413
Views
30
CrossRef citations to date
0
Altmetric
Review

IL-17 in human asthma

&
Pages 173-186 | Published online: 09 Jan 2014

References

  • Wenzel SE. Phenotypes in asthma: useful guides for therapy, distinct biological processes, or both? Am. J. Respir. Crit. Care Med.170(6), 579–580 (2004).
  • Green RH, Brightling CE, Bradding P. The reclassification of asthma based on subphenotypes. Curr. Opin. Allergy Clin. Immunol.7(1), 43–50 (2007).
  • Ivanov S, Linden A. Interleukin-17 as a drug target in human disease. Trends Pharmacol. Sci.30(2), 95–103 (2009).
  • Iwakura Y, Ishigame H, Saijo S, Nakae S. Functional specialization of interleukin-17 family members. Immunity34(2), 149–162 (2011).
  • Chakir J, Shannon J, Molet S et al. Airway remodeling-associated mediators in moderate to severe asthma: effect of steroids on TGF-β, IL-11, IL-17, and Type 1 and Type 3 collagen expression. J. Allergy Clin. Immunol.111(6), 1293–1298 (2003).
  • Doe C, Bafadhel M, Siddiqui S et al. Expression of the T helper 17-associated cytokines IL-17A and IL-17F in asthma and COPD. Chest138(5), 1140–1147 (2010).
  • Song C, Luo L, Lei Z et al. IL-17-producing alveolar macrophages mediate allergic lung inflammation related to asthma. J. Immunol.181(9), 6117–6124 (2008).
  • Al-Ramli W, Prefontaine D, Chouiali F et al. T(H)17-associated cytokines (IL-17A and IL-17F) in severe asthma. J. Allergy Clin. Immunol.123(5), 1185–1187 (2009).
  • Molet S, Hamid Q, Davoine F et al. IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines. J. Allergy Clin. Immunol.108(3), 430–438 (2001).
  • Vazquez-Tello A, Semlali A, Chakir J et al. Induction of glucocorticoid receptor-β expression in epithelial cells of asthmatic airways by T-helper Type 17 cytokines. Clin. Exp. Allergy40(9), 1312–1322 (2010).
  • Ramirez-Carrozzi V, Sambandam A, Luis E et al. IL-17C regulates the innate immune function of epithelial cells in an autocrine manner. Nat. Immunol.12(12), 1159–1166 (2011).
  • Sun YC, Zhou QT, Yao WZ. Sputum interleukin-17 is increased and associated with airway neutrophilia in patients with severe asthma. Chin. Med. J. (Engl.)118(11), 953–956 (2005).
  • Schnyder B, Schnyder-Candrian S, Pansky A et al. IL-17 reduces TNF-induced Rantes and VCAM-1 expression. Cytokine31(3), 191–202 (2005).
  • Schnyder-Candrian S, Togbe D, Couillin I et al. Interleukin-17 is a negative regulator of established allergic asthma. J. Exp. Med.203(12), 2715–2725 (2006).
  • Silverpil E, Glader P, Hansson M, Linden A. Impact of interleukin-17 on macrophage phagocytosis of apoptotic neutrophils and particles. Inflammation34(1), 1–9 (2011).
  • Annunziato F, Cosmi L, Santarlasci V et al. Phenotypic and functional features of human Th17 cells. J. Exp. Med.204(8), 1849–1861 (2007).
  • Rachitskaya AV, Hansen AM, Horai R et al. Cutting edge: NKT cells constitutively express IL-23 receptor and RORγt and rapidly produce IL-17 upon receptor ligation in an IL-6-independent fashion. J. Immunol.180(8), 5167–5171 (2008).
  • Peng MY, Wang ZH, Yao CY et al. Interleukin 17-producing γ δ T cells increased in patients with active pulmonary tuberculosis. Cell Mol. Immunol.5(3), 203–208 (2008).
