79
Views
20
CrossRef citations to date
0
Altmetric
Review

DNA vaccines: a rational design against parasitic diseases

, , , &
Pages 175-191 | Published online: 09 Jan 2014

References

  • Ulmer JB, Donnelly JJ, Parker SE et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science259(5102), 1745–1749 (1993).
  • Donnelly JJ, Liu MA, Ulmer JB. Antigen presentation and DNA vaccines. Am. J. Respir. Crit. Care Med.162(4), 190S–193S (2000).
  • Tang Dc, DeVit M, Johnston SA. Genetic immunization is a simple method for eliciting an immune response. Nature356(6365), 152–154 (1992).
  • Wolff JA, Malone RW, Williams P et al. Direct gene transfer into mouse muscle in vivo. Science247(4949 Pt 1), 1465–1468 (1990).
  • Liang Y, Wu X, Zhang J et al. The treatment of mice infected with multi-drug-resistant Mycobacterium tuberculosis using DNA vaccines or in combination with rifampin. Vaccine26(35), 4536–4540 (2008).
  • Santra S, Korber BT, Muldoon M et al. A centralized gene-based HIV-1 vaccine elicits broad cross-clade cellular immune responses in rhesus monkeys. Proc. Natl Acad. Sci. USA105(30), 10489–10494 (2008).
  • Davis HL, Michel ML, Whalen RG. DNA-based immunization induces continuous secretion of hepatitis B surface antigen and high levels of circulating antibody. Hum. Mol. Genet.2(11), 1847–1851 (1993).
  • Rice J, Ottensmeier CH, Stevenson FK. DNA vaccines: precision tools for activating effective immunity against cancer. Nat. Rev. Cancer8(2), 108–120 (2008).
  • Schif-Zuck S, Wildbaum G, Karin N. Coadministration of plasmid DNA constructs encoding an encephalitogenic determinant and IL-10 elicits regulatory T cell-mediated protective immunity in the central nervous system. J. Immunol.177(11), 8241–8247 (2006).
  • Li G, Liu Z, Zhong N, Liao B, Xiong Y. Therapeutic effects of DNA vaccine on allergen-induced allergic airway inflammation in mouse model. Cell Mol. Immunol.3(5), 379–384 (2006).
  • Ulmer JB, Wahren B, Liu MA. Gene-based vaccines: recent technical and clinical advances. Trends Mol. Med.12(5), 216–222 (2006).
  • Kutzler MA, Weiner DB. DNA vaccines: ready for prime time? Nat. Rev. Genet.9(10), 776–788 (2008).
  • Sasaki S, Takeshita F, Xin KQ, Ishii N, Okuda K. Adjuvant formulations and delivery systems for DNA vaccines. Methods31(3), 243–254 (2003).
  • Minigo G, Scholzen A, Tang CK et al. Poly-l-lysine-coated nanoparticles: a potent delivery system to enhance DNA vaccine efficacy. Vaccine25(7), 1316–1327 (2007).
  • Wilson KD, de Jong SD, Kazem M et al. The combination of stabilized plasmid lipid particles and lipid nanoparticle encapsulated CpG containing oligodeoxynucleotides as a systemic genetic vaccine. J. Gene Med.11(1), 14–25 (2009).
  • Laddy DJ, Weiner DB. From plasmids to protection: a review of DNA vaccines against infectious diseases. Int. Rev. Immunol.25(3–4), 99–123 (2006).
  • Babiuk S, Babiuk LA, van Drunen Littel-van den Hurk S. DNA vaccination: a simple concept with challenges regarding implementation. Int. Rev. Immunol.25(3–4), 51–81 (2006).
  • Chikhlikar P, de Arruda LB, Maciel M et al. DNA encoding an HIV-1 Gag/human lysosome-associated membrane protein-1 chimera elicits a broad cellular and humoral immune response in rhesus macaques. PLoS ONE1, e135 (2006).
  • Sherritt M, Cooper L, Moss DJ, Kienzle N, Altman J, Khanna R. Immunization with tumor-associated epitopes fused to an endoplasmic reticulum translocation signal sequence affords protection against tumors with down-regulated expression of MHC and peptide transporters. Int. Immunol.13(3), 265–271 (2001).
  • Qiu JT, Liu B, Tian C, Pavlakis GN, Yu XF. Enhancement of primary and secondary cellular immune responses against human immunodeficiency virus type 1 Gag by using DNA expression vectors that target Gag antigen to the secretory pathway. J. Virol.74(13), 5997–6005 (2000).
  • Arankalle VA, Lole KS, Deshmukh TM, Srivastava S, Shaligram US. Challenge studies in Rhesus monkeys immunized with candidate hepatitis E vaccines: DNA, DNA-prime–protein-boost and DNA-protein encapsulated in liposomes. Vaccine27(7), 1032–1039 (2009).
  • McConkey SJ, Reece WH, Moorthy VS et al. Enhanced T-cell immunogenicity of plasmid DNA vaccines boosted by recombinant modified vaccinia virus Ankara in humans. Nat. Med.9(6), 729–735 (2003).
  • Davidson AH, Traub-Dargatz JL, Rodeheaver RM et al. Immunologic responses to West Nile virus in vaccinated and clinically affected horses. J. Am. Vet. Med. Assoc.226(2), 240–245 (2005).
