223
Views
34
CrossRef citations to date
0
Altmetric
Review

Heterologous prime–boost vaccinations for poverty-related diseases: advantages and future prospects

, , &
Pages 577-592 | Published online: 09 Jan 2014

References

  • Zinkernagel RM, Hengartner H. Protective ‘immunity’ by pre-existent neutralizing antibody titers and preactivated T cells but not by so-called ‘immunological memory’. Immunol. Rev.211, 310–319 (2006).
  • Plotkin SA. Vaccines: correlates of vaccine-induced immunity. Clin. Infect. Dis.47(3), 401–409 (2008).
  • Pantaleo G, Koup RA. Correlates of immune protection in HIV-1 infection: what we know, what we don’t know, what we should know. Nat. Med.10(8), 806–810 (2004).
  • Hilleman MR. Strategies and mechanisms for host and pathogen survival in acute and persistent viral infections. Proc. Natl Acad. Sci. USA101(Suppl. 2), 14560–14566 (2004).
  • Seder RA, Darrah PA, Roederer M. T-cell quality in memory and protection: implications for vaccine design. Nat. Rev. Immunol.8(4), 247–258 (2008).
  • Liu J, O‘Brien KL, Lynch DM, Simmons NL et al. Immune control of an SIV challenge by a T-cell-based vaccine in rhesus monkeys. Nature457, 87 (2009).
  • Liu J, Ewald BA, Lynch DM et al. Magnitude and phenotype of cellular immune responses elicited by recombinant adenovirus vectors and heterologous prime–boost regimens in rhesus monkeys. J. Virol.82(10), 4844–4852 (2008).
  • Rowland SS, Mayner RL, Barker L. Advancing TB vaccines to Phase I clinical trials in the US: regulatory/manufacturing/licensing issues. Tuberculosis (Edinb.)85(1–2), 39–46 (2005).
  • Raviglione MC, Smith IM. XDR tuberculosis: implications for global public health. N. Engl. J. Med.356(7), 656–659 (2007).
  • Kaufmann SH. Envisioning future strategies for vaccination against tuberculosis. Nat. Rev. Immunol.6(9), 699–704 (2006).
  • Mittrucker HW, Steinhoff U, Kohler A et al. Poor correlation between BCG vaccination-induced T cell responses and protection against tuberculosis. Proc. Natl Acad. Sci. USA104(30), 12434–12439 (2007).
  • Murray RA, Mansoor N, Harbacheuski R et al. Bacillus Calmette Guerin vaccination of human newborns induces a specific, functional CD8+ T cell response. J. Immunol.177(8), 5647–5651 (2006).
  • Hervas-Stubbs S, Majlessi L, Simsova M et al. High frequency of CD4+ T cells specific for the TB10.4 protein correlates with protection against Mycobacterium tuberculosis infection. Infect. Immun.74(6), 3396–3407 (2006).
  • Winslow GM, Cooper A, Reiley W, Chatterjee M, Woodland DL. Early T-cell responses in tuberculosis immunity. Immunol. Rev.225(1), 284–299 (2008).
  • Neyrolles O, Gicquel B, Quintana-Murci L. Towards a crucial role for DC-SIGN in tuberculosis and beyond. Trends Microbiol.14(9), 383–387 (2006).
  • Weir RE, Gorak-Stolinska P, Floyd S et al. Persistence of the immune response induced by BCG vaccination. BMC Infect. Dis.8, 9 (2008).
  • Hoft DF, Blazevic A, Abate G et al. A new recombinant bacille Calmette-Guerin vaccine safely induces significantly enhanced tuberculosis-specific immunity in human volunteers. J. Infect. Dis.198(10), 1491–1501 (2008).
  • Grode L, Seiler P, Baumann S et al. Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette-Guerin mutants that secrete listeriolysin. J. Clin. Invest.115(9), 2472–2479 (2005).
  • Skeiky YA, Sadoff JC. Advances in tuberculosis vaccine strategies. Nat. Rev. Microbiol.4(6), 469–476 (2006).
  • Xing Z, Charters TJ. Heterologous boost vaccines for bacillus Calmette-Guerin prime immunization against tuberculosis. Expert Rev. Vaccines6(4), 539–546 (2007).
  • Vordermeier HM, Rhodes SG, Dean G et al. Cellular immune responses induced in cattle by heterologous prime–boost vaccination using recombinant viruses and bacille Calmette-Guerin. Immunology112(3), 461–470 (2004).