  • Kondo T, Takata H, Matsuki F, Takiguchi M. Cutting edge: phenotypic characterization and differentiation of human CD8+ T cells producing IL-17. J. Immunol.182(4), 1794–1798 (2009).
  • Cupedo T, Crellin NK, Papazian N et al. Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells. Nat. Immunol.10(1), 66–74 (2009).
  • Pandya AD, Al-Jaderi Z, Hoglund RA et al. Identification of human NK17/NK1 cells. PLoS ONE6(10), e26780 (2011).
  • Li L, Huang L, Vergis AL et al. IL-17 produced by neutrophils regulates IFN-γ-mediated neutrophil migration in mouse kidney ischemia-reperfusion injury. J. Clin. Invest.120(1), 331–342 (2010).
  • Vazquez-Tello A, Halwani R, Li R et al. IL-17A and IL-17F expression in B lymphocytes. Int. Arch. Allergy Immunol.157(4), 406–416 (2011).
  • Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F. Interleukins 1β and 6 but not transforming growth factor-β are essential for the differentiation of interleukin 17-producing human T helper cells. Nat. Immunol.8(9), 942–949 (2007).
  • Manel N, Unutmaz D, Littman DR. The differentiation of human T(H)-17 cells requires transforming growth factor-β and induction of the nuclear receptor RORγt. Nat. Immunol.9(6), 641–649 (2008).
  • Aggarwal S, Ghilardi N, Xie MH, De Sauvage FJ, Gurney AL. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J. Biol. Chem.278(3), 1910–1914 (2003).
  • Maggi L, Santarlasci V, Capone M et al. CD161 is a marker of all human IL-17-producing T-cell subsets and is induced by RORC. Eur. J. Immunol.40(8), 2174–2181 (2010).
  • Campillo-Gimenez L, Cumont MC, Fay M et al. AIDS progression is associated with the emergence of IL-17-producing cells early after simian immunodeficiency virus infection. J. Immunol.184(2), 984–992 (2010).
  • Mjosberg JM, Trifari S, Crellin NK et al. Human IL-25- and IL-33-responsive Type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat. Immunol.12(11), 1055–1062 (2011).
  • Cosmi L, De Palma R, Santarlasci V et al. Human interleukin 17-producing cells originate from a CD161+CD4+ T cell precursor. J. Exp. Med.205(8), 1903–1916 (2008).
  • Wang YH, Voo KS, Liu B et al. A novel subset of CD4(+) T(H)2 memory/effector cells that produce inflammatory IL-17 cytokine and promote the exacerbation of chronic allergic asthma. J. Exp. Med.207(11), 2479–2491 (2010).
  • Acosta-Rodriguez EV, Rivino L, Geginat J et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat. Immunol.8(6), 639–646 (2007).
  • Hirota K, Yoshitomi H, Hashimoto M et al. Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model. J. Exp. Med.204(12), 2803–2812 (2007).
  • Ito T, Carson WFT, Cavassani KA, Connett JM, Kunkel SL. CCR6 as a mediator of immunity in the lung and gut. Exp. Cell Res.317(5), 613–619 (2011).
  • Happel KI, Lockhart EA, Mason CM et al. Pulmonary interleukin-23 gene delivery increases local T-cell immunity and controls growth of Mycobacterium tuberculosis in the lungs. Infect. Immun.73(9), 5782–5788 (2005).
  • Wu Q, Martin RJ, Rino JG, Breed R, Torres RM, Chu HW. IL-23-dependent IL-17 production is essential in neutrophil recruitment and activity in mouse lung defense against respiratory Mycoplasma pneumoniae infection. Microbes Infect.9(1), 78–86 (2007).
  • Higgins SC, Jarnicki AG, Lavelle EC, Mills KH. TLR4 mediates vaccine-induced protective cellular immunity to Bordetella pertussis: role of IL-17-producing T cells. J. Immunol.177(11), 7980–7989 (2006).
  • Lin Y, Ritchea S, Logar A et al. Interleukin-17 is required for T helper 1 cell immunity and host resistance to the intracellular pathogen Francisella tularensis. Immunity31(5), 799–810 (2009).
