55
Views
14
CrossRef citations to date
0
Altmetric
Review

Novel strategies for improved cancer vaccines

, &
Pages 567-576 | Published online: 09 Jan 2014

References

  • Srivastava PK, Old LJ. Individually distinct transplantation antigens of chemically induced mouse tumors. Immunol. Today9(3), 78–83 (1988).
  • Melief CJ, Vasmel WL, Offringa R et al. Immunosurveillance of virus-induced tumors. Cold Spring Harb. Symp. Quant. Biol.54, 597–603 (1989).
  • Hislop AD, Taylor GS, Sauce D, Rickinson AB. Cellular responses to viral infection in human: lessons from Epstein–Barr virus. Annu. Rev. Immunol.25, 587–617 (2007).
  • Dalgleish A, Pandha H. Tumor antigens as surrogate markers and targets for therapy and vaccines. Adv. Cancer Res.96, 175–190 (2007).
  • Finn OJ. Cancer immunology. N. Engl. J. Med.358(25), 2704–2715 (2008).
  • Takahashi Y, Harashima N, Kajigaya S et al. Regression of human kidney cancer following allogeneic stem cell transplantation is associated with recognition of an HERV-E antigen by T cells. J. Clin. Invest.118(3), 1099–1109 (2008).
  • Chen J, Pang XW, Liu FF et al.PLAC1/CP1 gene expression and autologous humoral immunity in gastric cancer patients. Beijing Da Xue Xue Bao38(2), 124–127 (2006).
  • Koslowski M, Sahin U, Mitnacht-Kraus R, Seitz G, Huber C, Tureci O. A placenta-specific gene ectopically activated in many human cancers is essentially involved in malignant cell processes. Cancer Res.67(19), 9528–9534 (2007).
  • Old LJ. Cancer is a somatic cell pregnancy. Cancer Immun.7, 19 (2007).
  • Baxevanis CN, Perez SA, Papamichail M. Combinatorial treatments including vaccines, chemotherapy and monoclonal antibodies for cancer therapy. Cancer Immunol. Immunother.58(3), 317–324 (2009).
  • Kruisbeek AM, Amsen D. Mechanisms underlying T-cell tolerance. Curr. Opin. Immunol.8(2), 233–244 (1996).
  • Stockinger B. T lymphocyte tolerance: from thymic deletion to peripheral control mechanisms. Adv. Immunol.71, 229–265 (1999).
  • Kersh GJ, Allen PM. Structural basis for T cell recognition of altered peptide ligands: a single T cell receptor can productively recognize a large continuum of related ligands. J. Exp. Med.184(4), 1259–1268 (1996).
  • Kersh GJ, Allen PM. Essential flexibility in the T-cell recognition of antigen. Nature380(6574), 495–498 (1996).
  • Fong L, Brockstedt D, Benike C et al. Dendritic cell-based xenoantigen vaccination for prostate cancer immunotherapy. J. Immunol.167(12), 7150–7156 (2001).
  • Roberts WK, Livingston PO, Agus DB, Pinilla-Ibarz J, Zelenetz A, Scheinberg DA. Vaccination with CD20 peptides induces a biologically active, specific immune response in mice. Blood99(10), 3748–3755 (2002).
  • Palomba ML, Roberts WK, Dao T et al. CD8+ T-cell-dependent immunity following xenogeneic DNA immunization against CD20 in a tumor challenge model of B-cell lymphoma. Clin. Cancer Res.11(1), 370–379 (2005).
  • Weber LW, Bowne WB, Wolchok JD et al. Tumor immunity and autoimmunity induced by immunization with homologous DNA. J. Clin. Invest.102(6), 1258–1264 (1998).
  • Hawkins WG, Gold JS, Blachere NE et al. Xenogeneic DNA immunization in melanoma models for minimal residual disease. J. Surg. Res.102(2), 137–143 (2002).
  • Lu Y, Wei YQ, Tian L et al. Immunogene therapy of tumors with vaccine based on xenogeneic epidermal growth factor receptor. J. Immunol.170(6), 3162–3170 (2003).
  • Pupa SM, Iezzi M, Di Carlo E et al. Inhibition of mammary carcinoma development in HER-2/neu transgenic mice through induction of autoimmunity by xenogeneic DNA vaccination. Cancer Res.65(3), 1071–1078 (2005).
