69
Views
12
CrossRef citations to date
0
Altmetric
Perspective

Perspectives for the development of human papillomavirus vaccines and immunotherapy

&
Pages 35-44 | Published online: 09 Jan 2014

References

  • IARC Handbooks of Cancer Prevention (Volume 10): Cervix Cancer Screening. IARC Press, Lyon, France (2005).
  • zur Hausen H. Papillomavirus infections – a major cause of human cancers. Biochim. Biophys. Acta1288(2), F55–F78 (1996).
  • Hines JF, Ghim SJ, Christensen ND et al. Role of conformational epitopes expressed by human PV major capsid proteins in the serologic detection of infection and prophylactic vaccination. Gynecol. Oncol.55, 13–20 (1994).
  • Culp TD, Spatz CM, Reed CA, Christensen ND. Binding and neutralization efficiencies of monoclonal antibodies, Fab fragments, and scFv specific for L1 epitopes on the capsid of infectious HPV particles. Virology361, 435–446 (2007).
  • Brinkman J, Hughes S, Stone P et al. Therapeutic vaccination for HPV induced cervical cancers. Dis. Markers23, 337–352 (2007).
  • Frazer IH. Prevention of cervical cancer through papillomavirus vaccination. Nat. Rev. Immunol.4, 46–55 (2004).
  • Galloway DA. Papillomavirus vaccines in clinical trials. Lancet Infect. Dis.3, 469–475 (2003).
  • Schneider A, Gissmann L. Cervical cancer. The potential role of human papillomavirus (HPV)-specific vaccines in prevention and treatment. Am. J. Cancer2, 1–253 (2003).
  • Schiller JT, Castellsagué X, Villa LL, Hildesheim A. An update of prophylactic human papillomavirus L1 virus-like particle vaccine clinical trial results. Vaccine19(Suppl. 10), K53–K61 (2008).
  • Belot A, Grosclaude P, Bossard N et al. Cancer incidence and mortality in France over the period 1980–2005. Rev. Epidemiol. Sante Publique56, 159–175 (2008).
  • Patnick J. Review of recommendations on cervical cancer screening in the European Union. Minerva Ginecol.55, 293–295 (2003).
  • Weinstein LC, Buchanan EM, Hillson C, Chambers CV. Screening and prevention: cervical cancer. Prim. Care36, 559–574 (2009).
  • Anttila A, von Karsa L, Aasmaa A et al. Cervical cancer screening policies and coverage in Europe. Eur. J. Cancer45(15), 2649–2658 (2009)
  • Koulova A, Tsui J, Irwin K, Van Damme P, Biellik R, Aguado MT. Country recommendations on the inclusion of HPV vaccines in national immunization programmes among high-income countries, June 2006–January 2008. Vaccine2, 6529–6541 (2008).
  • Bergeron C, Breugelmans JG, Bouée S, Lorans C, Bénard S, Rémy V. Cervical cancer screening and associated treatment costs in France. Gynecol. Obstet. Fertil.34, 1036–1042 (2006).
  • Hagensee ME, Yaegashi N, Galloway DA. Self-assembly of human papillomavirus type 1 capsids by expression of the L1 protein alone or by coexpression of the L1 and L2 capsid proteins. J. Virol.67, 315–322 (1993).
  • Kirnbauer R, Booy F, Cheng N, Lowy DR, Schiller JT. Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc. Natl Acad. Sci. USA15, 12180–12184 (1992).
  • Siddiqui MA, Perry CM. Human papillomavirus quadrivalent (types 6, 11, 16, 18) recombinant vaccine (Gardasil). Drugs66, 1263–1271 (2006).
  • Bryan JT. Developing an HPV vaccine to prevent cervical cancer and genital warts. Vaccine20, 3001–3006 (2007).
  • Schmiedeskamp MR, Kockler DR. Human papillomavirus vaccines. Ann. Pharmacother.40, 1344–1352 (2006).
  • Schwarz TF. AS04-adjuvanted human papillomavirus-16/18 vaccination: recent advances in cervical cancer prevention. Expert Rev. Vaccines7(10), 1465–1473 (2008).
  • Rouzier R, Uzan C, Collinet P. HPV vaccination: principles, results and future perspectives. J. Gynecol. Obstet. Biol. Reprod. (Paris)36, 13–18 (2007).
  • Guidance for the introduction of HPV vaccines in EU countries. European Centre for Disease Prevention and Control. Stockholm, Sweden, January (2008).
  • WHO–UNICEF Joint Reporting Form and WHO Regional offices 2009, WHO Immunization surveillance, assessment, and monitoring. WHO, Geneva, Switzerland (2009).
  • Castellsagué X. Natural history and epidemiology of HPV infection and cervical cancer. Gynecol .Oncol.110, S4–S7 (2008).