  • Williams A, Goonetilleke NP, McShane H et al. Boosting with poxviruses enhances Mycobacterium bovis BCG efficacy against tuberculosis in guinea pigs. Infect. Immun.73(6), 3814–3816 (2005).
  • Radosevic K, Wieland CW, Rodriguez A et al. Protective immune responses to a recombinant adenovirus type 35 tuberculosis vaccine in two mouse strains: CD4 and CD8 T-cell epitope mapping and role of γ interferon. Infect. Immun.75(8), 4105–4115 (2007).
  • McShane H, Pathan AA, Sander CR, Goonetilleke NP, Fletcher HA, Hill AV. Boosting BCG with MVA85A: the first candidate subunit vaccine for tuberculosis in clinical trials. Tuberculosis (Edinb.)85(1–2), 47–52 (2005).
  • Lang T, Hill AV, McShane H et al. New TB vaccine granted orphan drug status. BMJ331(7530), 1476 (2005).
  • McShane H, Pathan AA, Sander CR et al. Recombinant modified vaccinia virus Ankara expressing antigen 85A boosts BCG-primed and naturally acquired antimycobacterial immunity in humans. Nat. Med.10(11), 1240–1244 (2004).
  • Beveridge NE, Price DA, Casazza JP et al. Immunisation with BCG and recombinant MVA85A induces long-lasting, polyfunctional Mycobacterium tuberculosis-specific CD4+ memory T lymphocyte populations. Eur. J. Immunol.37(11), 3089–3100 (2007).
  • Brookes RH, Hill PC, Owiafe PK et al. Safety and immunogenicity of the candidate tuberculosis vaccine MVA85A in West Africa. PLoS ONE3(8), e2921 (2008).
  • Hawkridge T, Scriba TJ, Gelderbloem S et al. Safety and immunogenicity of a new tuberculosis vaccine, MVA85A, in healthy adults in South Africa. J. Infect. Dis.198(4), 544–552 (2008).
  • Vogels R, Zuijdgeest D, van Rijnsoever R et al. Replication-deficient human adenovirus type 35 vectors for gene transfer and vaccination: efficient human cell infection and bypass of preexisting adenovirus immunity. J. Virol.77(15), 8263–8271 (2003).
  • Kostense S, Koudstaal W, Sprangers M et al. Adenovirus types 5 and 35 seroprevalence in AIDS risk groups supports type 35 as a vaccine vector. Aids18(8), 1213–1216 (2004).
  • Thorner AR, Vogels R, Kaspers J et al. Age dependence of adenovirus-specific neutralizing antibody titers in individuals from sub-Saharan Africa. J. Clin. Microbiol.44(10), 3781–3783 (2006).
  • Magalhaes I, Sizemore DR, Ahmed RK et al. rBCG induces strong antigen-specific T cell responses in rhesus macaques in a prime–boost setting with an adenovirus 35 tuberculosis vaccine vector. PLoS ONE3(11), e3790 (2008).
  • Sadoff JC. Development of new vaccines to address the TB pandemic. In: TB Vaccines for the World. Atlanta, GA, USA (2008).
  • Reed S, Lobet Y. Tuberculosis vaccine development; from mouse to man. Microbes Infect.7(5–6), 922–931 (2005).
  • Skeiky YA, Alderson MR, Ovendale PJ et al. Differential immune responses and protective efficacy induced by components of a tuberculosis polyprotein vaccine, Mtb72F, delivered as naked DNA or recombinant protein. J. Immunol.172(12), 7618–7628 (2004).
  • Andersen P. Tuberculosis vaccines – an update. Nat. Rev. Microbiol.5(7), 484–487 (2007).
  • Olsen AW, Williams A, Okkels LM, Hatch G, Andersen P. Protective effect of a tuberculosis subunit vaccine based on a fusion of antigen 85B and ESAT-6 in the aerosol guinea pig model. Infect. Immun.72(10), 6148–6150 (2004).
  • Agger EM, Rosenkrands I, Olsen AW et al. Protective immunity to tuberculosis with Ag85B–ESAT-6 in a synthetic cationic adjuvant system IC31. Vaccine24(26), 5452–5460 (2006).
  • Langermans JA, Doherty TM, Vervenne RA et al. Protection of macaques against Mycobacterium tuberculosis infection by a subunit vaccine based on a fusion protein of antigen 85B and ESAT-6. Vaccine23(21), 2740–2750 (2005).