  • Smiley KL, McNeal MM, Basu M, Choi AH, Clements JD, Ward RL. Association of γ interferon and interleukin-17 production in intestinal CD4+ T cells with protection against rotavirus shedding in mice intranasally immunized with VP6 and the adjuvant LT(R192G). J. Virol.81(8), 3740–3748 (2007).
  • Yao Z, Spriggs MK, Derry JM et al. Molecular characterization of the human interleukin (IL)-17 receptor. Cytokine9(11), 794–800 (1997).
  • Ishigame H, Kakuta S, Nagai T et al. Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity30(1), 108–119 (2009).
  • Yao Z, Fanslow WC, Seldin MF et al. Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity3(6), 811–821 (1995).
  • Dragon S, Saffar AS, Shan L, Gounni AS. IL-17 attenuates the anti-apoptotic effects of GM-CSF in human neutrophils. Mol. Immunol.45(1), 160–168 (2008).
  • Schwarzenberger P, Huang W, Ye P et al. Requirement of endogenous stem cell factor and granulocyte-colony-stimulating factor for IL-17-mediated granulopoiesis. J. Immunol.164(9), 4783–4789 (2000).
  • Schwarzenberger P, La Russa V, Miller A et al. IL-17 stimulates granulopoiesis in mice: use of an alternate, novel gene therapy-derived method for in vivo evaluation of cytokines. J. Immunol.161(11), 6383–6389 (1998).
  • Cai XY, Gommoll CP, Justice L, Narula SK, Fine JS. Regulation of granulocyte colony-stimulating factor gene expression by interleukin-17. Immunol. Lett.62(1), 51–58 (1998).
  • Laan M, Prause O, Miyamoto M et al. A role of GM-CSF in the accumulation of neutrophils in the airways caused by IL-17 and TNF-α. Eur. Respir. J.21(3), 387–393 (2003).
  • Ferretti S, Bonneau O, Dubois GR, Jones CE, Trifilieff A. IL-17, produced by lymphocytes and neutrophils, is necessary for lipopolysaccharide-induced airway neutrophilia: IL-15 as a possible trigger. J. Immunol.170(4), 2106–2112 (2003).
  • Kolls JK, Kanaly ST, Ramsay AJ. Interleukin-17: an emerging role in lung inflammation. Am. J. Respir. Cell Mol. Biol.28(1), 9–11 (2003).
  • Laan M, Cui ZH, Hoshino H et al. Neutrophil recruitment by human IL-17 via C–X–C chemokine release in the airways. J. Immunol.162(4), 2347–2352 (1999).
  • Ye P, Rodriguez FH, Kanaly S et al. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J. Exp. Med.194(4), 519–527 (2001).
  • Kehlen A, Thiele K, Riemann D, Langner J. Expression, modulation and signalling of IL-17 receptor in fibroblast-like synoviocytes of patients with rheumatoid arthritis. Clin. Exp. Immunol.127(3), 539–546 (2002).
  • Peric M, Koglin S, Kim SM et al. IL-17A enhances vitamin D3-induced expression of cathelicidin antimicrobial peptide in human keratinocytes. J. Immunol.181(12), 8504–8512 (2008).
  • Liang SC, Tan XY, Luxenberg DP et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med.203(10), 2271–2279 (2006).
  • Champaiboon C, Sappington KJ, Guenther BD, Ross KF, Herzberg MC. Calprotectin S100A9 calcium-binding loops I and II are essential for keratinocyte resistance to bacterial invasion. J. Biol. Chem.284(11), 7078–7090 (2009).
  • Sohnle PG, Collins-Lech C, Wiessner JH. Antimicrobial activity of an abundant calcium-binding protein in the cytoplasm of human neutrophils. J. Infect. Dis.163(1), 187–192 (1991).
  • Honorati MC, Neri S, Cattini L, Facchini A. Interleukin-17, a regulator of angiogenic factor release by synovial fibroblasts. Osteoarthritis Cartilage14(4), 345–352 (2006).