  • Zhou J, Sun XY, Davies H, Crawford L, Park D, Frazer IH. Definition of linear antigenic regions of the HPV16 L1 capsid protein using synthetic virion-like particles. Virology189, 592–599 (1992).
  • Kowalczyk DW, Wlazlo AP, Shane S, Ertl HC. Vaccine regimen for prevention of sexually transmitted infections with human papillomavirus type 16. Vaccine14, 3583–3590 (2001).
  • Nardelli-Haefliger D, Roden RB, Benyacoub J et al. Human papillomavirus type 16 virus-like particles expressed in attenuated Salmonella typhimurium elicit mucosal and systemic neutralizing antibodies in mice. Infect. Immun.65, 3328–3336 (1997).
  • Jabbar IA, Fernando GJ, Saunders N et al. Immune responses induced by BCG recombinant for human papillomavirus L1 and E7 proteins. Vaccine8, 2444–2453 (2000).
  • Warzecha H, Mason HS, Lane C et al. Oral immunogenicity of human papillomavirus-like particles expressed in potato. J. Virol.77(16), 8702–8711 (2003).
  • Cho HJ, Shin HJ, Han IK et al. Induction of mucosal and systemic immune responses following oral immunization of mice with Lactococcus lactis expressing human papillomavirus type 16 L1. Vaccine19, 8049–8057 (2007).
  • Holmgren J, Czerkinsky C. Mucosal immunity and vaccines. Nat. Med.11, S45–S53 (2005).
  • Cesta MF. Normal structure, function and histology of mucosa-associated lymphoid tissue. Toxicol. Pathol.34, 599–608 (2006).
  • Corr SC, Gahan CC, Hill C. M-cells: origin, morphology and role in mucosal immunity and microbial pathogenesis. FEMS Immunol. Med. Microbiol.52, 2–12 (2008).
  • Davis SS. Nasal vaccines. Adv. Drug. Deliv. Rev.51, 21–42 (2001).
  • Hu KF, Lövgren-Bengtsson K, Morein B. Immunostimulating complexes (ISCOMs) for nasal vaccination. Adv. Drug. Deliv. Rev.51, 149–159 (2001).
  • Daudel D, Weidinger G, Spreng S. Use of attenuated bacteria as delivery vectors for DNA vaccines. Expert Rev. Vaccines6(1), 97–110 (2007).
  • Mielcarek N, Alonso S, Locht C. Nasal vaccination using live bacterial vectors. Adv. Drug Deliv. Rev.51, 55–69 (2001).
  • Singh M, Chakrapani A, O’Hagan D et al. A comparison of anionic nanoparticles and microparticles as vaccine delivery systems. Hum. Vaccin.4, 44–49 (2008).
  • Berg M, Difatta J, Hoiczyk E, Schlegel R, Ketner G. Viable adenovirus vaccine prototypes: high-level production of a papillomavirus capsid antigen from the major late transcriptional unit. Proc. Natl Acad. Sci. USA22, 4590–4595 (2005).
  • Lin YL, Borenstein LA, Selvakumar R, Ahmed R, Wettstein FO. Effective vaccination against papilloma development by immunization with L1 or L2 structural protein of cottontail rabbit papillomavirus. Virology187, 612–619 (1992).
  • Reuter JD, Vivas-Gonzalez BE, Gomez D et al. Intranasal vaccination with a recombinant vesicular stomatitis virus expressing cottontail rabbit papillomavirus L1 protein provides complete protection against papillomavirus-induced disease. J. Virol.76, 8900–8909; erratum in: J. Virol.77, 2799 (2002).
  • Roberts A, Reuter JD, Wilson JH, Baldwin S, Rose JK. Complete protection from papillomavirus challenge after a single vaccination with a vesicular stomatitis virus vector expressing high levels of L1 protein. J. Virol.78, 3196–9 (2004).
  • Wells JM, Mercenier A. Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat. Rev. Microbiol.6, 349–362 (2008).
  • Fraillery D, Baud D, Pang SY et al. Salmonella enterica serovar Typhi Ty21a expressing human papillomavirus type 16 L1 as a potential live vaccine against cervical cancer and typhoid fever. Clin. Vaccine Immunol.14, 1285–1295 (2007).
  • Bermúdez-Humarán LG, Corthier G, Langella P. Recent advances in the use of Lactococcus lactis as live recombinant vector for the development of new safe mucosal vaccines. Recent Res. Devel. Microbiol.8, 147–160 (2004).
  • Bermúdez-Humarán LG. Lactococcus lactis as a live vector for mucosal delivery of therapeutic proteins. Hum. Vaccin.5, 264–267 (2009).
  • Aires KA, Cianciarullo AM, Carneiro SM et al. Production of human papillomavirus type 16 L1 virus like particles by recombinant Lactobacillus casei cells. Appl. Environ. Microbiol.72, 745–752 (2006).