  • Gallo P, Dharmapuri S, Nuzzo M et al. Xenogeneic immunization in mice using HER2 DNA delivered by an adenoviral vector. Int. J. Cancer113(1), 67–77 (2005).
  • Ko HJ, Kim YJ, Kim YS et al. A combination of chemoimmunotherapies can efficiently break self-tolerance and induce antitumor immunity in a tolerogenic murine tumor model. Cancer Res.67(15), 7477–7486 (2007).
  • Gritzapis AD, Mahaira LG, Perez SA, Cacoullos NT, Papamichail M, Baxevanis CN. Vaccination with human HER-2/neu (435–443) CTL peptide induces effective antitumor immunity against HER-2/neu-expressing tumor cells in vivo. Cancer Res.66(10), 5452–5460 (2006).
  • Kianizad K, Marshall LA, Grinshtein N et al. Elevated frequencies of self-reactive CD8+ T cells following immunization with a xenoantigen are due to the presence of a heteroclitic CD4+ T-cell helper epitope. Cancer Res.67(13), 6459–6467 (2007).
  • Weigle WO. The induction of autoimmunity in rabbits following injection of heterologous or altered homologous thyroglobulin J. Exp. Med.121, 289–308 (1965).
  • Grünewald J, Tsao ML, Perera R et al. Immunochemical termination of self-tolerance. Proc. Natl Acad. Sci. USA105(32), 11276–11280 (2008).
  • Lazoura E, Lodding J, Farrugia W et al. Enhanced major histocompatibility complex class I binding and immune responses through anchor modification of the non-canonical tumour-associated mucin 1–8 peptide. Immunology119(3), 306–316 (2006).
  • Kennedy R, Celis E. Multiple roles for CD4+ T cells in anti-tumor immune responses. Immunol. Rev.222, 129–144 (2008).
  • Kennedy R, Celis E. T helper lymphocytes rescue CTL from activation-induced cell death. J. Immunol.177(5), 2862–2872 (2006).
  • Janssen EM, Lemmens EE, Wolfe T, Christen U, von Herrath MG, Schoenberger SP. CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature421(6925), 852–856 (2003).
  • Shedlock DJ, Shen H. Requirement for CD4 T-cell help in generating functional CD8 T-cell memory. Science300(5617), 337–339 (2003).
  • Sun JC, Bevan MJ. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science300(5617), 339–342 (2003).
  • Moeller M, Haynes NM, Kershaw MH et al. Adoptive transfer of gene-engineered CD4+ helper T cells induces potent primary and secondary tumor rejection. Blood106(9), 2995–3003 (2005).
  • Lichterfeld M, Kaufmann DE, Yu XG et al. Loss of HIV-1-specific CD8+ T cell proliferation after acute HIV-1 infection and restoration by vaccine-induced HIV-1-specific CD4+ T cells. J. Exp. Med.200(6), 701–712 (2004).
  • Kavanagh DG, Kaufmann DE, Sunderji S et al. Expansion of HIV-specific CD4+ and CD8+ T cells by dendritic cells transfected with mRNA encoding cytoplasm- or lysosome-targeted Nef. Blood107(5), 1963–1969 (2006).
  • Boaz MJ, Waters A, Murad S, Easterbrook PJ, Vyakarnam A. Presence of HIV-1 Gag-specific IFN-γ+IL-2+ and CD28+IL-2+ CD4 T cell responses is associated with nonprogression in HIV-1 infection. J. Immunol.169(11), 6376–6385 (2002).
  • Stein R, Mattes MJ, Cardillo TM et al. CD74, a new candidate target for the immunotherapy of B-cell neoplasms. Clin. Cancer Res.13(18 Pt 2), 5556s–5563s (2007).
  • Matza D, Kerem A, Shachar I. Invariant chain, a chain of command. Trends Immunol.24(5), 264–268 (2003).
  • Diebold SS, Cotten M, Koch N, Zenke M. MHC class II presentation of endogenously expressed antigens by transfected dendritic cells. Gene Ther.8(6), 487–493 (2001).
  • Rowe HM, Lopes L, Ikeda Y et al. Immunization with a lentiviral vector stimulates both CD4 and CD8 T cell responses to an ovalbumin transgene. Mol. Ther.13(2), 310–319 (2006).