  • Dietrich J, Aagaard C, Leah R et al. Exchanging ESAT6 with TB10.4 in an Ag85B fusion molecule-based tuberculosis subunit vaccine: efficient protection and ESAT6-based sensitive monitoring of vaccine efficacy. J. Immunol.174(10), 6332–6339 (2005).
  • Clyde DF, Most H, McCarthy VC, Vanderberg JP. Immunization of man against sporozite-induced falciparum malaria. Am. J. Med. Sci.266(3), 169–177 (1973).
  • Schofield L, Villaquiran J, Ferreira A, Schellekens H, Nussenzweig R, Nussenzweig V. γ interferon, CD8+ T cells and antibodies required for immunity to malaria sporozoites. Nature330(6149), 664–666 (1987).
  • John CC, Moormann AM, Pregibon DC et al. Correlation of high levels of antibodies to multiple pre-erythrocytic Plasmodium falciparum antigens and protection from infection. Am. J. Trop. Med. Hyg.73(1), 222–228 (2005).
  • John CC, Tande AJ, Moormann AM et al. Antibodies to pre-erythrocytic Plasmodium falciparum antigens and risk of clinical malaria in Kenyan children. J. Infect. Dis.197(4), 519–526 (2008).
  • Overstreet MG, Cockburn IA, Chen YC, Zavala F. Protective CD8 T cells against Plasmodium liver stages: immunobiology of an ‘unnatural’ immune response. Immunol. Rev.225(1), 272–283 (2008).
  • Osier FH, Fegan G, Polley SD et al. Breadth and magnitude of antibody responses to multiple Plasmodium falciparum merozoite antigens are associated with protection from clinical malaria. Infect. Immun.76(5), 2240–2248 (2008).
  • Bojang KA. RTS,S/AS02A for malaria. Expert Rev. Vaccines5(5), 611–615 (2006).
  • Dame JB, Williams JL, McCutchan TF et al. Structure of the gene encoding the immunodominant surface antigen on the sporozoite of the human malaria parasite Plasmodium falciparum. Science225(4662), 593–599 (1984).
  • Kumar KA, Sano G, Boscardin S et al. The circumsporozoite protein is an immunodominant protective antigen in irradiated sporozoites. Nature444(7121), 937–940 (2006).
  • Sacarlal J, Aponte JJ, Aide P et al. Safety of the RTS,S/AS02A malaria vaccine in Mozambican children during a Phase IIb trial. Vaccine26(2), 174–184 (2008).
  • Heppner DG Jr, Kester KE, Ockenhouse CF et al. Towards an RTS,S-based, multi-stage, multi-antigen vaccine against falciparum malaria: progress at the Walter Reed Army Institute of Research. Vaccine23(17–18), 2243–2250 (2005).
  • Aponte JJ, Aide P, Renom M et al. Safety of the RTS,S/AS02D candidate malaria vaccine in infants living in a highly endemic area of Mozambique: a double blind randomised controlled Phase I/IIb trial. Lancet370(9598), 1543–1551 (2007).
  • Alonso PL, Sacarlal J, Aponte JJ et al. Efficacy of the RTS,S/AS02A vaccine against Plasmodium falciparum infection and disease in young African children: randomised controlled trial. Lancet364(9443), 1411–1420 (2004).
  • Alonso PL, Sacarlal J, Aponte JJ et al. Duration of protection with RTS,S/AS02A malaria vaccine in prevention of Plasmodium falciparum disease in Mozambican children: single-blind extended follow-up of a randomised controlled trial. Lancet366(9502), 2012–2018 (2005).
  • Kester KE, Cummings JF, Ockenhouse CF et al. Phase 2a trial of 0, 1, and 3 month and 0, 7, and 28 day immunization schedules of malaria vaccine RTS,S/AS02 in malaria-naive adults at the Walter Reed Army Institute of Research. Vaccine26(18), 2191–2202 (2008).
  • Pichyangkul S, Kum-Arb U, Yongvanitchit K et al. Preclinical evaluation of the safety and immunogenicity of a vaccine consisting of Plasmodium falciparum liver-stage antigen 1 with adjuvant AS01B administered alone or concurrently with the RTS,S/AS01B vaccine in rhesus primates. Infect. Immun.76(1), 229–238 (2008).
  • Macete EV, Sacarlal J, Aponte JJ et al. Evaluation of two formulations of adjuvanted RTS, S malaria vaccine in children aged 3 to 5 years living in a malaria-endemic region of Mozambique: a Phase I/IIb randomized double-blind bridging trial. Trials8, 11 (2007).
