3,064
Views
30
CrossRef citations to date
0
Altmetric
Review

Genetic basis for personalized medicine in asthma

&
Pages 223-236 | Published online: 09 Jan 2014

References

  • No authors listed. Proceedings of the ATS workshop on refractory asthma: current understanding, recommendations, and unanswered questions. American Thoracic Society. Am. J. Respir. Crit. Care Med.162(6), 2341–2351 (2000).
  • Ober C, Vercelli D. Gene–environment interactions in human disease: nuisance or opportunity? Trends Genet.27(3), 107–115 (2011).
  • Holloway JW, Arshad SH, Holgate ST. Using genetics to predict the natural history of asthma? J. Allergy Clin. Immunol.126(2), 200–209; quiz 210–201 (2010).
  • Moffatt MF, Kabesch M, Liang L et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature448(7152), 470–473 (2007).
  • Moffatt MF, Gut IG, Demenais F et al. A large-scale, consortium-based genomewide association study of asthma. N. Engl. J. Med.363(13), 1211–1221 (2010).
  • Himes BE, Hunninghake GM, Baurley JW et al. Genome-wide association analysis identifies PDE4D as an asthma-susceptibility gene. Am. J. Hum. Genet.84(5), 581–593 (2009).
  • Gudbjartsson DF, Bjornsdottir US, Halapi E et al. Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction. Nat. Genet.41(3), 342–347 (2009).
  • Sleiman PM, Flory J, Imielinski M et al. Variants of DENND1B associated with asthma in children. N. Engl. J. Med.362(1), 36–44 (2010).
  • Ferreira MA, Mcrae AF, Medland SE et al. Association between ORMDL3, IL1RL1 and a deletion on chromosome 17q21 with asthma risk in Australia. Eur. J. Hum. Genet.19(4), 458–464 (2011).
  • BTS. British Guideline on the Managment of Asthma. British Thoracic Society, London, UK (2009).
  • Sayers I, Hall IP. Pharmacogenetic approaches in the treatment of asthma. Curr. Allergy Asthma Rep.5(2), 101–108 (2005).
  • Hall IP, Sayers I. Pharmacogenetics and asthma: false hope or new dawn? Eur. Respir. J.29(6), 1239–1245 (2007).
  • Duroudier NP, Tulah AS, Sayers I. Leukotriene pathway genetics and pharmacogenetics in allergy. Allergy64(6), 823–839 (2009).
  • Pascual RM, Bleecker ER. Pharmacogenetics of asthma. Curr. Opin. Pharmacol.10(3), 226–235 (2010).
  • Tse SM, Tantisira K, Weiss ST. The pharmacogenetics and pharmacogenomics of asthma therapy. Pharmacogenomics J.11(6), 383–392 (2011).
  • Hawkins GA, Tantisira K, Meyers DA et al. Sequence, haplotype, and association analysis of ADRβ2 in a multiethnic asthma case–control study. Am. J. Respir. Crit. Care Med.174(10), 1101–1109 (2006).
  • Reihsaus E, Innis M, Macintyre N, Liggett SB. Mutations in the gene encoding for the β2-adrenergic receptor in normal and asthmatic subjects. Am. J. Respir. Cell Mol. Biol.8(3), 334–339 (1993).
  • Drysdale CM, Mcgraw DW, Stack CB et al. Complex promoter and coding region β2-adrenergic receptor haplotypes alter receptor expression and predict in vivo responsiveness. Proc. Natl Acad. Sci. USA97(19), 10483–10488 (2000).
  • Sayers I, Hawley J, Stewart CE et al. Pharmacogenetic characterization of indacaterol, a novel β2-adrenoceptor agonist. Br. J. Pharmacol.158(1), 277–286 (2009).