  • Garver KA, LaPatra SE, Kurath G. Efficacy of an infectious hematopoietic necrosis (IHN) virus DNA vaccine in Chinook Oncorhynchus tshawytscha and sockeye O. nerka salmon. Dis. Aquat. Organ.64(1), 13–22 (2005).
  • Bergman PJ, Camps-Palau MA, McKnight JA et al. Development of a xenogeneic DNA vaccine program for canine malignant melanoma at the Animal Medical Center. Vaccine24(21), 4582–4585 (2006).
  • Person R, Bodles-Brakhop AM, Pope MA, Brown PA, Khan AS, Draghia-Akli R. Growth hormone-releasing hormone plasmid treatment by electroporation decreases offspring mortality over three pregnancies. Mol. Ther.16(11), 1891–1897 (2008).
  • Rodrigues MM, Boscardin SB, Vasconcelos JR, Hiyane MI, Salay G, Soares IS. Importance of CD8 T cell-mediated immune response during intracellular parasitic infections and its implications for the development of effective vaccines. An. Acad. Bras. Cienc.75(4), 443–468 (2003).
  • Morel PA, Falkner D, Plowey J, Larregina AT, Falo LD. DNA immunisation: altering the cellular localisation of expressed protein and the immunisation route allows manipulation of the immune response. Vaccine22(3–4), 447–456 (2004).
  • Scheerlinck JP. Genetic adjuvants for DNA vaccines. Vaccine19(17–19), 2647–2656 (2001).
  • Garg N, Tarleton RL. genetic immunization elicits antigen-specific protective immune responses and decreases disease severity in Trypanosoma cruzi infection. Infect. Immun.70(10), 5547–5555 (2002).
  • Anand SB, Murugan V, Prabhu PR, Anandharaman V, Reddy MVR, Kaliraj P. Comparison of immunogenicity, protective efficacy of single and cocktail DNA vaccine of Brugia malayi abundant larval transcript (ALT-2) and thioredoxin peroxidase (TPX) in mice. Acta Tropica107(2), 106–112 (2008).
  • Ahmed SBH, Touihri L, Chtourou Y, Dellagi K, Bahloul C. DNA based vaccination with a cocktail of plasmids encoding immunodominant Leishmania (Leishmania) major antigens confers full protection in BALB/c mice. Vaccine27(1), 99–106 (2009).
  • Vythilingam I, Noorazian YM, Huat TC et al.Plasmodium knowlesi in humans, macaques and mosquitoes in peninsular Malaysia. Parasit. Vectors1(1), 26 (2008).
  • Björkman A, Bhattarai A. Public health impact of drug resistant Plasmodium falciparum malaria. Acta Tropica94(3), 163–169 (2005).
  • Na-Bangchang K, Congpuong K. Current malaria status and distribution of drug resistance in East and Southeast Asia with special focus to Thailand. Tohoku J. Exp. Med.211(2), 99–113 (2007).
  • Maude RJ, Pontavornpinyo W, Saralamba S et al. The last man standing is the most resistant: eliminating artemisinin-resistant malaria in Cambodia. Malar. J.8, 31 (2009).
  • White NJ. Qinghaosu (artemisinin): the price of success. Science320(5874), 330–334 (2008).
  • Hoffman S, Goh L, Luke T et al. Protection of humans against malaria by immunization with radiation-attenuated Plasmodium falciparum sporozoites. J. Infect. Dis.185(8), 1155–1164 (2002).
  • Hviid L. Naturally acquired immunity to Plasmodium falciparum malaria in Africa. Acta Tropica95(3), 270–275 (2005).
  • Weiss WR, Sedegah M, Beaudoin RL, Miller LH, Good MF. CD8+ T cells (cytotoxic/suppressors) are required for protection in mice immunized with malaria sporozoites. Proc. Natl Acad. Sci. USA85(2), 573–576 (1988).
  • Carvalho LJ, Daniel-Ribeiro CT, Goto H. Malaria vaccine: candidate antigens, mechanisms, constraints and prospects. Scand. J. Immunol.56(4), 327–343 (2002).
  • Richie TL, Saul A. Progress and challenges for malaria vaccines. Nature415(6872), 694–701 (2002).
  • Kumar S, Epstein JE, Richie TL et al. A multilateral effort to develop DNA vaccines against falciparum malaria. Trends Parasitol.18(3), 129–135 (2002).
  • Dunachie SJ, Hill AVS. Prime–boost strategies for malaria vaccine development. J. Exp. Biol.206(21), 3771–3779 (2003).
  • Ballou WR, Arevalo-Herrera MYRI, Carucci D et al. Update on the clinical development of candidate malaria vaccines. Am. J. Trop. Med. Hyg.71(Suppl. 2), 239–247 (2004).
  • Ballou WR. The development of the RTS,S malaria vaccine candidate: challenges and lessons. Parasite Immunol.31(9), 492–500 (2009).
  • Bojang KA, Milligan PJ, Pinder M et al. Efficacy of RTS,S/AS02 malaria vaccine against Plasmodium falciparum infection in semi-immune adult men in The Gambia: a randomised trial. Lancet358(9297), 1927–1934 (2001).
  • Stoute JA, Kester KE, Krzych U et al. Long-term efficacy and immune responses following immunization with the RTS,S malaria vaccine. J. Infect. Dis.178(4), 1139–1144 (1998).