  • Cortes-Perez NG, Kharrat P, Langella P, Bermúdez-Humarán LG. Heterologous production of human papillomavirus type-16 L1 protein by a lactic acid bacterium. BMC Res. Notes24, 167 (2009).
  • Roden RB, Ling M, Wu TC. Vaccination to prevent and treat cervical cancer. Hum. Pathol.35, 971–982 (2004).
  • Christensen ND, Kreider JW, Kan NC, DiAngelo SL. The open reading frame L2 of cottontail rabbit papillomavirus contains antibody inducing neutralizing epitopes. Virology181, 572–579 (1991).
  • Lin YL, Borenstein LA, Selvakumar R, Ahmed R, Wettstein FO. Effective vaccination against papilloma development by immunization with L1 or L2 structural protein of cottontail rabbit papillomavirus. Virology187, 612–619 (1992).
  • Thompson HS, Davies ML, Holding FP et al. Phase I safety and antigenicity of TA-GW: a recombinant HPV6 L2E7 vaccine for the treatment of genital warts. Vaccine17, 40–49 (1999).
  • Monie A, Hung CF, Wu TC. Preventive and therapeutic HPV vaccines. Curr. Opin. Investig. Drugs8, 1038–1050 (2007).
  • Corona-Gutierrez CM, Tinoco A, Navarro T et al. Therapeutic vaccination with MVA E2 can eliminate precancerous lesions (CIN 1, CIN 2, and CIN 3) associated with infection by oncogenic human papillomavirus. Hum. Gene Ther.15, 421–431 (2004).
  • Feltkamp MC, Smits HL, Vierboom MP et al. Vaccination with cytotoxic T lymphocyte epitope-containing peptide protects against a tumor induced by human papillomavirus type 16-transformed cells. Eur. J. Immunol.23, 2242–2249 (1993).
  • Zwaveling S, Ferreira Mota SC, Nouta J et al. Established human papillomavirus type 16-expressing tumors are effectively eradicated following vaccination with long peptides. J. Immunol.169, 350–358 (2002).
  • Tindle RW, Croft S, Herd K et al. A vaccine conjugate of ‘ISCAR’ immunocarrier and peptide epitopes of the E7 cervical cancer-associated protein of human papillomavirus type 16 elicits specific Th1- and Th2-type responses in immunized mice in the absence of oil-based adjuvants. Clin. Exp. Immunol.101, 265–271 (1995).
  • Muderspach L, Wilczynski S, Roman L et al. A Phase I trial of a human papillomavirus (HPV) peptide vaccine for women with high-grade cervical and vulvar intraepithelial neoplasia who are HPV 16 positive. Clin. Cancer Res.6, 3406–3416 (2000).
  • Steller MA, Gurski KJ, Murakami M et al. Cell-mediated immunological responses in cervical and vaginal cancer patients immunized with a lipidated epitope of human papillomavirus type 16 E7. Clin. Cancer Res.4, 2103–2109 (1998).
  • Hariharan K, Braslawsky G, Barnett RS et al. Tumor regression in mice following vaccination with human papillomavirus E7 recombinant protein in PROVAX. Int. J. Oncol.12, 1229–1235 (1998).
  • Ahn WS, Bae SM, Kim TY et al. A therapy modality using recombinant IL-12 adenovirus plus E7 protein in a human papillomavirus 16 E6/E7-associated cervical cancer animal model. Hum. Gene Ther.10, 1389–1399 (2003).
  • Liu B, Ye D, Song X et al. A novel therapeutic fusion protein vaccine by two different families of heat shock proteins linked with HPV16 E7 generates potent antitumor immunity and antiangiogenesis. Vaccine4, 1387–1396 (2008).
  • Préville X, Ladant D, Timmerman B, Leclerc C. Eradication of established tumors by vaccination with recombinant Bordetella pertussis adenylate cyclase carrying the human papillomavirus 16 E7 oncoprotein. Cancer Res.15, 641–649 (2005).
  • van der Burg SH, Kwappenberg KM, O’Neill T et al. Pre-clinical safety and efficacy of TA–CIN, a recombinant HPV16 L2E6E7 fusion protein vaccine, in homologous and heterologous prime–boost regimens. Vaccine14, 3652–3660 (2001).
  • de Jong A, O’Neill T, Khan AY et al. Enhancement of human papillomavirus (HPV) type 16 E6 and E7-specific T-cell immunity in healthy volunteers through vaccination with TA-CIN, an HPV16 L2E7E6 fusion protein vaccine. Vaccine4, 3456–3464 (2002).
  • Hunt S. Technology evaluation: HspE7, StressGen Biotechnologies Corp. Curr. Opin. Mol. Ther.3, 413–417 (2001).
  • Einstein MH, Kadish AS, Burk RD et al. Heat shock fusion protein-based immunotherapy for treatment of cervical intraepithelial neoplasia III. Gynecol. Oncol.106, 453–460 (2007).
