of a randomized trial. Ann. Intern. Med.112(7), 485–491 (1990).
  • Barst RJ, Rubin LJ, Long WA et al. A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension. The Primary Pulmonary Hypertension Study Group. N. Engl. J. Med.334(5), 296–302 (1996).
  • Higenbottam T, Butt AY, McMahon A, Westerbeck R, Sharples L. Long-term intravenous prostaglandin (epoprostenol or iloprost) for treatment of severe pulmonary hypertension. Heart80(2), 151–155 (1998).
  • Simonneau G, Barst RJ, Galie N et al. Continuous subcutaneous infusion of treprostinil, a prostacyclin analogue, in patients with pulmonary arterial hypertension: a double-blind, randomized, placebo-controlled trial. Am. J. Respir. Crit. Care Med.165(6), 800–804 (2002).
  • Barst RJ, Galie N, Naeije R et al. Long-term outcome in pulmonary arterial hypertension patients treated with subcutaneous treprostinil. Eur. Respir. J.28(6), 1195–1203 (2006).
  • Galie N, Humbert M, Vachiery JL et al. Effects of beraprost sodium, an oral prostacyclin analogue, in patients with pulmonary arterial hypertension: a randomized, double-blind, placebo-controlled trial. J. Am. Coll. Cardiol.39(9), 1496–1502 (2002).
  • Giaid A, Yanagisawa M, Langleben D et al. Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N. Engl. J. Med.328(24), 1732–1739 (1993).
  • Channick RN, Simonneau G, Sitbon O et al. Effects of the dual endothelin-receptor antagonist bosentan in patients with pulmonary hypertension: a randomised placebo-controlled study. Lancet358(9288), 1119–1123 (2001).
  • Rubin LJ, Badesch DB, Barst RJ et al. Bosentan therapy for pulmonary arterial hypertension. N. Engl. J. Med.346(12), 896–903 (2002).
  • Galie N, Badesch D, Oudiz R et al. Ambrisentan therapy for pulmonary arterial hypertension. J. Am. Coll. Cardiol.46(3), 529–535 (2005).
  • Barst RJ, Langleben D, Badesch D et al. Treatment of pulmonary arterial hypertension with the selective endothelin-A receptor antagonist sitaxsentan. J. Am. Coll. Cardiol.47(10), 2049–2056 (2006).
  • Benza RL, Barst RJ, Galie N et al. Sitaxsentan for the treatment of pulmonary arterial hypertension: a 1-year, prospective, open-label observation of outcome and survival. Chest134(4), 775–782 (2008).
  • Galie N, Olschewski H, Oudiz RJ et al. Ambrisentan for the treatment of pulmonary arterial hypertension: results of the ambrisentan in pulmonary arterial hypertension, randomized, double-blind, placebo-controlled, multicenter, efficacy (ARIES) study 1 and 2. Circulation117(23), 3010–3019 (2008).
  • Ghofrani HA, Schermuly RT, Rose F et al. Sildenafil for long-term treatment of nonoperable chronic thromboembolic pulmonary hypertension. Am. J. Respir. Crit. Care Med.167(8), 1139–1141 (2003).
  • Bresser P, Fedullo PF, Auger WR et al. Continuous intravenous epoprostenol for chronic thromboembolic pulmonary hypertension. Eur. Respir. J.23(4), 595–600 (2004).
  • Hoeper MM, Kramm T, Wilkens H et al. Bosentan therapy for inoperable chronic thromboembolic pulmonary hypertension. Chest128(4), 2363–2367 (2005).
  • Jais X, D’Armini AM, Jansa P et al. Bosentan for treatment of inoperable chronic thromboembolic pulmonary hypertension: BENEFiT (bosentan effects in inoperable forms of chronic thromboembolic pulmonary hypertension), a randomized, placebo-controlled trial. J. Am. Coll. Cardiol.52(25), 2127–2134 (2008).
  • Murad F, Mittal CK, Arnold WP, Katsuki S, Kimura H. Guanylate cyclase: activation by azide, nitro compounds, nitric oxide, and hydroxyl radical and inhibition by hemoglobin and myoglobin. Adv. Cyclic. Nucleotide Res.9, 145–158 (1978).
  • Ignarro LJ, Wood KS, Wolin MS. Activation of purified soluble guanylate cyclase by protoporphyrin IX. Proc. Natl Acad. Sci. USA79(9), 2870–2873 (1982).
  • Ignarro LJ, Kadowitz PJ. The pharmacological and physiological role of cyclic GMP in vascular smooth muscle relaxation. Annu. Rev. Pharmacol. Toxicol.25, 171–191 (1985).
  • Lucas KA, Pitari GM, Kazerounian S et al. Guanylyl cyclases and signaling by cyclic GMP. Pharmacol. Rev.52(3), 375–414 (2000).
  • McLaughlin VV, McGoon MD. Pulmonary arterial hypertension. Circulation114(13), 1417–1431 (2006).
  • Stasch JP, Schmidt PM, Nedvetsky PI et al. Targeting the heme-oxidized nitric oxide receptor for selective vasodilatation of diseased blood vessels. J. Clin. Invest.116(9), 2552–2561 (2006).