  • Walsh DS, Gettayacamin M, Leitner WW et al. Heterologous prime–boost immunization in rhesus macaques by two, optimally spaced particle-mediated epidermal deliveries of Plasmodium falciparum circumsporozoite protein-encoding DNA, followed by intramuscular RTS,S/AS02A. Vaccine24(19), 4167–4178 (2006).
  • Bansal D, Malla N, Mahajan RC. Drug resistance in amoebiasis. Indian J. Med. Res.123(2), 115–118 (2006).
  • Haque R, Ali I, Sack R, Farr B, Ramakrishnan G, Petri WA Jr. Amebiasis and mucosal IgA antibody against the Entamoeba histolytica adherence lectin in Bangladeshi children. J. Infect. Dis.183(12), 1787–1793 (2001).
  • Petri WA Jr, Smith RD, Schlesinger PH, Murphy CF, Ravdin JI. Isolation of the galactose-binding lectin that mediates the in vitro adherence of Entamoeba histolytica. J. Clin. Invest.80(5), 1238–1244 (1987).
  • Petri WA Jr, Ravdin JI. Protection of gerbils from amebic liver abscess by immunization with the galactose-specific adherence lectin of Entamoeba histolytica. Infect. Immun.59(1), 97–101 (1991).
  • Gaucher D, Chadee K. Construction and immunogenicity of a codon-optimized Entamoeba histolytica Gal-lectin-based DNA vaccine. Vaccine20(27–28), 3244–3253 (2002).
  • Zhang T, Stanley SL. DNA vaccination with the serine rich Entamoeba histolytica protein (SREHP) prevents amebic liver abscess in rodent models of disease. Vaccine18(9–10), 868–874 (1999).
  • Martínez MB, Rodríguez MA, García-Rivera G et al. A pcDNA-Ehcpadh vaccine against Entamoeba histolytica elicits a protective Th1-like response in hamster liver. Vaccine27(31), 4176–4186 (2009).
  • Polonio T, Efferth T. Leishmaniasis: drug resistance and natural products (review). Int. J. Mol. Med.22(3), 277–286 (2008).
  • Palatnik-de-Sousa CB. Vaccines for leishmaniasis in the fore coming 25 years. Vaccine26(14), 1709–1724 (2008).
  • Khamesipour A, Rafati S, Davoudi N, Maboudi F, Modabber F. Leishmaniasis vaccine candidates for development: a global overview. Indian J. Med. Res.123(3), 423–438 (2006).
  • Nogueira FS, Moreira MAB, Borja-Cabrera GP et al. Leishmune vaccine blocks the transmission of canine visceral leishmaniasis: absence of leishmania parasites in blood, skin and lymph nodes of vaccinated exposed dogs. Vaccine23(40), 4805–4810 (2005).
  • Rafati S, Salmanian AH, Taheri T, Vafa M, Fasel N. A protective cocktail vaccine against murine cutaneous leishmaniasis with DNA encoding cysteine proteinases of Leishmania major. Vaccine19(25–26), 3369–3375 (2001).
  • Rafati S, Nakhaee A, Taheri T et al. Protective vaccination against experimental canine visceral leishmaniasis using a combination of DNA and protein immunization with cysteine proteinases type I and II of L. infantum. Vaccine23(28), 3716–3725 (2005).
  • Khoshgoo N, Zahedifard F, Azizi H, Taslimi Y, Alonso MJ, Rafati S. Cysteine proteinase type III is protective against Leishmania infantum infection in BALB/c mice and highly antigenic in visceral leishmaniasis individuals. Vaccine26(46), 5822–5829 (2008).
  • Ferreira JH, Gentil LG, Dias SS, Fedeli CE, Katz S, Barbiéri CLC. Immunization with the cysteine proteinase Ldccys1 gene from Leishmania (Leishmania) chagasi and the recombinant Ldccys1 protein elicits protective immune responses in a murine model of visceral leishmaniasis. Vaccine26(5), 677–685 (2008).
  • Bhowmick S, Ravindran R, Ali N. gp63 in stable cationic liposomes confers sustained vaccine immunity to susceptible BALB/c mice infected with Leishmania donovani. Infect. Immun.76(3), 1003–1015 (2008).
  • Campbell K, Diao H, Ji J, Soong L. DNA immunization with the gene encoding P4 nuclease of Leishmania amazonensis protects mice against cutaneous leishmaniasis. Infect. Immun.71(11), 6270–6278 (2003).
  • Iborra S, Soto M, Carrión J, Alonso C, Requena JM. Vaccination with a plasmid DNA cocktail encoding the nucleosomal histones of Leishmania confers protection against murine cutaneous leishmaniosis. Vaccine22(29–30), 3865–3876 (2004).
  • Samant M, Gupta R, Kumari S et al. Immunization with the DNA-encoding N-terminal domain of proteophosphoglycan of Leishmania donovani generates Th1-type immunoprotective response against experimental visceral leishmaniasis. J. Immunol.183(1), 470–479 (2009).
  • Ramos I, Alonso A, Marcen JM et al. Heterologous prime–boost vaccination with a non-replicative vaccinia recombinant vector expressing LACK confers protection against canine visceral leishmaniasis with a predominant Th1-specific immune response. Vaccine26(3), 333–344 (2008).