  • Lee MY, Cheng SN, Chen SJ, Huang HL, Wang CC, Fan HC. Polymorphisms of the β2-adrenergic receptor correlated to nocturnal asthma and the response of terbutaline nebulizer. Pediatr. Neonatol.52(1), 18–23 (2011).
  • Basu K, Palmer CN, Tavendale R, Lipworth BJ, Mukhopadhyay S. Adrenergic β(2)-receptor genotype predisposes to exacerbations in steroid-treated asthmatic patients taking frequent albuterol or salmeterol. J. Allergy Clin. Immunol.124(6), 1188–1194 (2009).
  • Bleecker ER, Postma DS, Lawrance RM, Meyers DA, Ambrose HJ, Goldman M. Effect of ADRB2 polymorphisms on response to longacting β2-agonist therapy: a pharmacogenetic analysis of two randomised studies. Lancet370(9605), 2118–2125 (2007).
  • Bleecker ER, Nelson HS, Kraft M et al. β2-receptor polymorphisms in patients receiving salmeterol with or without fluticasone propionate. Am. J. Respir. Crit. Care Med.181(7), 676–687 (2010).
  • Israel E, Drazen JM, Liggett SB et al. The effect of polymorphisms of the β(2)-adrenergic receptor on the response to regular use of albuterol in asthma. Am. J. Respir. Crit. Care Med.162(1), 75–80 (2000).
  • Wechsler ME, Kunselman SJ, Chinchilli VM et al. Effect of β-adrenergic receptor polymorphism on response to longacting β2 agonist in asthma (LARGE trial): a genotype-stratified, randomised, placebo-controlled, crossover trial. Lancet374(9703), 1754–1764 (2009).
  • Panebra A, Wang WC, Malone MM et al. Common ADRB2 haplotypes derived from 26 polymorphic sites direct β2-adrenergic receptor expression and regulation phenotypes. PLoS One5(7), e11819 (2010).
  • Panebra A, Schwarb MR, Swift SM et al. Variable-length poly-C tract polymorphisms of the β2-adrenergic receptor 3´-UTR alter expression and agonist regulation. Am. J. Physiol. Lung Cell Mol. Physiol.294(2), L190–L195 (2008).
  • Bleecker ER, Emmett A, Crater G, Knobil K, Kalberg C. Lung function and symptom improvement with fluticasone propionate/salmeterol and ipratropium bromide/albuterol in COPD: response by β-agonist reversibility. Pulm. Pharmacol. Ther.21(4), 682–688 (2008).
  • Litonjua AA, Lasky-Su J, Schneiter K et al.ARG1 is a novel bronchodilator response gene: screening and replication in four asthma cohorts. Am. J. Respir. Crit. Care Med.178(7), 688–694 (2008).
  • Vonk JM, Postma DS, Maarsingh H, Bruinenberg M, Koppelman GH, Meurs H. Arginase 1 and arginase 2 variations associate with asthma, asthma severity and β2 agonist and steroid response. Pharmacogenet. Genomics20(3), 179–186 (2010).
  • Duan QL, Gaume BR, Hawkins GA et al. Regulatory haplotypes in ARG1 are associated with altered bronchodilator response. Am. J. Respir. Crit. Care Med.183(4), 449–454 (2011).
  • Meurs H, Mckay S, Maarsingh H et al. Increased arginase activity underlies allergen-induced deficiency of cNOS-derived nitric oxide and airway hyperresponsiveness. Br. J. Pharmacol.136(3), 391–398 (2002).
  • Maarsingh H, Zuidhof AB, Bos IS et al. Arginase inhibition protects against allergen-induced airway obstruction, hyperresponsiveness, and inflammation. Am. J. Respir. Crit. Care Med.178(6), 565–573 (2008).
  • Moore PE, Ryckman KK, Williams SM, Patel N, Summar ML, Sheller JR. Genetic variants of GSNOR and ADRB2 influence response to albuterol in African–American children with severe asthma. Pediatr. Pulmonol.44(7), 649–654 (2009).