  • Holst PJ, Sorensen MR, Mandrup Jensen CM, Orskov C, Thomsen AR, Christensen JP. MHC class II-associated invariant chain linkage of antigen dramatically improves cell-mediated immunity induced by adenovirus vaccines. J. Immunol.180(5), 3339–3346 (2008).
  • Grujic M, Holst PJ, Christensen JP, Thomsen AR. Fusion of a viral antigen to invariant chain leads to augmented T-cell immunity and improved protection in gene-gun DNA-vaccinated mice. J. Gen. Virol.90(Pt 2), 414–422 (2009).
  • Hokey DA, Larregina AT, Erdos G, Watkins SC, Falo LD Jr. Tumor cell loaded type-1 polarized dendritic cells induce Th1-mediated tumor immunity. Cancer Res.65(21), 10059–10067 (2005).
  • Wesa A, Kalinski P, Kirkwood JM, Tatsumi T, Storkus WJ. Polarized type-1 dendritic cells (DC1) producing high levels of IL-12 family members rescue patient TH1-type antimelanoma CD4+ T cell responses in vitro. J. Immunother.30(1), 75–82 (2007).
  • Mailliard RB, Wankowicz-Kalinska A, Cai Q et al. α-type-1 polarized dendritic cells, a novel immunization tool with optimized CTL-inducing activity. Cancer Res.64(17), 5934–5937 (2004).
  • Lee JJ, Foon KA, Mailliard RB, Muthuswamy R, Kalinski P. Type 1-polarized dendritic cells loaded with autologous tumor are a potent immunogen against chronic lymphocytic leukemia. J. Leukoc. Biol.84(1), 319–325 (2008).
  • Gustafsson K, Ingelsten M, Bergqvist L, Nystrom J, Andersson B, Karlsson-Parra A. Recruitment and activation of natural killer cells in vitro by a human dendritic cell vaccine. Cancer Res.68(14), 5965–5971 (2008).
  • Muthuswamy R, Urban J, Lee JJ, Reinhart TA, Bartlett D, Kalinski P. Ability of mature dendritic cells to interact with regulatory T cells is imprinted during maturation. Cancer Res.68(14), 5972–5978 (2008).
  • Parlato S, Santini SM, Lapenta C et al. Expression of CCR-7, MIP-3β, and Th-1 chemokines in type I IFN-induced monocyte-derived dendritic cells: importance for the rapid acquisition of potent migratory and functional activities. Blood98(10), 3022–3029 (2001).
  • Mohty M, Vialle-Castellano A, Nunes JA, Isnardon D, Olive D, Gaugler B. IFN-α skews monocyte differentiation into Toll-like receptor 7-expressing dendritic cells with potent functional activities. J. Immunol.171(7), 3385–3393 (2003).
  • Papewalis C, Jacobs B, Wuttke M et al. IFN-α skews monocytes into CD56+-expressing dendritic cells with potent functional activities in vitro and in vivo. J. Immunol.180(3), 1462–1470 (2008).
  • Trepiakas R, Pedersen AE, Met O, Hansen MH, Berntsen A, Svane IM. Comparison of αtype-1 polarizing and standard dendritic cell cytokine cocktail for maturation of therapeutic monocyte-derived dendritic cell preparations from cancer patients. Vaccine26(23), 2824–2832 (2008).
  • Kang SJ, Cresswell P. Calnexin, calreticulin and ERp57 cooperate in disulfide bond formation in human CD1d heavy chain. J. Biol. Chem.277(47), 44838–44844 (2002).
  • Han S, Wang B, Cotter MJ et al. Overcoming immune tolerance against multiple myeloma with lentiviral calnexin-engineered dendritic cells. Mol. Ther.16(2), 269–279 (2008).
  • Chaput N, Schartz NE, Andre F et al. Exosomes as potent cell-free peptide-based vaccine. II. Exosomes in CpG adjuvants efficiently prime naive Tc1 lymphocytes leading to tumor rejection. J. Immunol.172(4), 2137–2146 (2004).
  • Cho JA, Yeo, DJ, Son HY et al. Exosomes: a new delivery system for tumor antigens in cancer immunotherapy. Int. J. Cancer114(4), 613–622 (2005).