  • Rice J, Ottensmeier CH, Stevenson FK. DNA vaccines: precision tools for activating effective immunity against cancer. Nat. Rev. Cancer8, 108–120 (2008).
  • Monie A, Tsen SW, Hung CF, Wu TC. Therapeutic HPV DNA vaccines. Expert Rev. Vaccines8, 1221–1235 (2009).
  • Brulet JM, Maudoux F, Thomas S et al. DNA vaccine encoding endosome-targeted human papillomavirus type 16 E7 protein generates CD4+ T cell-dependent protection. Eur. J. Immunol.7, 376–384 (2007).
  • Kang TH, Lee JH, Bae HC et al. Enhancement of dendritic cell-based vaccine potency by targeting antigen to endosomal/lysosomal compartments. Immunol. Lett.15, 126–134 (2006).
  • Hung CF, Yang M, Wu TC. Modifying professional antigen-presenting cells to enhance DNA vaccine potency. Methods Mol. Med.127, 199–220 (2006).
  • Hsieh CY, Chen CA, Huang CY et al. IL-6-encoding tumor antigen generates potent cancer immunotherapy through antigen processing and anti-apoptotic pathways. Mol. Ther. Oct.15, 1890–1897 (2007).
  • Tommasino M, Jansen-Durr P. E7 protein. In: Papillomaviruses in Human Cancer: the Role of E6 and E7 Oncoproteins. Tommasino M (Ed.). Landes Bioscience, Austin, TX, USA, 103–136 (1997).
  • Kaufmann AM, Stern PL, Rankin EM et al. Safety and immunogenicity of TA-HPV, a recombinant vaccinia virus expressing modified human papillomavirus (HPV)-16 and HPV-18 E6 and E7 genes, in women with progressive cervical cancer. Clin. Cancer Res.8, 3676–3685 (2002).
  • Daemen T, Riezebos-Brilman A, Bungener L, Regts J, Dontje B, Wilschut J. Eradication of established HPV16-transformed tumours after immunisation with recombinant Semliki Forest virus expressing a fusion protein of E6 and E7. Vaccine7, 1082–1088 (2003).
  • Cassetti MC, McElhiney SP, Shahabi V et al. Antitumor efficacy of Venezuelan equine encephalitis virus replicon particles encoding mutated HPV16 E6 and E7 genes. Vaccine2, 520–527 (2004).
  • Brandsma JL, Shlyankevich M, Zhang L et al. Vaccination of rabbits with an adenovirus vector expressing the papillomavirus E2 protein leads to clearance of papillomas and infection. J. Virol.78, 116–123 (2004).
  • Brandsma JL, Shylankevich M, Su Y et al. Vesicular stomatitis virus-based therapeutic vaccination targeted to the E1, E2, E6, and E7 proteins of cottontail rabbit papillomavirus. J. Virol.81, 5749–5758 (2007).
  • Kanodia S, Da Silva DM, Kast WM. Recent advances in strategies for immunotherapy of human papillomavirus-induced lesions. Int. J. Cancer15, 247–259 (2008).
  • Hussain SF, Paterson Y. What is needed for effective antitumor immunotherapy? Lessons learned using Listeria monocytogenes as a live vector for HPV-associated tumors. Cancer Immunol. Immunother.54, 577–586 (2005).
  • Gregory SH, Liu CC. CD8+ T-cell-mediated response to Listeria monocytogenes taken up in the liver and replicating within hepatocytes. Immunol. Rev.174, 112–122 (2000).
  • Gunn GR, Zubair A, Peters C, Pan ZK, Wu TC, Paterson Y. Two Listeria monocytogenes vaccine vectors that express different molecular forms of human papilloma virus-16 (HPV-16) E7 induce qualitatively different T cell immunity that correlates with their ability to induce regression of established tumors immortalized by HPV-16. J. Immunol.167, 6471–6479 (2001).
  • Maciag PC, Radulovic S, Rothman J. The first clinical use of a live-attenuated Listeria monocytogenes vaccine: a Phase I safety study of Lm–LLO–E7 in patients with advanced carcinoma of the cervix. Vaccine19, 3975–3983 (2009).
  • Bermúdez-Humarán LG, Langella P, Cortes-Perez NG et al. Intranasal immunization with recombinant Lactococcus lactis secreting murine interleukin-12 enhances antigen-specific Th1 cytokine production. Infect. Immun.71, 1887–1896 (2003).
  • Bermúdez-Humarán LG, Cortes-Perez NG, Lefevre F et al. A novel mucosal vaccine based on live lactococci expressing E7 antigen and IL-12 induces systemic and mucosal immune responses and protects mice against human papillomavirus type 16-induced tumors. J. Immunol.175, 7297–7302 (2005).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.