637
Views
141
CrossRef citations to date
0
Altmetric
Review

Advances in the design and delivery of peptide subunit vaccines with a focus on Toll-like receptor agonists

, , &
Pages 157-173 | Published online: 09 Jan 2014

References

  • Babiuk LA. Broadening the approaches to developing more effective vaccines. Vaccine17(13–14), 1587–1595 (1999).
  • Brown F. Peptide vaccines: fantasy or reality? World J. Microbiol. Biotechnol.8(Suppl. 1), 52–53 (1992).
  • Levine MM, Sztein MB. Vaccine development strategies for improving immunization: the role of modern immunology. Nat. Immunol.5(5), 460–464 (2004).
  • O’Hagan DT, De Gregorio E. The path to a successful vaccine adjuvant – ‘the long and winding road’. Drug Discov. Today14(11–12), 541–551 (2009).
  • Purcell AW, Zeng W, Mifsud NA, Ely LK, Macdonald WA, Jackson DC. Dissecting the role of peptides in the immune response: theory, practice and the application to vaccine design. J. Pept. Sci.9(5), 255–281 (2003).
  • Vos Q, Lees A, Wu ZQ, Snapper CM, Mond JJ. B-cell activation by T-cell-independent type 2 antigens as an integral part of the humoral immune response to pathogenic microorganisms. Immunol. Rev.176, 154–170 (2000).
  • Mond JJ, Lees A, Snapper CM. T cell-independent antigens type 2. Annu. Rev. Immunol.13, 655–692 (1995).
  • Bachmann MF, Zinkernagel RM. Neutralizing antiviral B cell responses. Annu. Rev. Immunol.15, 235–270 (1997).
  • Dintzis HM, Dintzis RZ, Vogelstein B. Molecular determinants of immunogenicity: the immunon model of immune response. Proc. Natl Acad. Sci. USA73(10), 3671–3675 (1976).
  • Sulzer B, Perelson AS. Immunons revisited: binding of multivalent antigens to B cells. Mol. Immunol.34(1), 63–74 (1997).
  • Tam JP. Synthetic peptide vaccine design: synthesis and properties of a high-density multiple antigenic peptide system. Proc. Natl Acad. Sci. USA85(15), 5409–5413 (1988).
  • Tam JP, Clavijo P, Lu YA, Nussenzweig V, Nussenzweig R, Zavala F. Incorporation of T and B epitopes of the circumsporozoite protein in a chemically defined synthetic vaccine against malaria. J. Exp. Med.171(1), 299–306 (1990).
  • Sakarellos-Daitsiotis M, Krikorian D, Panou-Pomonis E, Sakarellos C. Artificial carriers: a strategy for constructing antigenic/immunogenic conjugates. Curr. Top. Med. Chem.6(16), 1715–1735 (2006).
  • Niederhafner P, Reinis M, Sebestik J, Jezek J. Glycopeptide dendrimers, part III: a review. Use of glycopeptide dendrimers in immunotherapy and diagnosis of cancer and viral diseases. J. Pept. Sci.14(5), 556–587 (2008).
  • Reimer U. Prediction of linear B-cell epitopes. Methods Mol. Biol.524, 335–344 (2009).
  • Greenbaum JA, Andersen PH, Blythe M et al. Towards a consensus on datasets and evaluation metrics for developing B-cell epitope prediction tools. J. Mol. Recognit.20(2), 75–82 (2007).
  • Relf WA, Cooper J, Brandt ER et al. Mapping a conserved conformational epitope from the M protein of group A streptococci. Pept. Res.9(1), 12–20 (1996).
  • Hayman WA, Brandt ER, Relf WA, Cooper J, Saul A, Good MF. Mapping the minimal murine T cell and B cell epitopes within a peptide vaccine candidate from the conserved region of the M protein of group A streptococcus. Int. Immunol.9(11), 1723–1733 (1997).
  • Gore T, Dori Y, Talmon Y, Tirrell M, Bianco-Peled H. Self-assembly of model collagen peptide amphiphiles. Langmuir17(17), 5352–5360 (2001).
  • Yu YC, Tirrell M, Fields GB. Minimal lipidation stabilizes protein-like molecular architecture. J. Am. Chem. Soc.120(39), 9979–9987 (1998).
  • Tu RS, Marullo R, Pynn R, Bitton R, Bianco-Peled H, Tirrell MV. Cooperative DNA binding and assembly by a bZip-peptide-amphiphile. Soft Matter DOI: 10.1039/b922295b (2009) (In press).
  • Tong JC, Tan TW, Ranganathan S. Methods and protocols for prediction of immunogenic epitopes. Brief Bioinform.8(2), 96–108 (2007).
  • van der Burg SH, Bijker MS, Welters MJP, Offringa R, Melief CJM. Improved peptide vaccine strategies, creating synthetic artificial infections to maximize immune efficacy. Adv. Drug Deliv. Rev.58(8), 916–930 (2006).
  • Bijker MS, van den Eeden SJF, Franken KL, Melief CJM, Offringa R, van der Burg SH. CD8+ CTL priming by exact peptide epitopes in incomplete Freund’s adjuvant induces a vanishing CTL response, whereas long peptides induce sustained CTL reactivity. J. Immunol.179(8), 5033–5040 (2007).