  • Choudhry S, Que LG, Yang Z et al. GSNO reductase and β2-adrenergic receptor gene–gene interaction: bronchodilator responsiveness to albuterol. Pharmacogenet. Genomics20(6), 351–358 (2010).
  • Gaston B, Reilly J, Drazen JM et al. Endogenous nitrogen oxides and bronchodilator S-nitrosothiols in human airways. Proc. Natl Acad. Sci USA90(23), 10957–10961 (1993).
  • Whalen EJ, Foster MW, Matsumoto A et al. Regulation of β-adrenergic receptor signaling by S-nitrosylation of G-protein-coupled receptor kinase 2. Cell129(3), 511–522 (2007).
  • Malmstrom K, Rodriguez-Gomez G, Guerra J et al. Oral montelukast, inhaled beclomethasone, and placebo for chronic asthma. A randomized, controlled trial. Montelukast/Beclomethasone study group. Ann. Intern. Med.130(6), 487–495 (1999).
  • Mougey EB, Feng H, Castro M, Irvin CG, Lima JJ. Absorption of montelukast is transporter mediated: a common variant of OATP2B1 is associated with reduced plasma concentrations and poor response. Pharmacogenet. Genomics19(2), 129–138 (2009).
  • Drazen JM, Yandava CN, Dube L et al. Pharmacogenetic association between ALOX5 promoter genotype and the response to anti-asthma treatment. Nat. Genet.22(2), 168–170 (1999).
  • Tantisira KG, Lima J, Sylvia J, Klanderman B, Weiss ST. 5-lipoxygenase pharmacogenetics in asthma: overlap with Cys-leukotriene receptor antagonist loci. Pharmacogenet. Genomics19(3), 244–247 (2009).
  • Lima JJ, Zhang S, Grant A et al. Influence of leukotriene pathway polymorphisms on response to montelukast in asthma. Am. J. Respir. Crit. Care Med.173(4), 379–385 (2006).
  • Klotsman M, York TP, Pillai SG et al. Pharmacogenetics of the 5-lipoxygenase biosynthetic pathway and variable clinical response to montelukast. Pharmacogenet. Genomics17(3), 189–196 (2007).
  • Sampson AP, Siddiqui S, Buchanan D et al. Variant LTC(4) synthase allele modifies cysteinyl leukotriene synthesis in eosinophils and predicts clinical response to zafirlukast. Thorax55(Suppl. 2), S28–S31 (2000).
  • Asano K, Shiomi T, Hasegawa N et al. Leukotriene C4 synthase gene A(-444)C polymorphism and clinical response to a CYS-LT(1) antagonist, pranlukast, in Japanese patients with moderate asthma. Pharmacogenetics12(7), 565–570 (2002).
  • Mastalerz L, Nizankowska E, Sanak M et al. Clinical and genetic features underlying the response of patients with bronchial asthma to treatment with a leukotriene receptor antagonist. Eur. J. Clin. Invest.32(12), 949–955 (2002).
  • Whelan GJ, Blake K, Kissoon N et al. Effect of montelukast on time-course of exhaled nitric oxide in asthma: influence of LTC4 synthase A(-444)C polymorphism. Pediatr. Pulmonol.36(5), 413–420 (2003).
  • Currie GP, Lima JJ, Sylvester JE, Lee DK, Cockburn WJ, Lipworth BJ. Leukotriene C4 synthase polymorphisms and responsiveness to leukotriene antagonists in asthma. Br. J. Clin. Pharmacol.56(4), 422–426 (2003).
  • Kim SH, Ye YM, Hur GY et al. CYSLTR1 promoter polymorphism and requirement for leukotriene receptor antagonist in aspirin-intolerant asthma patients. Pharmacogenomics8(9), 1143–1150 (2007).