  • Hao S, Bai O, Li F, Yuan J, Laferte S, Xiang J. Mature dendritic cells pulsed with exosomes stimulate efficient cytotoxic T-lymphocyte responses and antitumour immunity. Immunology120(1), 90–102 (2007).
  • Hao S, Liu Y, Yuan J et al. Novel exosome-targeted CD4+ T cell vaccine counteracting CD4+25+ regulatory T cell-mediated immune suppression and stimulating efficient central memory CD8+ CTL responses. J. Immunol.179(5), 2731–2740 (2007).
  • Tacken PJ, de Vries IJ, Torensma R, Figdor CG. Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat. Rev. Immunol.7(10), 790–802 (2007).
  • Bonifaz LC, Bonnyay DP, Charalambous A et al.In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J. Exp. Med.199(6), 815–824 (2004).
  • Kretz-Rommel A, Qin F, Dakappagari N et al.In vivo targeting of antigens to human dendritic cells through DC-SIGN elicits stimulatory immune responses and inhibits tumor growth in grafted mouse models. J. Immunother.30(7), 715–726 (2007).
  • Yang L, Yang H, Rideout K et al. Engineered lentivector targeting of dendritic cells for in vivo immunization. Nat. Biotechnol.26(3), 326–334 (2008).
  • Lopes L, Dewannieux M, Gileadi U et al. Immunization with a lentivector that targets tumor antigen expression to dendritic cells induces potent CD8+ and CD4+ T-cell responses. J. Virol.82(1), 86–95 (2008).
  • He LZ, Crocker A, Lee J et al. Antigenic targeting of the human mannose receptor induces tumor immunity. J. Immunol.178(10), 6259–6267 (2007).
  • Ramakrishna V, Treml JF, Vitale L et al. Mannose receptor targeting of tumor antigen pmel17 to human dendritic cells directs anti-melanoma T cell responses via multiple HLA molecules. J. Immunol.172(5), 2845–2852 (2004).
  • Trumpfheller C, Finke JS, Lopez CB et al. Intensified and protective CD4+ T cell immunity in mice with anti-dendritic cell HIV gag fusion antibody vaccine. J. Exp. Med.203(3), 607–617 (2006).
  • Gurer C, Strowig T, Brilot F et al. Targeting the nuclear antigen 1 of Epstein–Barr virus to the human endocytic receptor DEC-205 stimulates protective T-cell responses. Blood112(4), 1231–1239 (2008).
  • Tacken PJ, de Vries IJ, Gijzen K et al. Effective induction of naive and recall T-cell responses by targeting antigen to human dendritic cells via a humanized anti-DC-SIGN antibody. Blood106(4), 1278–1285 (2005).
  • Delneste Y, Magistrelli G, Gauchat J et al. Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity17(3), 353–362 (2002).
  • Freudenthal PS, Steinman RM. The distinct surface of human blood dendritic cells, as observed after an improved isolation method. Proc. Natl Acad. Sci. USA87(19), 7698–7702 (1990).
  • Chen X, Chang CH, Goldenberg DM. Efficient binding, but moderate modulation, of human dendritic cell functions by milatuzumab, a humanized anti-CD74 monoclonal antibody. Presented at: The 50th American Society of Hematology Annual Meeting. San Francisco, CA, USA, 6–9 December 2008. Blood (ASH Annual Meeting Abstracts) 112 (2008) (Abstract 2649).
  • Clark EA, Grabstein KH, Shu GL. Cultured human follicular dendritic cells. Growth characteristics and interactions with B lymphocytes. J. Immunol.148(11), 3327–3335 (1992).
  • Ding C, Wang L, Marroquin J, Yan J. Targeting of antigens to B cells augments antigen-specific T cell responses and breaks immune tolerance to tumor-associated antigen MUC1. Blood112(7), 2817–2825 (2008).
  • Mouries J, Moron G, Schlecht G, Escriou N, Dadaglio G, Leclerc C. Plasmacytoid dendritic cells efficiently cross-prime naive T cells in vivo after TLR activation. Blood112(9), 3713–3722 (2008).
  • Leung SO, Goldenberg DM, Dion AS et al. Construction and characterization of a humanized, internalizing, B-cell (CD22)-specific, leukemia/lymphoma antibody, LL2. Mol. Immunol.32(17–18), 1416–1427 (1995).