  • Stasch JP, Hobbs AJ. NO-independent, haem-dependent soluble guanylate cyclase stimulators. Handb. Exp. Pharmacol. (191), 277–308 (2009).
  • Ko FN, Wu CC, Kuo SC, Lee FY, Teng CM. YC-1, a novel activator of platelet guanylate cyclase. Blood84(12), 4226–4233 (1994).
  • Becker EM, Schmidt P, Schramm M et al. The vasodilator-stimulated phosphoprotein (VASP): target of YC-1 and nitric oxide effects in human and rat platelets. J. Cardiovasc. Pharmacol.35(3), 390–397 (2000).
  • Tulis DA, Bohl Masters KS, Lipke EA et al. YC-1-mediated vascular protection through inhibition of smooth muscle cell proliferation and platelet function. Biochem. Biophys. Res. Commun.291(4), 1014–1021 (2002).
  • Mulsch A, Bauersachs J, Schafer A, Stasch JP, Kast R, Busse R. Effect of YC-1, an NO-independent, superoxide-sensitive stimulator of soluble guanylyl cyclase, on smooth muscle responsiveness to nitrovasodilators. Br. J. Pharmacol.120(4), 681–689 (1997).
  • Martin E, Lee YC, Murad F. YC-1 activation of human soluble guanylyl cyclase has both heme-dependent and heme-independent components. Proc. Natl Acad. Sci. USA98(23), 12938–12942 (2001).
  • Pan SL, Guh JH, Chang YL, Kuo SC, Lee FY, Teng CM. YC-1 prevents sodium nitroprusside-mediated apoptosis in vascular smooth muscle cells. Cardiovasc. Res.61(1), 152–158 (2004).
  • Friebe A, Koesling D. Mechanism of YC-1-induced activation of soluble guanylyl cyclase. Mol. Pharmacol.53(1), 123–127 (1998).
  • Russwurm M, Mergia E, Mullershausen F, Koesling D. Inhibition of deactivation of NO-sensitive guanylyl cyclase accounts for the sensitizing effect of YC-1. J. Biol. Chem.277(28), 24883–24888 (2002).
  • Selwood DL, Brummell DG, Budworth J et al. Synthesis and biological evaluation of novel pyrazoles and indazoles as activators of the nitric oxide receptor, soluble guanylate cyclase. J. Med. Chem.44(1), 78–93 (2001).
  • Stasch JP, Alonso-Alija C, Apeler H et al. Pharmacological actions of a novel NO-independent guanylyl cyclase stimulator, BAY 41-8543: in vitro studies. Br. J. Pharmacol.135(2), 333–343 (2002).
  • Stasch JP, Becker EM, Alonso-Alija C et al. NO-independent regulatory site on soluble guanylate cyclase. Nature410(6825), 212–215 (2001).
  • Priviero FB, Baracat JS, Teixeira CE, Claudino MA, De Nucci G, Antunes E. Mechanisms underlying relaxation of rabbit aorta by BAY 41-2272, a nitric oxide-independent soluble guanylate cyclase activator. Clin. Exp. Pharmacol. Physiol.32(9), 728–734 (2005).
  • Priviero FB, Webb RC. Heme-dependent and independent soluble guanylate cyclase activators and vasodilation. J. Cardiovasc. Pharmacol.56(3), 229–233 (2010).
  • Hobbs AJ, Moncada S. Antiplatelet properties of a novel, non-NO-based soluble guanylate cyclase activator, BAY 41-2272. Vascul. Pharmacol.40(3), 149–154 (2003).
  • Evgenov OV, Ichinose F, Evgenov NV et al. Soluble guanylate cyclase activator reverses acute pulmonary hypertension and augments the pulmonary vasodilator response to inhaled nitric oxide in awake lambs. Circulation110(15), 2253–2259 (2004).
  • Deruelle P, Grover TR, Abman SH. Pulmonary vascular effects of nitric oxide-cGMP augmentation in a model of chronic pulmonary hypertension in fetal and neonatal sheep. Am. J. Physiol. Lung Cell. Mol. Physiol.289(5), L798–L806 (2005).
  • Evgenov OV, Kohane DS, Bloch KD et al. Inhaled agonists of soluble guanylate cyclase induce selective pulmonary vasodilation. Am. J. Respir. Crit. Care Med.176(11), 1138–1145 (2007).
  • Badejo AM Jr, Nossaman VE, Pankey EA et al. Pulmonary and systemic vasodilator responses to the soluble guanylyl cyclase stimulator, BAY 41-8543, are modulated by nitric oxide. Am. J. Physiol. Heart Circ. Physiol.299(4), H1153–H1159 (2010).
  • Mittendorf J, Weigand S, Alonso-Alija C et al. Discovery of riociguat (BAY 63-2521): a potent, oral stimulator of soluble guanylate cyclase for the treatment of pulmonary hypertension. ChemMedChem4(5), 853–865 (2009).