  • Lee SY, Kim HB, Kim JH et al. Responsiveness to montelukast is associated with bronchial hyperresponsiveness and total immunoglobulin E but not polymorphisms in the leukotriene C4 synthase and cysteinyl leukotriene receptor 1 genes in Korean children with exercise-induced asthma (EIA). Clin. Exp. Allergy37(10), 1487–1493 (2007).
  • Kang MJ, Kwon JW, Kim BJ et al. Polymorphisms of the PTGDR and LTC4S influence responsiveness to leukotriene receptor antagonists in Korean children with asthma. J. Hum. Genet.56(4), 284–289 (2011).
  • York TP, Vargas-Irwin C, Anderson WH, Van Den Oord EJ. Asthma pharmacogenetic study using finite mixture models to handle drug-response heterogeneity. Pharmacogenomics10(5), 753–767 (2009).
  • Mougey EB, Lang JE, Wen X, Lima JJ. Effect of citrus juice and SLCO2B1 genotype on the pharmacokinetics of montelukast. J. Clin. Pharmacol.51(5), 751–760 (2011).
  • Lima JJ. Treatment heterogeneity in asthma: genetics of response to leukotriene modifiers. Mol. Diagn. Ther.11(2), 97–104 (2007).
  • Stevens A, Ray DW, Zeggini E et al. Glucocorticoid sensitivity is determined by a specific glucocorticoid receptor haplotype. J. Clin. Endocrinol. Metab.89(2), 892–897 (2004).
  • Tantisira KG, Lake S, Silverman ES et al. Corticosteroid pharmacogenetics: association of sequence variants in CRHR1 with improved lung function in asthmatics treated with inhaled corticosteroids. Hum. Mol. Genet.13(13), 1353–1359 (2004).
  • Finotto S, Neurath MF, Glickman JN et al. Development of spontaneous airway changes consistent with human asthma in mice lacking T-bet. Science295(5553), 336–338 (2002).
  • Ye YM, Lee HY, Kim SH et al. Pharmacogenetic study of the effects of NK2R G231E G>A and TBX21 H33Q C>G polymorphisms on asthma control with inhaled corticosteroid treatment. J. Clin. Pharm. Ther.34(6), 693–701 (2009).
  • Hawkins GA, Lazarus R, Smith RS et al. The glucocorticoid receptor heterocomplex gene STIP1 is associated with improved lung function in asthmatic subjects treated with inhaled corticosteroids. J. Allergy Clin. Immunol.123(6), 1376–1383 (2009).
  • Jin Y, Hu D, Peterson EL et al. Dual-specificity phosphatase 1 as a pharmacogenetic modifier of inhaled steroid response among asthmatic patients. J. Allergy Clin. Immunol.126(3), 618–625.e1–2 (2010).
  • Tantisira KG, Silverman ES, Mariani TJ et al. FCER2: a pharmacogenetic basis for severe exacerbations in children with asthma. J. Allergy Clin. Immunol.120(6), 1285–1291 (2007).
  • Koster ES, Maitland-van der Zee AH, Tavendale R et al. FCER2 T2206C variant associated with chronic symptoms and exacerbations in steroid-treated asthmatic children. Allergy66(12), 1546–1552 (2011).
  • Tantisira KG, Lasky-Su J, Harada M et al. Genomewide association between GLCCI1 and response to glucocorticoid therapy in asthma. N. Engl. J. Med.365(13), 1173–1183 (2011).
  • Barnes KC. Ancestry, ancestry-informative markers, asthma, and the quest for personalized medicine. J. Allergy Clin. Immunol.126(6), 1139–1140 (2010).
  • Haldar P, Brightling CE, Hargadon B et al. Mepolizumab and exacerbations of refractory eosinophilic asthma. N. Engl. J. Med.360(10), 973–984 (2009).
  • Corren J, Lemanske RF, Hanania NA et al. Lebrikizumab treatment in adults with asthma. N. Engl. J. Med.365(12), 1088–1098 (2011).