  • Hwang SY, Kim JY, Kim KW et al. IL-17 induces production of IL-6 and IL-8 in rheumatoid arthritis synovial fibroblasts via NF-κB- and PI3-kinase/Akt-dependent pathways. Arthritis Res. Ther.6(2), R120–R128 (2004).
  • Fossiez F, Djossou O, Chomarat P et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J. Exp. Med.183(6), 2593–2603 (1996).
  • Agarwal S, Misra R, Aggarwal A. Interleukin 17 levels are increased in juvenile idiopathic arthritis synovial fluid and induce synovial fibroblasts to produce proinflammatory cytokines and matrix metalloproteinases. J. Rheumatol.35(3), 515–519 (2008).
  • Cai L, Yin JP, Starovasnik MA et al. Pathways by which interleukin 17 induces articular cartilage breakdown in vitro and in vivo. Cytokine16(1), 10–21 (2001).
  • Sylvester J, Liacini A, Li WQ, Zafarullah M. Interleukin-17 signal transduction pathways implicated in inducing matrix metalloproteinase-3, -13 and aggrecanase-1 genes in articular chondrocytes. Cell Signal16(4), 469–476 (2004).
  • Komiyama Y, Nakae S, Matsuki T et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J. Immunol.177(1), 566–573 (2006).
  • Zhu S, Pan W, Shi P et al. Modulation of experimental autoimmune encephalomyelitis through TRAF3-mediated suppression of interleukin 17 receptor signaling. J. Exp. Med.207(12), 2647–2662 (2010).
  • Lubberts E, Koenders MI, Oppers-Walgreen B et al. Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion. Arthritis Rheum.50(2), 650–659 (2004).
  • Yen D, Cheung J, Scheerens H et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J. Clin. Invest.116(5), 1310–1316 (2006).
  • Van Der Fits L, Mourits S, Voerman JS et al. Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J. Immunol.182(9), 5836–5845 (2009).
  • Nakae S, Komiyama Y, Nambu A et al. Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity17(3), 375–387 (2002).
  • Nakae S, Suto H, Berry GJ, Galli SJ. Mast cell-derived TNF can promote Th17 cell-dependent neutrophil recruitment in oval bumin-challenged OTII mice. Blood109(9), 3640–3648 (2007).
  • Matusevicius D, Kivisakk P, He B et al. Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult. Scler.5(2), 101–104 (1999).
  • Ishizu T, Osoegawa M, Mei FJ et al. Intrathecal activation of the IL-17/IL-8 axis in opticospinal multiple sclerosis. Brain128(Pt 5), 988–1002 (2005).
  • Chabaud M, Durand JM, Buchs N et al. Human interleukin-17: A T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum.42(5), 963–970 (1999).
  • Nistala K, Moncrieffe H, Newton KR, Varsani H, Hunter P, Wedderburn LR. Interleukin-17-producing T cells are enriched in the joints of children with arthritis, but have a reciprocal relationship to regulatory T cell numbers. Arthritis Rheum.58(3), 875–887 (2008).
  • Lowes MA, Kikuchi T, Fuentes-Duculan J et al. Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells. J. Invest. Dermatol.128(5), 1207–1211 (2008).
  • Holtta V, Klemetti P, Sipponen T et al. IL-23/IL-17 immunity as a hallmark of Crohn’s disease. Inflamm. Bowel Dis.14(9), 1175–1184 (2008).
  • Fujino S, Andoh A, Bamba S et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut52(1), 65–70 (2003).
  • Murdoch JR, Lloyd CM. Resolution of allergic airway inflammation and airway hyperreactivity is mediated by IL-17 producing {γ}{δ}T cells. Am. J. Respir. Crit. Care Med.182(4), 464–476 (2010).
  • O’connor W, Kamanaka M, Booth CJ et al. A protective function for interleukin 17A in T cell-mediated intestinal inflammation. Nat. Immunol.10(6), 603–609 (2009).