  • Frey R, Muck W, Unger S, Artmeier-Brandt U, Weimann G, Wensing G. Single-dose pharmacokinetics, pharmacodynamics, tolerability, and safety of the soluble guanylate cyclase stimulator BAY 63-2521: an ascending-dose study in healthy male volunteers. J. Clin. Pharmacol.48(8), 926–934 (2008).
  • Grimminger F, Weimann G, Frey R et al. First acute haemodynamic study of soluble guanylate cyclase stimulator riociguat in pulmonary hypertension. Eur. Respir. J.33(4), 785–792 (2009).
  • Ghofrani H, Grimminger F. Soluble guanylate cyclase stimulation: an emerging option in pulmonary hypertension therapy. Eur. Respir. Rev.18(111), 35–41 (2009).
  • Ghofrani HA, Hoeper MM, Halank M et al. Riociguat for chronic thromboembolic pulmonary hypertension and pulmonary arterial hypertension: a Phase II study. Eur. Respir. J.36(4), 792–799 (2010).
  • Stasch JP, Schmidt P, Alonso-Alija C et al. NO- and haem-independent activation of soluble guanylyl cyclase: molecular basis and cardiovascular implications of a new pharmacological principle. Br. J. Pharmacol.136(5), 773–783 (2002).
  • Schindler U, Strobel H, Schonafinger K et al. Biochemistry and pharmacology of novel anthranilic acid derivatives activating heme-oxidized soluble guanylyl cyclase. Mol. Pharmacol.69(4), 1260–1268 (2006).
  • Schmidt P, Schramm M, Schroder H, Stasch JP. Mechanisms of nitric oxide independent activation of soluble guanylyl cyclase. Eur. J. Pharmacol.468(3), 167–174 (2003).
  • Schmidt HH, Schmidt PM, Stasch JP. NO- and haem-independent soluble guanylate cyclase activators. Handb. Exp. Pharmacol.136(191), 309–339 (2009).
  • Dumitrascu R, Weissmann N, Ghofrani HA et al. Activation of soluble guanylate cyclase reverses experimental pulmonary hypertension and vascular remodeling. Circulation113(2), 286–295 (2006).
  • Lapp H, Mitrovic V, Franz N et al. Cinaciguat (BAY 58-2667) improves cardiopulmonary hemodynamics in patients with acute decompensated heart failure. Circulation119(21), 2781–2788 (2009).
  • Zhou Z, Pyriochou A, Kotanidou A et al. Soluble guanylyl cyclase activation by HMR-1766 (ataciguat) in cells exposed to oxidative stress. Am. J. Physiol. Heart Circ. Physiol.295(4), H1763–H1771 (2008).
  • Schafer A, Bauersachs J. Therapeutic targets of ataciguat. Drugs Fut.32, 731–738 (2007).
  • Weissmann N, Hackemack S, Dahal BK et al. The soluble guanylate cyclase activator HMR1766 reverses hypoxia-induced experimental pulmonary hypertension in mice. Am. J. Physiol. Lung Cell. Mol. Physiol.297(4), L658–L665 (2009).
  • Pankey EA, Bhartija M, Badejo AM et al. Pulmonary and systemic vasodilator responses to the soluble guanylyl cyclase activator, BAY 60-2770, are not dependent on endogenous nitric oxide or reduced heme. Am. J. Physiol. Heart Circ. Physiol.300(3), H792–H802 (2011).
  • Okada K, Tanaka Y, Bernstein M, Zhang W, Patterson GA, Botney MD. Pulmonary hemodynamics modify the rat pulmonary artery response to injury. A neointimal model of pulmonary hypertension. Am. J. Pathol.151(4), 1019–1025 (1997).
  • Taraseviciene-Stewart L, Kasahara Y, Alger L et al. Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension. FASEB J.15(2), 427–438 (2001).
  • Meis T, Behr J. Pulmonary hypertension: role of combination therapy. Curr. Vasc. Pharmacol. (2010) (In Press).
  • McLaughlin VV, Archer SL, Badesch DB et al. ACCF/AHA 2009 expert consensus document on pulmonary hypertension: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association: developed in collaboration with the American College of Chest Physicians, American Thoracic Society, Inc., and the Pulmonary Hypertension Association. Circulation119(16), 2250–2294 (2009).
  • Gokhman R, Smithburger PL, Kane-Gill SL, Seybert AL. Pharmacologic and pharmacokinetic rationale for combination therapy in pulmonary arterial hypertension. J. Cardiovasc. Pharmacol.56(6), 686–695 (2010).
  • O’Callaghan DS, Savale L, Jais X et al. Evidence for the use of combination targeted therapeutic approaches for the management of pulmonary arterial hypertension. Respir. Med.104(Suppl. 1), S74–S80 (2010).
  • Affuso F, Cirillo P, Ruvolo A, Carlomagno G, Fazio S. Long term combination treatment for severe idiopathic pulmonary arterial hypertension. World J. Cardiol.2(3), 68–70 (2010).
  • Keogh A, Strange G, Kotlyar E et al. Survival after the initiation of combination therapy in patients with pulmonary arterial hypertension – an Australian collaborative report. Intern. Med. J. DOI: 10.1111/j.1445-5994.2010.02403.x. (Epub ahead of print) (2010).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.