  • Le Gall S, Stamegna P, Walker BD. Portable flanking sequences modulate CTL epitope processing. J. Clin. Invest.117(11), 3563–3575 (2007).
  • Lin HH, Ray S, Tongchusak S, Reinherz EL, Brusic V. Evaluation of MHC class I peptide binding prediction servers: applications for vaccine research. BMC Immunol.9, 8 (2008).
  • Lin HH, Zhang GL, Tongchusak S, Reinherz EL, Brusic V. Evaluation of MHC-II peptide binding prediction servers: applications for vaccine research. BMC Bioinformatics9(Suppl. 12), S22 (2008).
  • Yu X, Owens GP, Gilden DH. Rapid and efficient identification of epitopes/mimotopes from random peptide libraries. J. Immunol. Methods316(1–2), 67–74 (2006).
  • Stone JD, Demkowicz WE, Stern LJ. HLA-restricted epitope identification and detection of functional T cell responses by using MHC-peptide and costimulatory microarrays. Proc. Natl Acad. Sci. USA102(10), 3744–3749 (2005).
  • Helling F, Shang A, Calves M et al. GD3 vaccines for melanoma: superior immunogenicity of keyhole limpet hemocyanin conjugate vaccines. Cancer Res.54(1), 197–203 (1994).
  • Harris JR, Markl J. Keyhole limpet hemocyanin (KLH): a biomedical review. Micron30(6), 597–623 (1999).
  • Xu Q-H, Zhao X-N, Cheng J-P, Wei C-H, Zhang Q-H, Rong K-T. Influence of carrier proteins on the immunologic response to haptenic antitetrodotoxin vaccine. Bioconjug. Chem.17(6), 1508–1513 (2006).
  • Herzenberg LA, Tokuhisa T. Carrier-priming leads to hapten-specific suppression. Nature285(5767), 664–667 (1980).
  • Schutze MP, Leclerc C, Jolivet M, Audibert F, Chedid L. Carrier-induced epitopic suppression, a major issue for future synthetic vaccines. J. Immunol.135(4), 2319–2322 (1985).
  • Kumar A, Arora R, Kaur P, Chauhan VS, Sharma P. ‘Universal’ T helper cell determinants enhance immunogenicity of a Plasmodium falciparum merozoite surface antigen peptide. J. Immunol.148(5), 1499–1505 (1992).
  • Zeng W, Ghosh S, Macris M, Pagnon J, Jackson DC. Assembly of synthetic peptide vaccines by chemoselective ligation of epitopes: influence of different chemical linkages and epitope orientations on biological activity. Vaccine19(28–29), 3843–3852 (2001).
  • Finstad CL, Wang CY, Kowalski J et al. Synthetic luteinizing hormone releasing hormone (LHRH) vaccine for effective androgen deprivation and its application to prostate cancer immunotherapy. Vaccine22(9–10), 1300–1313 (2004).
  • Singh M, O’Hagan D. Advances in vaccine adjuvants. Nat. Biotechnol.17(11), 1075–1081 (1999).
  • Reddy ST, Swartz MA, Hubbell JA. Targeting dendritic cells with biomaterials: developing the next generation of vaccines. Trends Immunol.27(12), 573–579 (2006).
  • Gupta RK, Siber GR. Adjuvants for human vaccines – current status, problems and future prospects. Vaccine13(14), 1263–1276 (1995).
  • Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat. Immunol.5(10), 987–995 (2004).
  • Pulendran B. Modulating vaccine responses with dendritic cells and Toll-like receptors. Immunol. Rev.199(1), 227–250 (2004).
  • Wilson NS, El-Sukkari D, Belz GT et al. Most lymphoid organ dendritic cell types are phenotypically and functionally immature. Blood102(6), 2187–2194 (2003).
  • Granucci F, Zanoni I, Ricciardi-Castagnoli P. Central role of dendritic cells in the regulation and deregulation of immune responses. Cell. Mol. Life Sci.65(11), 1683–1697 (2008).
  • Spellberg B, Edwards John E. Type 1/type 2 immunity in infectious diseases. Clin. Infect. Dis.32(1), 76–102 (2001).
  • Gafa V, Lande R, Gagliardi MC et al. Human dendritic cells following Aspergillus fumigatus infection express the CCR7 receptor and a differential pattern of interleukin-12 (IL-12), IL-23, and IL-27 cytokines, which lead to a Th1 response. Infect. Immun.74(3), 1480–1489 (2006).
  • Macatonia SE, Hsieh CS, Murphy KM, Ogarra A. Dendritic cells and macrophages are required for Th1 development of CD4+ T-cells from α-β-TCR transgenic mice – IL-12 substitutions for macrophages to stimulate IFN-γ production is IFN-γ dependent. Int. Immunol.5(9), 1119–1128 (1993).
  • Laouini D, Alenius H, Bryce P, Oettgen H, Tsitsikov E, Geha RS. IL-10 is critical for Th2 responses in a murine model of allergic dermatitis. J. Clin. Invest.112(7), 1058–1066 (2003).
  • Couper KN, Blount DG, Riley EM. IL-10: the master regulator of immunity to infection. J. Immunol.180(9), 5771–5777 (2008).