  • Bordon Y, Hansell CA, Sester DP, Clarke M, Mowat AM, Nibbs RJ. The atypical chemokine receptor D6 contributes to the development of experimental colitis. J. Immunol.182(8), 5032–5040 (2009).
  • Ogawa A, Andoh A, Araki Y, Bamba T, Fujiyama Y. Neutralization of interleukin-17 aggravates dextran sulfate sodium-induced colitis in mice. Clin. Immunol.110(1), 55–62 (2004).
  • Erbel C, Chen L, Bea F et al. Inhibition of IL-17A attenuates atherosclerotic lesion development in apoE-deficient mice. J. Immunol.183(12), 8167–8175 (2009).
  • Otani K, Watanabe T, Tanigawa T et al. Anti-inflammatory effects of IL-17A on Helicobacter pylori-induced gastritis. Biochem. Biophys. Res. Commun.382(2), 252–258 (2009).
  • Ke Y, Liu K, Huang GQ et al. Anti-inflammatory role of IL-17 in experimental autoimmune uveitis. J. Immunol.182(5), 3183–3190 (2009).
  • Pelidou SH, Zou LP, Deretzi G, Oniding C, Mix E, Zhu J. Enhancement of acute phase and inhibition of chronic phase of experimental autoimmune neuritis in Lewis rats by intranasal administration of recombinant mouse interleukin 17: potential immunoregulatory role. Exp. Neurol.163(1), 165–172 (2000).
  • Maione F, Paschalidis N, Mascolo N, Dufton N, Perretti M, D’acquisto F. Interleukin 17 sustains rather than induces inflammation. Biochem. Pharmacol.77(5), 878–887 (2009).
  • Sutton CE, Lalor SJ, Sweeney CM, Brereton CF, Lavelle EC, Mills KH. Interleukin-1 and IL-23 induce innate IL-17 production from γδ T cells, amplifying Th17 responses and autoimmunity. Immunity31(2), 331–341 (2009).
  • Takatori H, Kanno Y, Watford WT et al. Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J. Exp. Med.206(1), 35–41 (2009).
  • Langrish CL, Mckenzie BS, Wilson NJ, De Waal Malefyt R, Kastelein RA, Cua DJ. IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunol. Rev.202, 96–105 (2004).
  • Bettelli E, Oukka M, Kuchroo VK. T(H)-17 cells in the circle of immunity and autoimmunity. Nat. Immunol.8(4), 345–350 (2007).
  • Zheng Y, Danilenko DM, Valdez P et al. Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature445(7128), 648–651 (2007).
  • Yang XO, Chang SH, Park H et al. Regulation of inflammatory responses by IL-17F. J. Exp. Med.205(5), 1063–1075 (2008).
  • Sarra M, Monteleone G. Interleukin-21: a new mediator of inflammation in systemic lupus erythematosus. J. Biomed. Biotechnol.2010, 294582 (2010).
  • Marks BR, Nowyhed HN, Choi JY et al. Thymic self-reactivity selects natural interleukin 17-producing T cells that can regulate peripheral inflammation. Nat. Immunol.10(10), 1125–1132 (2009).
  • Alcorn JF, Crowe CR, Kolls JK. TH17 cells in asthma and COPD. Annu. Rev. Physiol.72, 495–516 (2010).
  • Aujla SJ, Alcorn JF. T(H)17 cells in asthma and inflammation. Biochim. Biophys. Acta1810(11), 1066–1079 (2011).
  • Cosmi L, Liotta F, Maggi E, Romagnani S, Annunziato F. Th17 cells: new players in asthma pathogenesis. Allergy66(8), 989–998 (2011).
  • Hizawa N, Kawaguchi M, Huang SK, Nishimura M. Role of interleukin-17F in chronic inflammatory and allergic lung disease. Clin. Exp. Allergy36(9), 1109–1114 (2006).