  • Campos-Neto A, Webb JR, Greeson K, Coler RN, Skeiky YAW, Reed SG. Vaccination with plasmid DNA encoding TSA/LmSTI1 leishmanial fusion proteins confers protection against Leishmania major infection in susceptible BALB/c mice. Infect. Immun.70(6), 2828–2836 (2002).
  • Fernandes AP, Costa MMS, Coelho EAF et al. Protective immunity against challenge with Leishmania (Leishmania) chagasi in beagle dogs vaccinated with recombinant A2 protein. Vaccine26(46), 5888–5895 (2008).
  • Gamboa-León R, Paraguai de Souza E, Borja-Cabrera GP et al. Immunotherapy against visceral leishmaniasis with the nucleoside hydrolase-DNA vaccine of Leishmania donovani. Vaccine24(22), 4863–4873 (2006).
  • Muller I, Garcia-Sanz JA, Titus R, Behin R, Louis J. Analysis of the cellular parameters of the immune responses contributing to resistance and susceptibility of mice to infection with the intracellular parasite, Leishmania major. Immunol. Rev.112, 95–113 (1989).
  • Heinzel FP, Sadick MD, Mutha SS, Locksley RM. Production of interferon γ, interleukin 2, interleukin 4, and interleukin 10 by CD4+ lymphocytes in vivo during healing and progressive murine leishmaniasis. Proc. Natl Acad. Sci. USA88(16), 7011–7015 (1991).
  • Scharton TM, Scott P. Natural killer cells are a source of interferon γ that drives differentiation of CD4+ T cell subsets and induces early resistance to Leishmania major in mice. J. Exp. Med.178(2), 567–577 (1993).
  • Scott P. IFN-γ modulates the early development of Th1 and Th2 responses in a murine model of cutaneous leishmaniasis. J. Immunol.147(9), 3149–3155 (1991).
  • Holaday BJ, Sadick MD, Wang ZE et al. Reconstitution of Leishmania immunity in severe combined immunodeficient mice using Th1- and Th2-like cell lines. J. Immunol.147(5), 1653–1658 (1991).
  • Ahmed S, Colmenares M, Soong L et al. Intradermal infection model for pathogenesis and vaccine studies of murine visceral leishmaniasis. Infect. Immun.71(1), 401–410 (2003).
  • Kennedy PGE. The pathogenesis and modulation of the post-treatment reactive encephalopathy in a mouse model of human African trypanosomiasis. J. Neuroimmunol.100(1–2), 36–41 (1999).
  • Vincendeau P, Bouteille B. Immunology and immunopathology of African trypanosomiasis. An. Acad. Bras. Cienc.78(4), 645–665 (2006).
  • Stijlemans B, Guilliams M, Raes G, Beschin A, Magez S, De Baetselier P. African trypanosomosis: from immune escape and immunopathology to immune intervention. Vet. Parasitol.148(1), 3–13 (2007).
  • Donelson JE. Antigenic variation and the African trypanosome genome. Acta Tropica85(3), 391–404 (2003).
  • Namangala B, De Baetselier P, Beschin A. Both type-I and type-II responses contribute to murine trypanotolerance. J. Vet. Med. Sci.71(3), 313–318 (2009).
  • Namangala B, De Baetselier P, Brijs L et al. Attenuation of Trypanosoma brucei is associated with reduced immunosuppression and concomitant production of Th2 lymphokines. J. Infect. Dis.181(3), 1110–1120 (2000).
  • Mkunza F, Olaho WM, Powell CN. Partial protection against natural trypanosomiasis after vaccination with a flagellar pocket antigen from Trypanosoma brucei rhodesiense. Vaccine13(2), 151–154 (1995).
  • Balaban N, Waithaka HK, Njogu AR, Goldman R. Intracellular antigens (microtubule-associated protein copurified with glycosomal enzymes) – possible vaccines against trypanosomiasis. J. Infect. Dis.172(3), 845–850 (1995).
  • Rasooly R, Balaban N. Trypanosome microtubule-associated protein p15 as a vaccine for the prevention of African sleeping sickness. Vaccine22(8), 1007–1015 (2004).
  • Lubega GW, Byarugaba DK, Prichard RK. Immunization with a tubulin-rich preparation from Trypanosoma brucei confers broad protection against African trypanosomosis. Exp. Parasitol.102(1), 9–22 (2002).
  • Silva MS, Prazeres DM, Lanca A, Atouguia J, Monteiro GA. Trans-sialidase from Trypanosoma brucei as a potential target for DNA vaccine development against African trypanosomiasis. Parasitol. Res.105(5), 1223–1229 (2009).
  • Ziegelbauer K, Overath P. Identification of invariant surface glycoproteins in the bloodstream stage of Trypanosoma brucei. J. Biol. Chem.267(15), 10791–10796 (1992).
  • Ziegelbauer K, Multhaup G, Overath P. Molecular characterization of two invariant surface glycoproteins specific for the bloodstream stage of Trypanosoma brucei. J. Biol. Chem.267(15), 10797–10803 (1992).
  • Engman DM, Leon JS. Pathogenesis of Chagas heart disease: role of autoimmunity. Acta Tropica81(2), 123–132 (2002).