  • Perrie Y, Mohammed AR, Kirby DJ, McNeil SE, Bramwell VW. Vaccine adjuvant systems: enhancing the efficacy of sub-unit protein antigens. Int. J. Pharm.364(2), 272–280 (2008).
  • Kool M, Soullie T, van Nimwegen M et al. Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J. Exp. Med.205(4), 869–882 (2008).
  • Kool M, Petrilli V, De Smedt T et al. Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J. Immunol.181(6), 3755–3759 (2008).
  • Marrack P, McKee AS, Munks MW. Towards an understanding of the adjuvant action of aluminium. Nat. Rev. Immunol.9(4), 287–293 (2009).
  • Bergfors E, Bjorkelund C, Trollfors B. Nineteen cases of persistent pruritic nodules and contact allergy to aluminium after injection of commonly used aluminium-adsorbed vaccines. Eur. J. Pediatr.164(11), 691–697 (2005).
  • Moylett EH, Hanson IC. Mechanistic actions of the risks and adverse events associated with vaccine administration. J. Allergy Clin. Immunol.114(5), 1010–1020 (2004).
  • Ludewig B, Barchiesi F, Pericin M, Zinkernagel RM, Hengartner H, Schwendener RA. In vivo antigen loading and activation of dendritic cells via a liposomal peptide vaccine mediates protective antiviral and anti-tumour immunity. Vaccine19(1), 23–32 (2000).
  • Aucouturier J, Dupuis L, Deville S, Ascarateil S, Ganne V. Montanide ISA 720 and 51: a new generation of water in oil emulsions as adjuvants for human vaccines. Expert Rev. Vaccines1, 111–118 (2002).
  • Kenter GG, Welters MJP, Valentijn ARPM et al. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N. Engl. J. Med.361(19), 1838–1847 (2009).
  • Palm NW, Medzhitov R. Pattern recognition receptors and control of adaptive immunity. Immunol. Rev.227, 221–233 (2009).
  • Kawai T, Akira S. TLR signaling. Cell Death Differ.13(5), 816–825 (2006).
  • van Duin D, Medzhitov R, Shaw AC. Triggering TLR signaling in vaccination. Trends Immunol.27(1), 49–55 (2006).
  • Skokos D, Nussenzweig MC. CD8- DCs induce IL-12-independent Th1 differentiation through Delta 4 Notch-like ligand in response to bacterial LPS. J. Exp. Med.204(7), 1525–1531 (2007).
  • Redecke V, Hacker H, Datta SK et al. Cutting edge: activation of Toll-like receptor 2 induces a Th2 immune response and promotes experimental asthma. J. Immunol.172(5), 2739–2743 (2004).
  • Yang D, Chen Q, Su SB et al. Eosinophil-derived neurotoxin acts as an alarmin to activate the TLR2 MyD88 signal pathway in dendritic cells and enhances Th2 immune responses. J. Exp. Med.205(1), 79–90 (2008).
  • Malherbe L, Mark L, Fazilleau N, McHeyzer-Williams LJ, McHeyzer-Williams MG. Vaccine adjuvants alter TCR-based selection thresholds. Immunity28(5), 698–709 (2008).
  • Wille-Reece U, Flynn BJ, Lore K et al. Toll-like receptor agonists influence the magnitude and quality of memory T cell responses after prime-boost immunization in nonhuman primates. J. Exp. Med.203(5), 1249–1258 (2006).
  • Dupont J, Altclas J, Lepetic A et al. A controlled clinical trial comparing the safety and immunogenicity of a new adjuvanted hepatitis B vaccine with a standard hepatitis B vaccine. Vaccine24(49–50), 7167–7174 (2006).
  • Ellis RD, Mullen GE, Pierce M et al. A Phase 1 study of the blood-stage malaria vaccine candidate AMA1-C1/Alhydrogel with CPG 7909, using two different formulations and dosing intervals. Vaccine27(31), 4104–4109 (2009).
  • Casella CR, Mitchell TC. Putting endotoxin to work for us: monophosphoryl lipid A as a safe and effective vaccine adjuvant. Cell. Mol. Life Sci.65(20), 3231–3240 (2008).
  • Roach JC, Glusman G, Rowen L et al. The evolution of vertebrate Toll-like receptors. Proc. Natl Acad. Sci. USA102(27), 9577–9582 (2005).
  • Kawai T, Akira S. TLR signaling. Semin. Immunol.19(1), 24–32 (2007).
  • Leonard JN, Ghirlando R, Askins J et al. The TLR3 signaling complex forms by cooperative receptor dimerization. Proc. Natl Acad. Sci. USA105(1), 258–263 (2008).
  • Jin MS, Kim SE, Heo JY et al. Crystal structure of the TLR1–TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell130(6), 1071–1082 (2007).
  • Kim HM, Park BS, Kim J-I et al. Crystal structure of the TLR4–MD-2 complex with bound endotoxin antagonist eritoran. Cell130(5), 906–917 (2007).
  • Barton GM, Kagan JC. A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nat. Rev. Immunol.9(8), 535–542 (2009).