  • Bullens DM, Truyen E, Coteur L et al. IL-17 mRNA in sputum of asthmatic patients: linking T cell driven inflammation and granulocytic influx? Respir. Res.7, 135 (2006).
  • Wong CK, Lun SW, Ko FW et al. Activation of peripheral Th17 lymphocytes in patients with asthma. Immunol. Invest.38(7), 652–664 (2009).
  • Cosmi L, Maggi L, Santarlasci V et al. Identification of a novel subset of human circulating memory CD4(+) T cells that produce both IL-17A and IL-4. J. Allergy Clin. Immunol.125(1), 222–230 e1–e4 (2010).
  • Barczyk A, Pierzchala W, Sozanska E. Interleukin-17 in sputum correlates with airway hyperresponsiveness to methacholine. Respir. Med.97(6), 726–733 (2003).
  • Wong CK, Ho CY, Ko FW et al. Proinflammatory cytokines (IL-17, IL-6, IL-18 and IL-12) and Th cytokines (IFN-γ, IL-4, IL-10 and IL-13) in patients with allergic asthma. Clin. Exp. Immunol.125(2), 177–183 (2001).
  • Lotvall J, Akdis CA, Bacharier LB et al. Asthma endotypes: a new approach to classification of disease entities within the asthma syndrome. J. Allergy Clin. Immunol.127(2), 355–360 (2011).
  • Agache I, Ciobanu C, Agache C, Anghel M. Increased serum IL-17 is an independent risk factor for severe asthma. Respir. Med.104(8), 1131–1137 (2010).
  • Kaminska M, Foley S, Maghni K et al. Airway remodeling in subjects with severe asthma with or without chronic persistent airflow obstruction. J. Allergy Clin. Immunol.124(1), 45–51.e1–e4 (2009).
  • Postma DS, Bleecker ER, Amelung PJ et al. Genetic susceptibility to asthma – bronchial hyperresponsiveness coinherited with a major gene for atopy. N. Engl. J. Med.333(14), 894–900 (1995).
  • Marquardt DL, Wasserman SI. Mast cells in allergic diseases and mastocytosis. West J. Med.137(3), 195–212 (1982).
  • Milovanovic M, Drozdenko G, Weise C, Babina M, Worm M. Interleukin-17A promotes IgE production in human B cells. J. Invest. Dermatol.130(11), 2621–2628 (2010).
  • Grimbacher B, Holland SM, Gallin JI et al. Hyper-IgE syndrome with recurrent infections – an autosomal dominant multisystem disorder. N. Engl. J. Med.340(9), 692–702 (1999).
  • Harris MB, Chang CC, Berton MT et al. Transcriptional repression of Stat6-dependent interleukin-4-induced genes by BCL-6: specific regulation of ε transcription and immunoglobulin E switching. Mol. Cell. Biol.19(10), 7264–7275 (1999).
  • Sanderson CJ. Interleukin-5, eosinophils, and disease. Blood79(12), 3101–3109 (1992).
  • Rothenberg ME, Ownbey R, Mehlhop PD et al. Eotaxin triggers eosinophil-selective chemotaxis and calcium flux via a distinct receptor and induces pulmonary eosinophilia in the presence of interleukin 5 in mice. Mol. Med.2(3), 334–348 (1996).
  • Saleh A, Shan L, Halayko AJ, Kung S, Gounni AS. Critical role for STAT3 in IL-17A-mediated CCL11 expression in human airway smooth muscle cells. J. Immunol.182(6), 3357–3365 (2009).
  • Rahman MS, Yamasaki A, Yang J, Shan L, Halayko AJ, Gounni AS. IL-17A induces eotaxin-1/CC chemokine ligand 11 expression in human airway smooth muscle cells: role of MAPK (Erk1/2, JNK, and p38) pathways. J. Immunol.177(6), 4064–4071 (2006).
  • Linden A. Interleukin-17 and airway remodelling. Pulm. Pharmacol. Ther.19(1), 47–50 (2006).