  • Garcon N, Heppner DG, Cohen J. Development of RTS,S/AS02: a purified subunit-based malaria vaccine candidate formulated with a novel adjuvant. Expert Rev. Vaccines2(2), 231–238 (2003).
  • Gilbert SC, Moorthy VS, Andrews L et al. Synergistic DNA–MVA prime–boost vaccination regimes for malaria and tuberculosis. Vaccine24(21), 4554–4561 (2006).
  • Stewart VA, McGrath SM, Dubois PM et al. Priming with an adenovirus 35-circumsporozoite protein (CS) vaccine followed by RTS,S/AS01B boosting significantly improves immunogenicity to Plasmodium falciparum CS compared with that with either malaria vaccine alone. Infect. Immun.75(5), 2283–2290 (2007).
  • Bejon P, Kai OK, Mwacharo J et al. Alternating vector immunizations encoding pre-erythrocytic malaria antigens enhance memory responses in a malaria endemic area. Eur. J. Immunol.36(8), 2264–2272 (2006).
  • Dunachie SJ, Walther M, Vuola JM et al. A clinical trial of prime–boost immunisation with the candidate malaria vaccines RTS,S/AS02A and MVA-CS. Vaccine24(15), 2850–2859 (2006).
  • Dunachie SJ, Walther M, Epstein JE et al. A DNA prime-modified vaccinia virus ankara boost vaccine encoding thrombospondin-related adhesion protein but not circumsporozoite protein partially protects healthy malaria-naive adults against Plasmodium falciparum sporozoite challenge. Infect. Immun.74(10), 5933–5942 (2006).
  • McConkey SJ, Reece WH, Moorthy VS et al. Enhanced T-cell immunogenicity of plasmid DNA vaccines boosted by recombinant modified vaccinia virus Ankara in humans. Nat. Med.9(6), 729–735 (2003).
  • Moorthy VS, Imoukhuede EB, Milligan P et al. A randomised, double-blind, controlled vaccine efficacy trial of DNA/MVA ME-TRAP against malaria infection in Gambian adults. PLoS Med.1(2), e33 (2004).
  • Webster DP, Dunachie S, Vuola JM et al. Enhanced T cell-mediated protection against malaria in human challenges by using the recombinant poxviruses FP9 and modified vaccinia virus Ankara. Proc. Natl Acad. Sci. USA102(13), 4836–4841 (2005).
  • Bejon P, Ogada E, Mwangi T et al. Extended follow-up following a Phase 2b randomized trial of the candidate malaria vaccines FP9 ME-TRAP and MVA ME-TRAP among children in Kenya. PLoS ONE2(1), e707 (2007).
  • Walther M, Thompson FM, Dunachie S et al. Safety, immunogenicity, and efficacy of prime–boost immunization with recombinant poxvirus FP9 and modified vaccinia virus Ankara encoding the full-length Plasmodium falciparum circumsporozoite protein. Infect. Immun.74(5), 2706–2716 (2006).
  • Bejon P, Mwacharo J, Kai O et al. A Phase 2b randomised trial of the candidate malaria vaccines FP9 ME-TRAP and MVA ME-TRAP among children in Kenya. PLoS Clin. Trials1(6), e29 (2006).
  • Imoukhuede EB, Berthoud T, Milligan P et al. Safety and immunogenicity of the malaria candidate vaccines FP9 CS and MVA CS in adult Gambian men. Vaccine24(42–43), 6526–6533 (2006).
  • Reyes-Sandoval A, Sridhar S, Berthoud T et al. Single-dose immunogenicity and protective efficacy of simian adenoviral vectors against Plasmodium berghei. Eur. J. Immunol.38(3), 732–741 (2008).
  • O’Hara GA, Ewer K, Reyes-Sanodval A et al. Novel prime–boost malaria vaccines. In: Viral Vector Vaccine. Hinxton, Cambridge, UK (2008).
  • Rodriguez A, Goudsmit J, Companjen A et al. Impact of recombinant adenovirus serotype 35 priming versus boosting of a Plasmodium falciparum protein: characterization of T- and B-cell responses to liver-stage antigen 1. Infect. Immun.76(4), 1709–1718 (2008).
  • Ophorst OJ, Radosevic K, Havenga MJ et al. Immunogenicity and protection of a recombinant human adenovirus serotype 35-based malaria vaccine against Plasmodium yoelii in mice. Infect. Immun.74(1), 313–320 (2006).
  • Hladik F, McElrath MJ. Setting the stage: host invasion by HIV. Nat. Rev. Immunol.8(6), 447–457 (2008).