  • Hasan U, Chaffois C, Gaillard C et al. Human TLR10 is a functional receptor, expressed by B cells and plasmacytoid dendritic cells, which activates gene transcription through MyD88. J. Immunol.174(5), 2942–2950 (2005).
  • Schmidtke JR, Johnson AG. Regulation of the immune system by synthetic polynucleotides. I. Characteristics of adjuvant action on antibody synthesis. J. Immunol.106(5), 1191–1200 (1971).
  • Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol.2(8), 675–680 (2001).
  • Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat. Immunol.5(10), 987–995 (2004).
  • Medzhitov R, Janeway CA Jr. Innate immune induction of the adaptive immune response. Cold Spring Harb. Symp. Quant. Biol.64, 429–435 (1999).
  • Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat. Immunol.5(10), 987–995 (2004).
  • Kawai T, Akira S. Innate immune recognition of viral infection. Nat. Immunol.7(2), 131–137 (2006).
  • Kadowaki N, Ho S, Antonenko S et al. Subsets of human dendritic cell precursors express different Toll-like receptors and respond to different microbial antigens. J. Exp. Med.194(6), 863–870 (2001).
  • Akira S, Takeda K. Toll-like receptor signalling. Nat. Rev. Immunol.4(7), 499–511 (2004).
  • O’Neill LAJ, Bowie AG. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat. Rev. Immunol.7(5), 353–364 (2007).
  • O’Neill LAJ. How Toll-like receptors signal: what we know and what we don’t know. Curr. Opin. Immunol.18(1), 3–9 (2006).
  • Shinobu N, Iwamura T, Yoneyama M et al. Involvement of TIRAP/MAL in signaling for the activation of interferon regulatory factor 3 by lipopolysaccharide. FEBS Lett.517(1–3), 251–256 (2002).
  • Kenny EF, Talbot S, Gong M, Golenbock DT, Bryant CE, O’Neill LAJ. MyD88 adaptor-like is not essential for TLR2 signaling and inhibits signaling by TLR3. J. Immunol.183(6), 3642–3651 (2009).
  • Kawagoe T, Sato S, Matsushita K et al. Sequential control of Toll-like receptor-dependent responses by IRAK1 and IRAK2. Nat. Immunol.9(6), 684–691 (2008).
  • Yamamoto M, Sato S, Hemmi H et al. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat. Immunol.4(11), 1144–1150 (2003).
  • Bafica A, Scanga CA, Feng CG, Leifer C, Cheever A, Sher A. TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. J. Exp. Med.202(12), 1715–1724 (2005).
  • Sorensen LN, Reinert LS, Malmgaard L, Bartholdy C, Thomsen AR, Paludan SR. TLR2 and TLR9 synergistically control herpes simplex virus infection in the brain. J. Immunol.181(12), 8604–8612 (2008).
  • Bagchi A, Herrup EA, Warren HS et al. MyD88-dependent and MyD88-independent pathways in synergy, priming, and tolerance between TLR agonists. J. Immunol.178(2), 1164–1171 (2007).
  • Ouyang X, Negishi H, Takeda R, Fujita Y, Taniguchi T, Honda K. Cooperation between MyD88 and TRIF pathways in TLR synergy via IRF5 activation. Biochem. Biophys. Res. Commun.354(4), 1045–1051 (2007).
  • Zhu Q, Egelston C, Vivekanandhan A et al. Toll-like receptor ligands synergize through distinct dendritic cell pathways to induce T cell responses: implications for vaccines. Proc. Natl Acad. Sci. USA105(42), 16260–16265 (2008).
  • Ghosh TK, Mickelson DJ, Solberg JC, Lipson KE, Inglefield JR, Alkan SS. TLR-TLR cross talk in human PBMC resulting in synergistic and antagonistic regulation of type-1 and 2 interferons, IL-12 and TNF-α. Int. Immunopharmacol.7(8), 1111–1121 (2007).
  • Napolitani G, Rinaldi A, Bertoni F, Sallusto F, Lanzavecchia A. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat. Immunol.6(8), 769–776 (2005).
  • Warger T, Osterloh P, Rechtsteiner G et al. Synergistic activation of dendritic cells by combined Toll-like receptor ligation induces superior CTL responses in vivo. Blood108(2), 544–550 (2006).
  • Dan JM, Wang JP, Lee CK, Levitz SM. Cooperative stimulation of dendritic cells by Cryptococcus neoformans mannoproteins and CpG oligodeoxynucleotides. PLoS ONE3(4), e2046 (2008).
  • Dearman RJ, Cumberbatch M, Portsmouth C, Maxwell G, Basketter DA, Kimber I. Synergistic effects of chemical insult and toll-like receptor ligands on dendritic cell activation. Toxicol In Vitro22(8), 1927–1934 (2008).
  • Tada H, Aiba S, Shibata KI, Ohteki T, Takada H. Synergistic effect of Nod1 and Nod2 agonists with toll-like receptor agonists on human dendritic cells to generate interleukin-12 and T helper type 1 cells. Infect. Immun.73(12), 7967–7976 (2005).
  • Underhill DM. Collaboration between the innate immune receptors dectin-1, TLRs, and Nods. Immunol. Rev.219, 75–87 (2007).