  • Losman MJ, Hansen HJ, Dworak H et al. Generation of a high-producing clone of a humanized anti-B-cell lymphoma monoclonal antibody (hLL2). Cancer80(12 Suppl.), 2660–2666 (1997).
  • Stein R, Qu Z, Cardillo TM et al. Antiproliferative activity of a humanized anti-CD74 monoclonal antibody, hLL1, on B-cell malignancies. Blood104(12), 3705–3711 (2004).
  • Bonnet D, Warren EH, Greenberg PD, Dick JE, Riddell SR. CD8+ minor histocompatibility antigen-specific cytotoxic T lymphocyte clones eliminate human acute myeloid leukemia stem cells. Proc. Natl Acad. Sci. USA96(15), 8639–8644 (1999).
  • Rosinski KV, Fujii N, Mito JK et al. DDX3Y encodes a class I MHC-restricted H-Y antigen that is expressed in leukemic stem cells. Blood111(9), 4817–4826 (2008).
  • Kawase T, Akatsuka Y, Torikai H et al. Alternative splicing due to an intronic SNP in HMSD generates a novel minor histocompatibility antigen. Blood110(3), 1055–1063 (2007).
  • Moreaux J, Hose D, Reme T et al. CD200 is a new prognostic factor in multiple myeloma. Blood108(13), 4194–4197 (2006).
  • Tonks A, Hills R, White P et al. CD200 as a prognostic factor in acute myeloid leukaemia. Leukemia21(3), 566–568 (2007).
  • Kawasaki BT, Mistree T, Hurt EM, Kalathur M, Farrar WL. Co-expression of the toleragenic glycoprotein, CD200, with markers for cancer stem cells. Biochem. Biophys. Res. Commun.364(4), 778–782 (2007).
  • Kawasaki BT, Farrar WL. Cancer stem cells, CD200 and immunoevasion. Trends Immunol.29(10), 464–468 (2008).
  • Engels B, Noessner E, Frankenberger B, Blankenstein T, Schendel DJ, Uckert W. Redirecting human T lymphocytes toward renal cell carcinoma specificity by retroviral transfer of T cell receptor genes. Hum. Gene Ther.16(7), 799–810 (2005).
  • de Witte MA, Bendle GM, van den Boom MD et al. TCR gene therapy of spontaneous prostate carcinoma requires in vivo T cell activation. J. Immunol.181(4), 2563–2571 (2008).
  • de Witte MA, Jorritsma A, Kaiser A et al. Requirements for effective antitumor responses of TCR transduced T cells. J. Immunol.181(7), 5128–5136 (2008).
  • Morgan RA, Dudley ME, Wunderlich JR et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science314(5796), 126–129 (2006).
  • Kochenderfer JN, Gress RE. A comparison and critical analysis of preclinical anticancer vaccination strategies. Exp. Biol. Med. (Maywood)232(9), 1130–1141 (2007).
  • North RJ. Radiation-induced, immunologically mediated regression of an established tumor as an example of successful therapeutic immunomanipulation. Preferential elimination of suppressor T cells allows sustained production of effector T cells. J. Exp. Med.164(5), 1652–1666 (1986).
  • Awwad M, North RJ. Cyclophosphamide-induced immunologically mediated regression of a cyclophosphamide-resistant murine tumor: a consequence of eliminating precursor L3T4+ suppressor T-cells. Cancer Res.49(7), 1649–1654 (1989).
  • Ercolini AM, Ladle BH, Manning EA et al. Recruitment of latent pools of high-avidity CD8+ T cells to the antitumor immune response. J. Exp. Med.201(10), 1591–1602 (2005).
  • Wheeler CJ, Das A, Liu G, Yu JS, Black KL. Clinical responsiveness of glioblastoma multiforme to chemotherapy after vaccination. Clin. Cancer Res.10(16), 5316–5326 (2004).
  • Antonia SJ, Mirza N, Fricke I et al. Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer. Clin. Cancer Res.12(3 Pt 1), 878–887 (2006).
  • Juuti A, Louhimo J, Nordling S, Ristimäki A, Haglund C. Cyclooxygenase-2 expression correlates with poor prognosis in pancreatic cancer. J. Clin. Pathol.59(4), 382–386 (2006).