  • Teixeira AR, Nitz N, Guimaro MC, Gomes C, Santos-Buch CA. Chagas disease. Postgrad. Med. J.82(974), 788–798 (2006).
  • Tarleton RL, Koller BH, Latour A, Postan M. Susceptibility of β2-microglobulin-deficient mice to Trypanosoma cruzi infection. Nature356(6367), 338–340 (1992).
  • Wizel B, Nunes M, Tarleton RL. Identification of Trypanosoma cruzi trans-sialidase family members as targets of protective CD8+ TC1 responses. J. Immunol.159(12), 6120–6130 (1997).
  • Tarleton RL, Grusby MJ, Zhang L. Increased susceptibility of Stat4-deficient and enhanced resistance in Stat6-deficient mice to infection with Trypanosoma cruzi. J. Immunol.165(3), 1520–1525 (2000).
  • Costa F, Franchin G, Pereira-Chioccola VL, Ribeiräo M, Schenkman S, Rodrigues MM. Immunization with a plasmid DNA containing the gene of trans-sialidase reduces Trypanosoma cruzi infection in mice. Vaccine16(8), 768–774 (1998).
  • Sepulveda P, Hontebeyrie M, Liegeard P, Mascilli A, Norris KA. DNA-based immunization with Trypanosoma cruzi complement regulatory protein elicits complement lytic antibodies and confers protection against Trypanosoma cruzi infection. Infect. Immun.68(9), 4986–4991 (2000).
  • Vasconcelos JR, Hiyane MI, Marinho CR et al. Protective immunity against Trypanosoma cruzi infection in a highly susceptible mouse strain after vaccination with genes encoding the amastigote surface protein-2 and trans-sialidase. Hum. Gene Ther.15(9), 878–886 (2004).
  • Cazorla SI, Becker PD, Frank FM et al. Oral vaccination with Salmonella enterica as a cruzipain–DNA delivery system confers protective immunity against Trypanosoma cruzi. Infect. Immun.76(1), 324–333 (2008).
  • Morell M, Thomas MC, Caballero T, Alonso C, López MC. The genetic immunization with paraflagellar rod protein-2 fused to the HSP70 confers protection against late Trypanosoma cruzi infection. Vaccine24(49–50), 7046–7055 (2006).
  • Planelles L, Thomas MC, Alonso C, Lopez MC. DNA Immunization with Trypanosoma cruzi HSP70 fused to the KMP11 protein elicits a cytotoxic and humoral immune response against the antigen and leads to protection. Infect. Immun.69(10), 6558–6563 (2001).
  • Fralish BH, Tarleton RL. Genetic immunization with LYT1 or a pool of trans-sialidase genes protects mice from lethal Trypanosoma cruzi infection. Vaccine21(21–22), 3070–3080 (2003).
  • Katae M, Miyahira Y, Takeda K et al. Coadministration of an interleukin-12 gene and a Trypanosoma cruzi gene improves vaccine efficacy. Infect. Immun.70(9), 4833–4840 (2002).
  • Dumonteil E, Escobedo-Ortegon J, Reyes-Rodriguez N, Arjona-Torres A, Ramirez-Sierra MJ. Immunotherapy of Trypanosoma cruzi infection with DNA vaccines in mice. Infect. Immun.72(1), 46–53 (2004).
  • Zapata-Estrella H, Hummel-Newell C, Sanchez-Burgos G et al. Control of Trypanosoma cruzi infection and changes in T-cell populations induced by a therapeutic DNA vaccine in mice. Immunol. Lett.103(2), 186–191 (2006).
  • Buxton D. Protozoan infections (Toxoplasma gondii, Neospora caninum and Sarcocystis spp.) in sheep and goats: recent advances. Vet. Res.29(3–4). 289–310 (1998).
  • Montoya JG, Liesenfeld O. Toxoplasmosis. Lancet363(9425), 1965–1976 (2004).
  • Dubey JP. The history of Toxoplasma gondii – the first 100 years. J. Eukaryot. Microbiol.55(6), 467–475 (2008).
  • Buxton D, Innes EA. A commercial vaccine for ovine toxoplasmosis. Parasitology110(Suppl.), S11–S16 (1995).
  • Kur J, Holec-Gasior L, Hiszczynska-Sawicka E. Current status of toxoplasmosis vaccine development. Expert Rev. Vaccines8(6), 791–808 (2009).
  • Scorza T, D’Souza S, Laloup M et al. A GRA1 DNA vaccine primes cytolytic CD8+ T cells to control acute Toxoplasma gondii infection. Infect. Immun.71(1), 309–316 (2003).
  • Liu S, Shi L, Cheng YB, Fan GX, Ren HX, Yuan YK. Evaluation of protective effect of multi-epitope DNA vaccine encoding six antigen segments of Toxoplasma gondii in mice. Parasitol. Res. 105(1), 267–274 (2009).
  • Cesbron-Delauw MF. Dense-granule organelles of Toxoplasma gondii: their role in the host–parasite relationship. Parasitol. Today10(8), 293–296 (1994).
  • Ismael AB, Hedhli D, Cérède O, Lebrun M, Dimier-Poisson I, Mévélec MN. Further analysis of protection induced by the MIC3 DNA vaccine against T. gondii: CD4 and CD8 T cells are the major effectors of the MIC3 DNA vaccine-induced protection, both lectin-like and EGF-like domains of MIC3 conferred protection. Vaccine27(22), 2959–2966 (2009).