  • Steinman RM, Granelli-Piperno A, Pope M et al. The interaction of immunodeficiency viruses with dendritic cells. Curr. Top. Microbiol. Immunol.276, 1–30 (2003).
  • Betts MR, Nason MC, West SM et al. HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood107(12), 4781–4789 (2006).
  • Pantaleo G, Harari A. Functional signatures in antiviral T-cell immunity for monitoring virus-associated diseases. Nat. Rev. Immunol.6(5), 417–423 (2006).
  • Johnston MI, Fauci AS. An HIV vaccine: evolving concepts. N. Engl. J. Med.356(20), 2073–2081 (2007).
  • Koff WC, Johnson PR, Watkins DI et al. HIV vaccine design: insights from live attenuated SIV vaccines. Nat. Immunol.7(1), 19–23 (2006).
  • Flynn NM, Forthal DN, Harro CD, Judson FN, Mayer KH, Para MF. Placebo-controlled Phase 3 trial of a recombinant glycoprotein 120 vaccine to prevent HIV-1 infection. J. Infect. Dis.191(5), 654–665 (2005).
  • Pitisuttithum P, Gilbert P, Gurwith M et al. Randomized, double-blind, placebo-controlled efficacy trial of a bivalent recombinant glycoprotein 120 HIV-1 vaccine among injection drug users in Bangkok, Thailand. J. Infect. Dis.194(12), 1661–1671 (2006).
  • Montefiori D, Sattentau Q, Flores J, Esparza J, Mascola J. Antibody-based HIV-1 vaccines: recent developments and future directions. PLoS Med.4(12), e348 (2007).
  • Amara RR, Villinger F, Altman JD et al. Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Science292(5514), 69–74 (2001).
  • Shiver JW, Fu TM, Chen L et al. Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature415(6869), 331–335 (2002).
  • Casimiro DR, Tang A, Chen L et al. Vaccine-induced immunity in baboons by using DNA and replication-incompetent adenovirus type 5 vectors expressing a human immunodeficiency virus type 1 gag gene. J. Virol.77(13), 7663–7668 (2003).
  • Pinto AR, Fitzgerald JC, Giles-Davis W, Gao GP, Wilson JM, Ertl HC. Induction of CD8+ T cells to an HIV-1 antigen through a prime boost regimen with heterologous E1-deleted adenoviral vaccine carriers. J. Immunol.171(12), 6774–6779 (2003).
  • Barouch DH, Pau MG, Custers JH et al. Immunogenicity of recombinant adenovirus serotype 35 vaccine in the presence of pre-existing anti-Ad5 immunity. J. Immunol.172(10), 6290–6297 (2004).
  • Shiver JW, Emini EA. Recent advances in the development of HIV-1 vaccines using replication-incompetent adenovirus vectors. Ann. Rev. Med.55, 355–372 (2004).
  • Santra S, Seaman MS, Xu L et al. Replication-defective adenovirus serotype 5 vectors elicit durable cellular and humoral immune responses in nonhuman primates. J. Virol.79(10), 6516–6522 (2005).
  • Casimiro DR, Wang F, Schleif WA et al. Attenuation of simian immunodeficiency virus SIVmac239 infection by prophylactic immunization with DNA and recombinant adenoviral vaccine vectors expressing Gag. J. Virol.79(24), 15547–15555 (2005).
  • Cox KS, Clair JH, Prokop MT et al. DNA gag/adenovirus type 5 (Ad5) gag and Ad5 gag/Ad5 gag vaccines induce distinct T-cell response profiles. J. Virol.82(16), 8161–8171 (2008).
  • Buchbinder SP, Mehrotra DV, Duerr A et al. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet372, 1881 (2008).
  • Perreau M, Pantaleo G, Kremer EJ. Activation of a dendritic cell–T cell axis by Ad5 immune complexes creates an improved environment for replication of HIV in T cells. J. Exp. Med.205, 2717 (2008).
  • Goepfert PA, Horton H, McElrath MJ et al. High-dose recombinant Canarypox vaccine expressing HIV-1 protein, in seronegative human subjects. J. Infect. Dis.192(7), 1249–1259 (2005).
  • Burton DR, Desrosiers RC, Doms RW et al. Public health. A sound rationale needed for Phase III HIV-1 vaccine trials. Science303(5656), 316 (2004).
  • McNeil JG, Johnston MI, Birx DL, Tramont EC. Policy rebuttal. HIV vaccine trial justified. Science303(5660), 961 (2004).