  • Slager RE, Hawkins GA, Ampleford EJ et al. IL-4 receptor α polymorphisms are predictors of a pharmacogenetic response to a novel IL-4/IL-13 antagonist. J. Allergy Clin. Immunol.126(4), 875–878 (2010).
  • Wenzel S, Wilbraham D, Fuller R, Getz EB, Longphre M. Effect of an interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients: results of two Phase 2a studies. Lancet370(9596), 1422–1431 (2007).
  • Risma KA, Wang N, Andrews RP et al. V75R576 IL-4 receptor α is associated with allergic asthma and enhanced IL-4 receptor function. J. Immunol.169(3), 1604–1610 (2002).
  • Hayakawa H, Hayakawa M, Kume A, Tominaga S. Soluble ST2 blocks interleukin-33 signaling in allergic airway inflammation. J. Biol. Chem.282(36), 26369–26380 (2007).
  • Liu X, Li M, Wu Y, Zhou Y, Zeng L, Huang T. Anti-IL-33 antibody treatment inhibits airway inflammation in a murine model of allergic asthma. Biochem. Biophys. Res. Commun.386(1), 181–185 (2009).
  • Kearley J, Buckland KF, Mathie SA, Lloyd CM. Resolution of allergic inflammation and airway hyperreactivity is dependent upon disruption of the T1/ST2-IL-33 pathway. Am. J. Respir. Crit. Care Med.179(9), 772–781 (2009).
  • Prefontaine D, Lajoie-Kadoch S, Foley S et al. Increased expression of IL-33 in severe asthma: evidence of expression by airway smooth muscle cells. J. Immunol.183(8), 5094–5103 (2009).
  • Hammad H, Chieppa M, Perros F, Willart MA, Germain RN, Lambrecht BN. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat. Med.15(4), 410–416 (2009).
  • Oshikawa K, Kuroiwa K, Tago K et al. Elevated soluble ST2 protein levels in sera of patients with asthma with an acute exacerbation. Am. J. Respir. Crit. Care Med.164(2), 277–281 (2001).
  • Torgerson DG, Ampleford EJ, Chiu GY et al. Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations. Nat. Genet.43(9), 887–892 (2011).
  • Savenije OE, Kerkhof M, Reijmerink NE et al. Interleukin-1 receptor-like 1 polymorphisms are associated with serum IL1RL1-a, eosinophils, and asthma in childhood. J. Allergy Clin. Immunol.127(3), 750–756, e751–e755 (2011).
  • Spina D. PDE4 inhibitors: current status. Br. J. Pharmacol.155(3), 308–315 (2008).
  • Gamble E, Grootendorst DC, Brightling CE et al. Antiinflammatory effects of the phosphodiesterase-4 inhibitor cilomilast (Ariflo) in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med.168(8), 976–982 (2003).
  • Mata M, Sarria B, Buenestado A, Cortijo J, Cerda M, Morcillo EJ. Phosphodiesterase 4 inhibition decreases MUC5AC expression induced by epidermal growth factor in human airway epithelial cells. Thorax60(2), 144–152 (2005).
  • Van Schalkwyk E, Strydom K, Williams Z et al. Roflumilast, an oral, once-daily phosphodiesterase 4 inhibitor, attenuates allergen-induced asthmatic reactions. J. Allergy Clin. Immunol.116(2), 292–298 (2005).
  • Fan Chung K. Phosphodiesterase inhibitors in airways disease. Eur. J. Pharmacol.533(1–3), 110–117 (2006).
  • Trian T, Burgess JK, Niimi K et al. β2-agonist induced cAMP is decreased in asthmatic airway smooth muscle due to increased PDE4D. PLoS ONE6(5), e20000 (2011).
  • Obeidat M, Wain LV, Shrine N et al. A comprehensive evaluation of potential lung function associated genes in the SpiroMeta general population sample. PLoS ONE6(5), e19382 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.