  • Liew FY, Xu D, Brint EK, O’Neill LAJ. Negative regulation of Toll-like receptor-mediated immune responses. Nat. Rev. Immunol.5(6), 446–458 (2005).
  • O’Neill LAJ. Targeting signal transduction as a strategy to treat inflammatory diseases. Nat. Rev. Drug Discov.5(7), 549–563 (2006).
  • Tsujimoto H, Ono S, Efron PA, Scumpia PO, Moldawer LL, Mochizuki H. Role of Toll-like receptors in the development of sepsis. Shock29(3), 315–321 (2008).
  • Kohn LD, Wallace B, Schwartz F, McCall K. Is Type 2 diabetes an autoimmune-inflammatory disorder of the innate immune system? Endocrinology146(10), 4189–4191 (2005).
  • Curtiss LK, Tobias PS. Emerging role of Toll-like receptors in atherosclerosis. J. Lipid Res.50(Suppl.), S340–S345 (2009).
  • O’Neill LAJ. When signaling pathways collide: positive and negative regulation of Toll-like receptor signal transduction. Immunity29(1), 12–20 (2008).
  • Ichikawa HT, Williams LP, Segal BM. Activation of APCs through CD40 or Toll-like receptor 9 overcomes tolerance and precipitates autoimmune disease. J. Immunol.169(5), 2781–2787 (2002).
  • Vaknin I, Blinder L, Wang L et al. A common pathway mediated through Toll-like receptors leads to T- and natural killer-cell immunosuppression. Blood111(3), 1437–1447 (2008).
  • Netea MG, Van der Meer JW, Kullberg BJ. Toll-like receptors as an escape mechanism from the host defense. Trends Microbiol.12(11), 484–488 (2004).
  • Gavin AL, Hoebe K, Duong B et al. Adjuvant-enhanced antibody responses in the absence of Toll-like receptor signaling. Science314(5807), 1936–1938 (2006).
  • Mutwiri GK, Nichani AK, Babiuk S, Babiuk LA. Strategies for enhancing the immunostimulatory effects of CpG oligodeoxynucleotides. J. Control Release97(1), 1–17 (2004).
  • Blander JM, Medzhitov R. Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature440(7085), 808–812 (2006).
  • Moyle PM, Toth I. Self-adjuvanting lipopeptide vaccines. Curr. Med. Chem.15(5), 506–516 (2008).
  • Eriksson EMY, Jackson DC. Recent advances with TLR2-targeting lipopeptide-based vaccines. Curr. Protein Pept. Sci.8(4), 412–417 (2007).
  • Zeng W, Ghosh S, Lau YF, Brown LE, Jackson DC. Highly immunogenic and totally synthetic lipopeptides as self-adjuvanting immunocontraceptive vaccines. J. Immunol.169(9), 4905–4912 (2002).
  • Chua BY, Zeng WG, Lau YF, Jackson DC. Comparison of lipopeptide-based immunocontraceptive vaccines containing different lipid groups. Vaccine25(1), 92–101 (2007).
  • Abdel-Aal ABM, Batzloff MR, Fujita Y et al. Structure–activity relationship of a series of synthetic lipopeptide self-adjuvanting group A streptococcal vaccine candidates. J. Med. Chem.51(1), 167–172 (2008).
  • Tirrell M. Modular materials by self-assembly. AIChE J.51(9), 2386–2390 (2005).
  • Zhang X, Chentoufi AA, Dasgupta G et al. A genital tract peptide epitope vaccine targeting TLR-2 efficiently induces local and systemic CD8+ T cells and protects against herpes simplex virus type 2 challenge. Mucosal Immunol.2(2), 129–143 (2009).
  • Chua BY, Eriksson EM, Brown LE et al. A self-adjuvanting lipopeptide-based vaccine candidate for the treatment of hepatitis C virus infection. Vaccine26(37), 4866–4875 (2008).
  • Jackson DC, Lau YF, Le T et al. A totally synthetic vaccine of generic structure that targets Toll-like receptor 2 on dendritic cells and promotes antibody or cytotoxic T cell responses. Proc. Natl Acad. Sci. USA101(43), 15440–15445 (2004).
  • Olive C, Batzloff M, Horvath A et al. Potential of lipid core peptide technology as a novel self-adjuvanting vaccine delivery system for multiple different synthetic peptide immunogens. Infect. Immun.71(5), 2373–2383 (2003).
  • Olive C, Ho MF, Dyer J et al. Immunization with a tetraepitopic lipid core peptide vaccine construct induces broadly protective immune responses against group A streptococcus. J. Infect. Dis.193(12), 1666–1676 (2006).
  • Olive C, Schulze K, Sun HK et al. Enhanced protection against Streptococcus pyogenes infection by intranasal vaccination with a dual antigen component M protein/SfbI lipid core peptide vaccine formulation. Vaccine25(10), 1789–1797 (2007).
  • Olive C, Sun Hsien K, Ho M-F et al. Intranasal administration is an effective mucosal vaccine delivery route for self-adjuvanting lipid core peptides targeting the group A streptococcal M protein. J. Infect. Dis.194(3), 316–324 (2006).
  • Lbachir B, Yasmine B, Estelle L, Karima B, Helene G-M, Pierre D. Systemic immune responses induced by mucosal administration of lipopeptides without adjuvant. Eur. J. Immunol.32(8), 2274–2281 (2002).