  • Sharma S, Stolina M, Yang SC et al. Tumor cyclooxygenase 2-dependent suppression of dendritic cell function. Clin. Cancer Res.9(3), 961–968 (2003).
  • Sharma S, Yang SC, Zhu L et al. Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+ CD25+ T regulatory cell activities in lung cancer. Cancer Res.65(12), 5211–5220 (2005).
  • Basu GD, Tinder TL, Bradley JM et al. Cyclooxygenase-2 inhibitor enhances the efficacy of a breast cancer vaccine: role of IDO. J. Immunol.177(4), 2391–2402 (2006).
  • Mukherjee P, Basu GD, Tinder TL et al. Progression of pancreatic adenocarcinoma is significantly impeded with a combination of vaccine and COX-2 inhibition. J. Immunol.182(1), 216–224 (2009).
  • Sharkey RM, Goldenberg DM. Targeted therapy of cancer: new prospects for antibodies and immunoconjugates. CA Cancer J. Clin.56(4), 226–243 (2006).
  • Sharkey RM, Goldenberg DM. Use of antibodies and immunoconjugates for the therapy of more accessible cancers. Adv. Drug Deliv. Rev.60(12), 1407–1420 (2008).
  • Ofran Y, Ritz J. Targets of tumor immunity after allogeneic hematopoietic stem cell transplantation. Clin. Cancer Res.14(16), 4997–4999 (2008).
  • Tykodi SS, Fujii N, Vigneron N et al. C19orf48 encodes a polymorphic tumor-associated antigen recognized by CD8+ cytotoxic T cells from renal cell carcinoma patients after allogenic hematopoietic cell transplantation. Clin. Cancer Res.14(16), 5260–5269 (2008).
  • Aqui NA, June CH. Post-transplant adoptive T-cell immunotherapy. Best Pract. Res. Clin. Haematol.21(3), 503–519 (2008).
  • Anderson LD Jr, Savary CA, Mullen CA. Immunization of allogeneic bone marrow transplant recipients with tumor cell vaccines enhances graft-versus tumor activity without exacerbating graft-versus-host disease. Blood95(7), 2426–2433 (2000).
  • Teshima T, Mach N, Hill GR et al. Tumor cell vaccine elicits potent antitumor immunity after allogeneic T-cell-depleted bone marrow transplantation. Cancer Res.61(1), 162–171 (2001).
  • Moyer JS, Maine G, Mule JJ. Early vaccination with tumor lysate-pulsed dendritic cells after allogeneic bone marrow transplantation has antitumor effects. Biol. Blood Marrow Transplant.12(10), 1010–1019 (2006).
  • Kitawaki T, Kadowaki N, Kondo T et al. Potential of dendritic-cell immunotherapy for relapse after allogeneic hematopoietic stem cell transplantation, shown by WT1 peptide- and keyhole-limpet-hemocyanin-pulsed, donor-derived dendritic-cell vaccine for acute myeloid leukemia. Am. J. Hematol.83(4), 315–317 (2008).
  • Hodge JW, Poole DJ, Aarts WM, Gomez Yafal A, Gritz L, Schlom J. Modified vaccinia virus ankara recombinants are as potent as vaccinia recombinants in diversified prime and boost vaccine regimens to elicit therapeutic antitumor responses. Cancer Res.63(22), 7942–7949 (2003).
  • Harrop R, John J, Carroll MW. Recombinant viral vectors: cancer vaccines. Adv. Drug Deliv. Rev.58(8), 931–947 (2006).
  • Goldberg SM, Bartido SM, Gardner JP et al. Comparison of two cancer vaccines targeting tyrosinase: plasmid DNA and recombinant alphavirus replicon particles. Clin. Cancer Res.11(22), 8114–8121 (2005).
  • Garcia-Hernandez Mde L, Gray A, Hubby B, Klinger OJ, Kast WM. Prostate stem cell antigen vaccination induces a long-term protective immune response against prostate cancer in the absence of autoimmunity. Cancer Res.68(3), 861–869 (2008).
  • Barefoot B, Thornburg NJ, Barouch DH et al. Comparison of multiple vaccine vectors in a single heterologous prime–boost trial. Vaccine26(48), 6108–6118 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.