  • Inoue D, Numasaki M, Watanabe M et al. IL-17A promotes the growth of airway epithelial cells through ERK-dependent signaling pathway. Biochem. Biophys. Res. Commun.347(4), 852–858 (2006).
  • Chen Y, Thai P, Zhao YH, Ho YS, Desouza MM, Wu R. Stimulation of airway mucin gene expression by interleukin (IL)-17 through IL-6 paracrine/autocrine loop. J. Biol. Chem.278(19), 17036–17043 (2003).
  • Fujisawa T, Velichko S, Thai P, Hung LY, Huang F, Wu R. Regulation of airway MUC5AC expression by IL-1β and IL-17A; the NF-κB paradigm. J. Immunol.183(10), 6236–6243 (2009).
  • Douwes J, Gibson P, Pekkanen J, Pearce N. Non-eosinophilic asthma: importance and possible mechanisms. Thorax57(7), 643–648 (2002).
  • Duma D, Jewell CM, Cidlowski JA. Multiple glucocorticoid receptor isoforms and mechanisms of post-translational modification. J. Steroid Biochem. Mol. Biol.102(1–5), 11–21 (2006).
  • Lu NZ, Cidlowski JA. Translational regulatory mechanisms generate N-terminal glucocorticoid receptor isoforms with unique transcriptional target genes. Mol. Cell18(3), 331–342 (2005).
  • Gagliardo R, Chanez P, Vignola AM et al. Glucocorticoid receptor α and β in glucocorticoid dependent asthma. Am. J. Respir. Crit. Care Med.162(1), 7–13 (2000).
  • Lavender P. Interleukin-17: a new role in steroid hypo-responsiveness? Clin. Exp. Allergy40(9), 1293–1294 (2010).
  • Leung DY, Chrousos GP. Is there a role for glucocorticoid receptor β in glucocorticoid-dependent asthmatics? Am. J. Respir. Crit. Care Med.162(1), 1–3 (2000).
  • Gagliardo R, Vignola AM, Mathieu M. Is there a role for glucocorticoid receptor β in asthma? Respir. Res.2(1), 1–4 (2001).
  • Gougat C, Jaffuel D, Gagliardo R et al. Overexpression of the human glucocorticoid receptor α and β isoforms inhibits AP-1 and NF-κB activities hormone independently. J. Mol. Med. (Berl.)80(5), 309–318 (2002).
  • Kino T, Manoli I, Kelkar S, Wang Y, Su YA, Chrousos GP. Glucocorticoid receptor (GR) β has intrinsic, GRα-independent transcriptional activity. Biochem. Biophys. Res. Commun.381(4), 671–675 (2009).
  • Kelly A, Bowen H, Jee YK et al. The glucocorticoid receptor β isoform can mediate transcriptional repression by recruiting histone deacetylases. J. Allergy Clin. Immunol.121(1), 203–208, e201 (2008).
  • Strickland I, Kisich K, Hauk PJ et al. High constitutive glucocorticoid receptor β in human neutrophils enables them to reduce their spontaneous rate of cell death in response to corticosteroids. J. Exp. Med.193(5), 585–593 (2001).
  • Leung DY, Hamid Q, Vottero A et al. Association of glucocorticoid insensitivity with increased expression of glucocorticoid receptor β. J. Exp. Med.186(9), 1567–1574 (1997).
  • Tliba O, Cidlowski JA, Amrani Y. CD38 expression is insensitive to steroid action in cells treated with tumor necrosis factor-α and interferon-γ by a mechanism involving the up-regulation of the glucocorticoid receptor β isoform. Mol. Pharmacol.69(2), 588–596 (2006).
  • Torrego A, Pujols L, Roca-Ferrer J, Mullol J, Xaubet A, Picado C. Glucocorticoid receptor isoforms α and β in in vitro cytokine-induced glucocorticoid insensitivity. Am. J. Respir. Crit. Care Med.170(4), 420–425 (2004).