  • Durier C, Launay O, Meiffredy V et al. Clinical safety of HIV lipopeptides used as vaccines in healthy volunteers and HIV-infected adults. AIDS20(7), 1039–1049 (2006).
  • Steller MA, Gurski KJ, Murakami M et al. Cell-mediated immunological responses in cervical and vaginal cancer patients immunized with a lipidated epitope of human papillomavirus type 16 E7. Clin. Cancer Res.4(9), 2103–2109 (1998).
  • Wille-Reece U, Wu C-y, Flynn BJ, Kedl RM, Seder RA. Immunization with HIV-1 Gag protein conjugated to a TLR7/8 agonist results in the generation of HIV-1 Gag-specific Th1 and CD8+ T cell responses. J. Immunol.174(12), 7676–7683 (2005).
  • Heit A, Schmitz F, O’Keeffe M et al. Protective CD8 T cell immunity triggered by CpG–protein conjugates competes with the efficacy of live vaccines. J. Immunol.174(7), 4373–4380 (2005).
  • Khan S, Bijker MS, Weterings JJ et al. Distinct uptake mechanisms but similar intracellular processing of two different Toll-like receptor ligand–peptide conjugates in dendritic cells. J. Biol. Chem.282(29), 21145–21159 (2007).
  • Cui ZR, Qiu F. Synthetic double-stranded RNA poly(I : C) as a potent peptide vaccine adjuvant: therapeutic activity against human cervical cancer in a rodent model. Cancer Immunol. Immunother.55(10), 1267–1279 (2006).
  • Karmali PP, Kotamraju VR, Kastantin M et al. Targeting of albumin-embedded paclitaxel nanoparticles to tumors. Nanomedicine5(1), 73–82 (2008).
  • Peters D, Kastantin M, Kotamraju VR et al. Targeting atherosclerosis by using modular, multifunctional micelles. Proc. Natl Acad. Sci. USA106(24), 9815–9819 (2009).
  • Keegan ME, Whittum-Hudson JA, Mark Saltzman W. Biomimetic design in microparticulate vaccines. Biomaterials24(24), 4435–4443 (2003).
  • Scheerlinck JP, Greenwood DL. Virus-sized vaccine delivery systems. Drug Discov. Today13(19–20), 882–887 (2008).
  • Xiang SD, Scholzen A, Minigo G et al. Pathogen recognition and development of particulate vaccines: does size matter? Methods40(1), 1–9 (2006).
  • Pelkmans L. Secrets of caveolae- and lipid raft-mediated endocytosis revealed by mammalian viruses. Biochim. Biophys. Acta1746(3), 295–304 (2005).
  • Mottram PL, Leong D, Crimeen-Irwin B et al. Type 1 and 2 immunity following vaccination is influenced by nanoparticle size: formulation of a model vaccine for respiratory syncytial virus. Mol. Pharm.4(1), 73–84 (2007).
  • Reddy ST, Berk DA, Jain RK, Swartz MA. A sensitive in vivo model for quantifying interstitial convective transport of injected macromolecules and nanoparticles. J. Appl. Physiol.101(4), 1162–1169 (2006).
  • Reddy ST, Rehor A, Schmoekel HG, Hubbell JA, Swartz MA. In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J. Control Release112(1), 26–34 (2006).
  • Oussoren C, Zuidema J, Crommelin DJ, Storm G. Lymphatic uptake and biodistribution of liposomes after subcutaneous injection. II. Influence of liposomal size, lipid compostion and lipid dose. Biochim. Biophys. Acta1328(2), 261–272 (1997).
  • Fehr T, Skrastina D, Pumpens P, Zinkernagel RM. T cell-independent type I antibody response against B cell epitopes expressed repetitively on recombinant virus particles. Proc. Natl Acad. Sci. USA95(16), 9477–9481 (1998).
  • Ohno S, Kohyama S, Taneichi M et al. Synthetic peptides coupled to the surface of liposomes effectively induce SARS coronavirus-specific cytotoxic T lymphocytes and viral clearance in HLA-A*0201 transgenic mice. Vaccine27(29), 3912–3920 (2009).
  • Espuelas S, Roth A, Thumann C, Frisch B, Schuber F. Effect of synthetic lipopeptides formulated in liposomes on the maturation of human dendritic cells. Mol. Immunol.42(6), 721–729 (2005).
  • Steers NJ, Peachman KK, McClain S, Alving CR, Rao M. Liposome-encapsulated HIV-1 Gag p24 containing lipid A induces effector CD4+ T-cells, memory CD8+ T-cells, and pro-inflammatory cytokines. Vaccine27(49), 6939–6949 (2009).
  • Butts C, Murray N, Maksymiuk A et al. Randomized Phase IIB trial of BLP25 liposome vaccine in Stage IIIB and IV non-small-cell lung cancer. J. Clin. Oncol.23(27), 6674–6681 (2005).
  • Sangha R, Butts C. L-BLP25: a peptide vaccine strategy in non-small cell lung cancer. Clin. Cancer Res.13(15), 4652s–4654s (2007).