  • Cong H, Gu QM, Yin HE et al. Multi-epitope DNA vaccine linked to the A2/B subunit of cholera toxin protect mice against Toxoplasma gondii. Vaccine26(31), 3913–3921 (2008).
  • Dautu G, Munyaka B, Carmen G et al.Toxoplasma gondii: DNA vaccination with genes encoding antigens MIC2, M2AP, AMA1 and BAG1 and evaluation of their immunogenic potential. Exp. Parasitol.116(3), 273–282 (2007).
  • Mohamed RM, Aosai F, Chen M et al. Induction of protective immunity by DNA vaccination with Toxoplasma gondiiHSP70, HSP30 and SAG1 genes. Vaccine21(21–22), 2852–2861 (2003).
  • McManus DP, Loukas A. Current status of vaccines for schistosomiasis. Clin. Microbiol. Rev.21(1), 225–242 (2008).
  • Doenhoff MJ, Cioli D, Utzinger J. Praziquantel: mechanisms of action, resistance and new derivatives for schistosomiasis. Curr. Opin. Infect. Dis.21(6), 659–667 (2008).
  • Hewitson JP, Hamblin PA, Mountford AP. Immunity induced by the radiation-attenuated schistosome vaccine. Parasite Immunol.27(7–8), 271–280 (2005).
  • Pearce EJ, MacDonald AS. The immunobiology of schistosomiasis. Nat. Rev. Immunol.2(7), 499–511 (2002).
  • Bergquist R, Al Sherbiny M, Barakat R, Olds R. Blueprint for schistosomiasis vaccine development. Acta Tropica82(2), 183–192 (2002).
  • Da’dara AA, Skelly PJ, Wang M, Harn DA. Immunization with plasmid DNA encoding the integral membrane protein, Sm23, elicits a protective immune response against schistosome infection in mice. Vaccine20(3–4), 359–369 (2001).
  • Zhang L, Yang Y, Yang X et al. T cell epitope-based peptide-DNA dual vaccine induces protective immunity against Schistosoma japonicum infection in C57BL/6J mice. Microbes Infect.10(3), 251–259 (2008).
  • Lanar DE, Pearce EJ, James SL, Sher A. Identification of paramyosin as schistosome antigen recognized by intradermally vaccinated mice. Science234(4776), 593–596 (1986).
  • Zhou S, Liu S, Song G, Xu Y, Sun W. Protective immunity induced by the full-length cDNA encoding paramyosin of Chinese Schistosoma japonicum. Vaccine18(27), 3196–3204 (2009).
  • LoVerde PT, Carvalho-Queiroz C, Cook R. Vaccination with antioxidant enzymes confers protective immunity against challenge infection with Schistosoma mansoni. Mem. Inst. Oswaldo Cruz.99(5 Suppl. 1), 37–43 (2004).
  • Shalaby KA, Yin L, Thakur A, Christen L, Niles EG, LoVerde PT. Protection against Schistosoma mansoni utilizing DNA vaccination with genes encoding Cu/Zn cytosolic superoxide dismutase, signal peptide-containing superoxide dismutase and glutathione peroxidase enzymes. Vaccine22(1), 130–136 (2003).
  • Chlichlia K, Bahgat M, Ruppel A, Schirrmacher V. DNA vaccination with asparaginyl endopeptidase (Sm32) from the parasite Schistosoma mansoni: anti-fecundity effect induced in mice. Vaccine20(3–4), 439–447 (2001).
  • Tang L, Zhou Z, Chen Y et al. Vaccination of goats with 31 kDa and 32 kDa Schistosoma japonicum antigens by DNA priming and protein boosting. Cell. Mol. Immunol.4(2), 153–156 (2007).
  • Siddiqui AA, Phillips T, Charest H et al. Enhancement of Sm-p80 (large subunit of calpain) induced protective immunity against Schistosoma mansoni through co-delivery of interleukin-2 and interleukin-12 in a DNA vaccine formulation. Vaccine21(21–22), 2882–2889 (2003).
  • Ahmad G, Zhang W, Torben W et al. Protective and antifecundity effects of Sm-p80-based DNA vaccine formulation against Schistosoma mansoni in a nonhuman primate model. Vaccine27(21), 2830–2837 (2009).
  • Wei F, Liu Q, Zhai Y et al. IL-18 enhances protective effect in mice immunized with a Schistosoma japonicum FABP DNA vaccine. Acta Tropica111(3), 284–288 (2009).
  • Da’dara AA, Li YS, Xiong T et al. DNA-based vaccines protect against zoonotic schistosomiasis in water buffalo. Vaccine26(29–30), 3617–3625 (2008).
  • Shi F, Zhang Y, Lin J et al. Field testing of Schistosoma japonicum DNA vaccines in cattle in China. Vaccine20(31–32), 3629–3631 (2002).
  • Williams GM, Sleigh AC, Li Y et al. Mathematical modelling of schistosomiasis japonica: comparison of control strategies in the People’s Republic of China. Acta Tropica82(2), 253–262 (2002).
  • Vedi S, Dangi A, Hajela K, Misra-Bhattacharya S. Vaccination with 73 kDa recombinant heavy chain myosin generates high level of protection against Brugia malayi challenge in jird and mastomys models. Vaccine26(47), 5997–6005 (2008).