  • Mckinley L, Alcorn JF, Peterson A et al. TH17 cells mediate steroid-resistant airway inflammation and airway hyperresponsiveness in mice. J. Immunol.181(6), 4089–4097 (2008).
  • Linden A, Adachi M. Neutrophilic airway inflammation and IL-17. Allergy57(9), 769–775 (2002).
  • Oboki K, Ohno T, Saito H, Nakae S. Th17 and allergy. Allergol. Int.57(2), 121–134 (2008).
  • Leung DY, Spahn JD, Szefler SJ. Steroid-unresponsive asthma. Semin. Respir. Crit. Care Med.23(4), 387–398 (2002).
  • Cox G. Glucocorticoid treatment inhibits apoptosis in human neutrophils. Separation of survival and activation outcomes. J. Immunol.154(9), 4719–4725 (1995).
  • Rangel-Moreno J, Carragher DM, De La Luz Garcia-Hernandez M et al. The development of inducible bronchus-associated lymphoid tissue depends on IL-17. Nat. Immunol.12(7), 639–646 (2011).
  • Wilson RH, Whitehead GS, Nakano H, Free ME, Kolls JK, Cook DN. Allergic sensitization through the airway primes Th17-dependent neutrophilia and airway hyperresponsiveness. Am. J. Respir. Crit. Care Med.180(8), 720–730 (2009).
  • Von Vietinghoff S, Ley K. IL-17A controls IL-17F production and maintains blood neutrophil counts in mice. J. Immunol.183(2), 865–873 (2009).
  • Sonnenberg GF, Nair MG, Kirn TJ, Zaph C, Fouser LA, Artis D. Pathological versus protective functions of IL-22 in airway inflammation are regulated by IL-17A. J. Exp. Med.207(6), 1293–1305 (2010).
  • Besnard AG, Sabat R, Dumoutier L et al. Dual role of IL-22 in allergic airway inflammation and its cross-talk with IL-17A. Am. J. Respir. Crit. Care Med.183(9), 1153–1163 (2011).
  • Wang JY, Shyur SD, Wang WH et al. The polymorphisms of interleukin 17A (IL17A) gene and its association with pediatric asthma in Taiwanese population. Allergy64(7), 1056–1060 (2009).
  • Hueber W, Patel DD, Dryja T et al. Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis. Sci. Transl. Med.2(52), 52–72 (2010).
  • Genovese MC, Van Den Bosch F, Roberson SA et al. LY2439821, a humanized anti-interleukin-17 monoclonal antibody, in the treatment of patients with rheumatoid arthritis: a Phase 1 randomized, double-blind, placebo-controlled, proof-of-concept study. Arthritis Rheum.62(4), 929–939 (2010).
  • Wright JF, Bennett F, Li B et al. The human IL-17F/IL-17A heterodimeric cytokine signals through the IL-17RA/IL-17RC receptor complex. J. Immunol.181(4), 2799–2805 (2008).
  • Toy D, Kugler D, Wolfson M et al. Cutting edge: interleukin 17 signals through a heteromeric receptor complex. J. Immunol.177(1), 36–39 (2006).
  • Rickel EA, Siegel LA, Yoon BR et al. Identification of functional roles for both IL-17RB and IL-17RA in mediating IL-25-induced activities. J. Immunol.181(6), 4299–4310 (2008).
  • Fort MM, Cheung J, Yen D et al. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity15(6), 985–995 (2001).
  • Angkasekwinai P, Chang SH, Thapa M, Watarai H, Dong C. Regulation of IL-9 expression by IL-25 signaling. Nat. Immunol.11(3), 250–256 (2010).
  • Song X, Zhu S, Shi P et al. IL-17RE is the functional receptor for IL-17C and mediates mucosal immunity to infection with intestinal pathogens. Nat. Immunol.12(12), 1151–1158 (2011).
  • Kuestner RE, Taft DW, Haran A et al. Identification of the IL-17 receptor related molecule IL-17RC as the receptor for IL-17F. J. Immunol.179(8), 5462–5473 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.