  • Zaks K, Jordan M, Guth A et al. Efficient immunization and cross-priming by vaccine adjuvants containing TLR3 or TLR9 agonists complexed to cationic liposomes. J. Immunol.176(12), 7335–7345 (2006).
  • Hornung V, Guenthner-Biller M, Bourquin C et al. Sequence-specific potent induction of IFN-α by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat. Med.11(3), 263–270 (2005).
  • Kuramoto Y, Kawakami S, Zhou S, Fukuda K, Yamashita F, Hashida M. Efficient peritoneal dissemination treatment obtained by an immunostimulatory phosphorothioate-type CpG DNA/cationic liposome complex in mice. J. Control Release126(3), 274–280 (2008).
  • Johnston D, Zaidi B, Bystryn JC. TLR7 imidazoquinoline ligand 3M-019 is a potent adjuvant for pure protein prototype vaccines. Cancer Immunol. Immunother.56(8), 1133–1141 (2007).
  • Laing P, Bacon A, McCormack B, Gregoriadis G, Frisch Bt, Schuber F. The ‘co-delivery’ approach to liposomal vaccines: application to the development of influenza-A and hepatitis-B vaccine candidates. J. Liposome Res.16(3), 229–235 (2006).
  • De Oliveira MC, Boutet V, Fattal E et al. Improvement of in vivo stability of phosphodiester oligonucleotide using anionic liposomes in mice. Life Sci.67(13), 1625–1637 (2000).
  • Yu RZ, Geary RS, Leeds JM et al. Pharmacokinetics and tissue disposition in monkeys of an antisense oligonucleotide inhibitor of Ha-ras encapsulated in stealth liposomes. Pharm. Res.16(8), 1309–1315 (1999).
  • Foged C, Arigita C, Sundblad A, Jiskoot W, Storm G, Frokjaer S. Interaction of dendritic cells with antigen-containing liposomes: effect of bilayer composition. Vaccine22(15–16), 1903–1913 (2004).
  • van Broekhoven CL, Parish CR, Demangel C, Britton WJ, Altin JG. Targeting dendritic cells with antigen-containing liposomes: a highly effective procedure for induction of antitumor immunity and for tumor immunotherapy. Cancer Res.64(12), 4357–4365 (2004).
  • Yasuda K, Ogawa Y, Yamane I, Nishikawa M, Takakura Y. Macrophage activation by a DNA/cationic liposome complex requires endosomal acidification and TLR9-dependent and -independent pathways. J. Leukoc. Biol.77(1), 71–79 (2005).
  • Belizaire R, Unanue ER. Targeting proteins to distinct subcellular compartments reveals unique requirements for MHC class I and II presentation. Proc. Natl Acad. Sci. USA106(41), 17463–17468 (2009).
  • Nakano Y, Mori M, Nishinohara S et al. Surface-linked liposomal antigen induces IgE-selective unresponsiveness regardless of the lipid components of liposomes. Bioconjug. Chem.12(3), 391–395 (2001).
  • Perrie Y, Frederik PM, Gregoriadis G. Liposome-mediated DNA vaccination: the effect of vesicle composition. Vaccine19(23–24), 3301–3310 (2001).
  • Taneichi M, Ishida H, Kajino K et al. Antigen chemically coupled to the surface of liposomes are cross-presented to CD8+ T cells and induce potent antitumor immunity. J. Immunol.177(4), 2324–2330 (2006).
  • Sprott GD, Dicaire CJ, Gurnani K, Deschatelets LA, Krishnan L. Liposome adjuvants prepared from the total polar lipids of Haloferax volcanii, Planococcus spp. and Bacillus firmus differ in ability to elicit and sustain immune responses. Vaccine22(17–18), 2154–2162 (2004).
  • Rosenkrands I, Agger EM, Olsen AW et al. Cationic liposomes containing mycobacterial lipids: a new powerful Th1 adjuvant system. Infect. Immun.73(9), 5817–5826 (2005).
  • Lonez C, Vandenbranden M, Ruysschaert J-M. Cationic liposomal lipids: from gene carriers to cell signaling. Prog. Lipid Res.47(5), 340–347 (2008).
  • Vangasseri DP, Cui ZR, Chen WH, Hokey DA, Falo LD, Huang L. Immunostimulation of dendritic cells by cationic liposomes. Mol. Membr. Biol.23(5), 385–395 (2006).
  • Richards RL, Rao M, Wassef NM, Glenn GM, Rothwell SW, Alving CR. Liposomes containing lipid a serve as an adjuvant for induction of antibody and cytotoxic T-cell responses against RTS,S malaria antigen. Infect. Immun.66(6), 2859–2865 (1998).
  • Sun H-X, Xie Y, Ye Y-P. ISCOMs and ISCOMATRIX™. Vaccine27(33), 4388–4401 (2009).
  • Skene CD, Sutton P. Saponin-adjuvanted particulate vaccines for clinical use. Methods40(1), 53–59 (2006).
  • Morein B, Hu KF, Abusugra I. Current status and potential application of ISCOMs in veterinary medicine. Adv. Drug Deliv. Rev.56(10), 1367–1382 (2004).
  • de Gassart A, Geminard C, Fevrier B, Raposo G, Vidal M. Lipid raft-associated protein sorting in exosomes. Blood102(13), 4336–4344 (2003).
  • Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C. Exosomal-like vesicles are present in human blood plasma. Int. Immunol.17(7), 879–887 (2005).
  • Thery C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat. Rev. Immunol.2(8), 569–579 (2002).
  • Montecalvo A, Shufesky WJ, Stolz DB et al. Exosomes as a short-range mechanism to spread alloantigen between dendritic cells during T cell allorecognition. J. Immunol.180(5), 3081–3090 (2008).
  • Aline F, Bout D, Amigorena S, Roingeard P, Dimier-Poisson I. Toxoplasma gondii antigen-pulsed-dendritic cell-derived exosomes induce a protective immune response against T. gondii infection. Infect. Immun.72(7), 4127–4137 (2004).
  • Andre F, Chaput N, Schartz NE et al. Exosomes as potent cell-free peptide-based vaccine. I. Dendritic cell-derived exosomes transfer functional MHC class I/peptide complexes to dendritic cells. J. Immunol.172(4), 2126–2136 (2004).
  • Chaput N, Schartz NE, Andre F et al. Exosomes as potent cell-free peptide-based vaccine. II. Exosomes in CpG adjuvants efficiently prime naive Tc1 lymphocytes leading to tumor rejection. J. Immunol.172(4), 2137–2146 (2004).
  • Mignot G, Roux S, Thery C, Segura E, Zitvogel L. Prospects for exosomes in immunotherapy of cancer. J. Cell Mol. Med.10(2), 376–388 (2006).
  • Grgacic EV, Anderson DA. Virus-like particles: passport to immune recognition. Methods40(1), 60–65 (2006).
  • Herzog C, Hartmann K, Kunzi V et al. Eleven years of Inflexal V-a virosomal adjuvanted influenza vaccine. Vaccine27(33), 4381–4387 (2009).
  • Storni T, Ruedl C, Schwarz K, Schwendener RA, Renner WA, Bachmann MF. Nonmethylated CG motifs packaged into virus-like particles induce protective cytotoxic T cell responses in the absence of systemic side effects. J. Immunol.172(3), 1777–1785 (2004).
  • Wang BZ, Quan FS, Kang SM, Bozja J, Skountzou I, Compans RW. Incorporation of membrane-anchored flagellin into influenza virus-like particles enhances the breadth of immune responses. J. Virol.82(23), 11813–11823 (2008).
  • de Vries JJ, Bungener L, Ter Veer W et al. Incorporation of LpxL1, a detoxified lipopolysaccharide adjuvant, in influenza H5N1 virosomes increases vaccine immunogenicity. Vaccine27(6), 947–955 (2009).
  • Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM. Nano/micro technologies for delivering macromolecular therapeutics using poly(D,L-lactide-co-glycolide) and its derivatives. J. Control Release125(3), 193–209 (2008).
  • Luzardo-Alvarez A, Blarer N, Peter K et al. Biodegradable microspheres alone do not stimulate murine macrophages in vitro, but prolong antigen presentation by macrophages in vitro and stimulate a solid immune response in mice. J. Control Release109(1–3), 62–76 (2005).
  • Thiele L, Rothen-Rutishauser B, Jilek S, Wunderli-Allenspach H, Merkle HP, Walter E. Evaluation of particle uptake in human blood monocyte-derived cells in vitro. Does phagocytosis activity of dendritic cells measure up with macrophages? J. Control Release76(1–2), 59–71 (2001).
  • Kimberley DN, Praveen E, Glen SK, John S. Uptake of poly(d,l lactic-co-glycolic acid) microspheres by antigen-presenting cells in vivo. J. Biomed. Mater. Res.60(3), 480–486 (2002).
  • Chong CS, Cao M, Wong WW et al. Enhancement of T helper type 1 immune responses against hepatitis B virus core antigen by PLGA nanoparticle vaccine delivery. J. Control Release102(1), 85–99 (2005).
  • Wischke C, Zimmermann J, Wessinger B et al. Poly(I:C) coated PLGA microparticles induce dendritic cell maturation. Int. J. Pharm.365(1–2), 61–68 (2009).
  • Kazzaz J, Singh M, Ugozzoli M, Chesko J, Soenawan E, O’Hagan DT. Encapsulation of the immune potentiators MPL and RC529 in PLG microparticles enhances their potency. J. Control Release110(3), 566–573 (2006).
  • Chong S-F, Sexton A, De Rose R, Kent SJ, Zelikin AN, Caruso F. A paradigm for peptide vaccine delivery using viral epitopes encapsulated in degradable polymer hydrogel capsules. Biomaterials30(28), 5178–5186 (2009).
  • Greenwood DLV, Dynon K, Kalkanidis M, Xiang S, Plebanski M, Scheerlinck J-PY. Vaccination against foot-and-mouth disease virus using peptides conjugated to nano-beads. Vaccine26(22), 2706–2713 (2008).
  • Fifis T, Gamvrellis A, Crimeen-Irwin B et al. Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J. Immunol.173(5), 3148–3154 (2004).
  • Casella CR, Mitchell TC. Putting endotoxin to work for us: monophosphoryl lipid A as a safe and effective vaccine adjuvant. Cell Mol. Life Sci.65(20), 3231–3240 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.