  • Vanam U, Pandey V, Prabhu PR, Dakshinamurthy G, Reddy MVR, Kaliraj P. Evaluation of immunoprophylactic efficacy of Brugia malayi transglutaminase (BmTGA) in single and multiple antigen vaccination with BmALT-2 and BmTPX for human lymphatic filariasis. Am. J. Trop. Med. Hyg.80(2), 319–324 (2009).
  • Li BW, Rush A, Zhang SR, Curtis KC, Weil GJ. Antibody responses to Brugia malayi antigens induced by DNA vaccination. Filaria J.3(1), 1 (2004).
  • Vanam U, Prabhu PR, Pandey V, Dakshinamurthy G, Reddy MV, Perumal K. Immune responses generated by intramuscular DNA immunization of Brugia malayi transglutaminase (BmTGA) in mice. Parasitology136(8), 887–894 (2009).
  • Li BW, Zhang S, Curtis KC, Weil GJ. Immune responses to Brugia malayi paramyosin in rodents after DNA vaccination. Vaccine18(1–2), 76–81 (2009).
  • Ramachandran S, Kumar MP, Rami RM et al. The larval specific lymphatic filarial ALT-2: induction of protection using protein or DNA vaccination. Microbiol. Immunol.48(12), 945–955 (2004).
  • Basáñez M-G, Pion SbDS, Churcher TS, Breitling LP, Little MP, Boussinesq M. River blindness: a success story under threat? PLoS Med.3(9), e371 (2006).
  • van den Eden E. Pharmacotherapy of helminth infection. Expert Opin. Pharmacother.10(3), 435–451 (2009).
  • Boyer AE, Tsang VC, Eberhard ML et al. Guatemalan human onchocerciasis. II. Evidence for IgG3 involvement in acquired immunity to Onchocerca volvulus and identification of possible immune-associated antigens. J. Immunol.146(11), 4001–4010 (1991).
  • Erttmann KD, Kleensang A, Schneider E, Hammerschmidt S, Büttner DW, Gallin M. Cloning, characterization and DNA immunization of an Onchocerca volvulus glyceraldehyde-3-phosphate dehydrogenase (Ov-GAPDH). Biochim. Biophys. Acta1741(1–2), 85–94 (2005).
  • Harrison RA, Bianco AE. DNA immunization with Onchocerca volvulus genes, Ov-tmy-1 and OvB20: serological and parasitological outcomes following intramuscular or GeneGun delivery in a mouse model of onchocerciasis. Parasite Immunol.22(5), 249–257 (2000).
  • Harrison RA, Wu Y, Egerton G, Bianco AE. DNA immunisation with Onchocerca volvulus chitinase induces partial protection against challenge infection with L3 larvae in mice. Vaccine18(7–8), 647–655 (1999).
  • Johnson EH, Schynder-Candrian S, Rajan TV, Nelson FK, Lustigman S, Abraham D. Immune responses to third stage larvae of Onchocerca volvulus in interferon-γ and interleukin-4 knockout mice. Parasite Immunol.20(7), 319–324 (1998).
  • Jiang G, Shi M, Conteh S et al. Sterile protection against Plasmodium knowlesi in rhesus monkeys from a malaria vaccine: comparison of heterologous prime boost strategies. PLoS ONE4(8), e6559 (2009).
  • Weiss WR, Kumar A, Jiang G et al. Protection of rhesus monkeys by a DNA prime/poxvirus boost malaria vaccine depends on optimal DNA priming and inclusion of blood stage antigens. PLoS ONE2(10), e1063 (2007).
  • Jiang G, Charoenvit Y, Moreno A et al. Induction of multi-antigen multi-stage immune responses against Plasmodium falciparum in rhesus monkeys, in the absence of antigen interference, with heterologous DNA prime/poxvirus boost immunization. Malar. J.6, 135 (2007).
  • Miao J, Li X, Liu Z, Xue C, Bujard H, Cui L. Immune responses in mice induced by prime-boost schemes of the Plasmodium falciparum apical membrane antigen 1 (PfAMA1)-based DNA, protein and recombinant modified vaccinia Ankara vaccines. Vaccine24(37–39), 6187–6198 (2006).
  • Coban C, Philipp MT, Purcell JE et al. Induction of Plasmodium falciparum transmission-blocking antibodies in nonhuman primates by a combination of DNA and protein immunizations. Infect. Immun.72(1), 253–259 (2004).
  • LeBlanc R, Vasquez Y, Hannaman D, Kumar N. Markedly enhanced immunogenicity of a Pfs25 DNA-based malaria transmission-blocking vaccine by in vivo electroporation. Vaccine26(2), 185–192 (2008).
  • Jones TR, Gramzinski RA, Aguiar JC et al. Absence of antigenic competition in Aotus monkeys immunized with Plasmodium falciparum DNA vaccines delivered as a mixture. Vaccine20(11–12), 1675–1680 (2002).
  • Daubersies P, Ollomo B, Sauzet JP et al. Genetic immunisation by liver stage antigen 3 protects chimpanzees against malaria despite low immune responses. PLoS ONE3(7), e2659 (2008).
  • Rogers WO, Gowda K, Hoffman SL. Construction and immunogenicity of DNA vaccine plasmids encoding four Plasmodium vivax candidate vaccine antigens. Vaccine17(23–24), 3136–3144 (1999).