  • Goonetilleke N, Moore S, Dally L et al. Induction of multifunctional human immunodeficiency virus type 1 (HIV-1)-specific T cells capable of proliferation in healthy subjects by using a prime–boost regimen of DNA- and modified vaccinia virus Ankara-vectored vaccines expressing HIV-1 Gag coupled to CD8+ T-cell epitopes. J. Virol.80(10), 4717–4728 (2006).
  • Sandstrom E, Nilsson C, Hejdeman B et al. Broad immunogenicity of a multigene, multiclade HIV-1 DNA vaccine boosted with heterologous HIV-1 recombinant modified vaccinia virus Ankara. J. Infect. Dis.198(10), 1482–1490 (2008).
  • Harari A, Bart PA, Stohr W et al. An HIV-1 clade C DNA prime, NYVAC boost vaccine regimen induces reliable, polyfunctional, and long-lasting T cell responses. J. Exp. Med.205(1), 63–77 (2008).
  • De Rose R, Chea S, Dale CJ et al. Subtype AE HIV-1 DNA and recombinant Fowlpoxvirus vaccines encoding five shared HIV-1 genes: safety and T cell immunogenicity in macaques. Vaccine23(16), 1949–1956 (2005).
  • De Rose R, Batten CJ, Smith MZ et al. Comparative efficacy of subtype AE simian–human immunodeficiency virus priming and boosting vaccines in pigtail macaques. J. Virol.81(1), 292–300 (2007).
  • Kelleher AD, Puls RL, Bebbington M et al. A randomized, placebo-controlled Phase I trial of DNA prime, recombinant fowlpox virus boost prophylactic vaccine for HIV-1. Aids20(2), 294–297 (2006).
  • De Rose R, Sullivan MT, Dale CJ et al. Dose–response relationship of DNA and recombinant fowlpox virus prime–boost HIV vaccines: implications for future trials. Hum. Vaccin.2(3), 134–136 (2006).
  • Letvin NL, Mascola JR, Sun Y et al. Preserved CD4+ central memory T cells and survival in vaccinated SIV-challenged monkeys. Science312(5779), 1530–1533 (2006).
  • Mattapallil JJ, Douek DC, Buckler-White A et al. Vaccination preserves CD4 memory T cells during acute simian immunodeficiency virus challenge. J. Exp. Med.203(6), 1533–1541 (2006).
  • Catanzaro AT, Koup RA, Roederer M et al. Phase 1 safety and immunogenicity evaluation of a multiclade HIV-1 candidate vaccine delivered by a replication-defective recombinant adenovirus vector. J. Infect. Dis.194(12), 1638–1649 (2006).
  • Catanzaro AT, Roederer M, Koup RA et al. Phase I clinical evaluation of a six-plasmid multiclade HIV-1 DNA candidate vaccine. Vaccine25(20), 4085–4092 (2007).
  • Barouch DH. Challenges in the development of an HIV-1 vaccine. Nature455(7213), 613–619 (2008).
  • Mothe BR, Weinfurter J, Wang C et al. Expression of the major histocompatibility complex class I molecule Mamu-A*01 is associated with control of simian immunodeficiency virus SIVmac239 replication. J. Virol.77(4), 2736–2740 (2003).
  • Watkins DI, Burton DR, Kallas EG, Moore JP, Koff WC. Nonhuman primate models and the failure of the Merck HIV-1 vaccine in humans. Nat. Med.14(6), 617–621 (2008).
  • Abbink P, Lemckert AA, Ewald BA et al. Comparative seroprevalence and immunogenicity of six rare serotype recombinant adenovirus vaccine vectors from subgroups B and D. J. Virol.81(9), 4654–4663 (2007).
  • Roberts DM, Nanda A, Havenga MJ et al. Hexon-chimaeric adenovirus serotype 5 vectors circumvent pre-existing anti-vector immunity. Nature441(7090), 239–243 (2006).
  • Reyes-Sandoval A, Fitzgerald JC, Grant R et al. Human immunodeficiency virus type 1-specific immune responses in primates upon sequential immunization with adenoviral vaccine carriers of human and simian serotypes. J. Virol.78(14), 7392–7399 (2004).
  • Tatsis N, Lin SW, Harris-McCoy K, Garber DA, Feinberg MB, Ertl HC. Multiple immunizations with adenovirus and MVA vectors improve CD8+ T cell functionality and mucosal homing. Virology367(1), 156–167 (2007).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.