  • Kongkasuriyachai D, Bartels-Andrews L, Stowers A et al. Potent immunogenicity of DNA vaccines encoding Plasmodium vivax transmission-blocking vaccine candidates Pvs25 and Pvs28 – evaluation of homologous and heterologous antigen-delivery prime-boost strategy. Vaccine22(23–24), 3205–3213 (2004).
  • Dunachie SJ, Walther M, Epstein JE et al. A DNA prime–modified vaccinia virus Ankara boost vaccine encoding thrombospondin-related adhesion protein but not circumsporozoite protein partially protects healthy malaria-naive adults against Plasmodium falciparum sporozoite challenge. Infect. Immun.74(10), 5933–5942 (2006).
  • Vuola JM, Keating S, Webster DP et al. Differential immunogenicity of various heterologous prime–boost vaccine regimens using DNA and viral vectors in healthy volunteers. J. Immunol.174(1), 449–455 (2005).
  • Le TP, Coonan KM, Hedstrom RC et al. Safety, tolerability and humoral immune responses after intramuscular administration of a malaria DNA vaccine to healthy adult volunteers. Vaccine18(18), 1893–1901 (2000).
  • Epstein JE, Charoenvit Y, Kester KE et al. Safety, tolerability, and antibody responses in humans after sequential immunization with a PfCSP DNA vaccine followed by the recombinant protein vaccine RTS,S/AS02A. Vaccine22(13–14), 1592–1603 (2004).
  • Moorthy V, Imoukhuede E, Keating S et al. Phase 1 evaluation of 3 highly immunogenic prime–boost regimens, including a 12-month reboosting vaccination, for malaria vaccination in Gambian men. J. Infect. Dis.189(12), 2213–2219 (2004).
  • Moorthy VS, Imoukhuede EB, Milligan P et al. A randomised, double-blind, controlled vaccine efficacy trial of DNA/MVA ME-TRAP against malaria infection in Gambian adults. PLoS Med.1(2), e33 (2004).
  • Montalvo-Alvarez AM, Folgueira C, Carrion J, Monzote-Fidalgo L, Canavate C, Requena JM. The leishmania HSP20 is antigenic during natural infections, but, as DNA vaccine, it does not protect BALB/c mice against experimental L. amazonensis infection. J. Biomed. Biotechnol.2008(1), 695432 (2008).
  • Couper KN, Nielsen HV, Petersen E, Roberts F, Roberts CW, Alexander J. DNA vaccination with the immunodominant tachyzoite surface antigen (SAG-1) protects against adult acquired Toxoplasma gondii infection but does not prevent maternofoetal transmission. Vaccine21(21–22), 2813–2820 (2003).
  • Shang L, Liu Q, Liu W et al. Protection in mice immunized with a heterologous prime–boost regime using DNA and recombinant pseudorabies expressing TgSAG1 against Toxoplasma gondii challenge. Vaccine27(21), 2741–2745 (2009).
  • Nielsen HV, Di Cristina M, Beghetto E, Spadoni A, Petersen E, Gargano N. Toxoplasma gondii: DNA vaccination with bradyzoite antigens induces protective immunity in mice against oral infection with parasite cysts. Exp. Parasitol.112(4), 274–279 (2006).
  • Zhang J, He S, Jiang H et al. Evaluation of the immune response induced by multiantigenic DNA vaccine encoding SAG1 and ROP2 of Toxoplasma gondii and the adjuvant properties of murine interleukin-12 plasmid in BALB/c mice. Parasitol. Res.101(2), 331–338 (2007).
  • Zhang G, Huong VT, Battur B et al. A heterologous prime-boost vaccination regime using DNA and a vaccinia virus, both expressing GRA4, induced protective immunity against Toxoplasma gondii infection in mice. Parasitology134(Pt 10), 1339–1346 (2007).
  • Xue M, He S, Cui Y, Yao Y, Wang H. Evaluation of the immune response elicited by multi-antigenic DNA vaccine expressing SAG1, ROP2 and GRA2 against Toxoplasma gondii. Parasitol. Int.57(4), 424–429 (2008).
  • Wang H, He S, Yao Y et al.Toxoplasma gondii: protective effect of an intranasal SAG1 and MIC4 DNA vaccine in mice. Exp. Parasitol.122(3), 226–232 (2009).
  • Rosenberg C, De Craeye S, Jongert E et al. Induction of partial protection against infection with Toxoplasma gondii genotype II by DNA vaccination with recombinant chimeric tachyzoite antigens. Vaccine27(18), 2489–2498 (2009).
  • Gan Y, Shi YE, Bu LY, Zhu XH, Ning CX, Zhu HG. Immune responses against Schistosoma japonicum after vaccinating mice with a multivalent DNA vaccine encoding integrated membrane protein Sj23 and cytokine interleukin-12. Chin. Med. J. (Engl.)117(12), 1842–1846 (2004).
  • Siddiqui AA, Phillips T, Charest H et al. Induction of protective immunity against Schistosoma mansoni via DNA priming and boosting with the large subunit of calpain (Sm-p80): adjuvant effects of granulocyte-macrophage colony-stimulating factor and interleukin-4. Infect. Immun.71(7), 3844–3851 (2003).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.