5,435
Views
214
CrossRef citations to date
0
Altmetric
Review

Vero cell platform in vaccine production: moving towards cell culture-based viral vaccines

, , &
Pages 607-618 | Published online: 09 Jan 2014

References

  • Enders J, Weller T, Robbins F. Cultivation of the Lansing strain of poliomyelitis virus in cultures of various human embryonic tissues. Science109, 85–87 (1949).
  • Plotkin SL, Plotkin SA. A short history of vaccination. In: Vaccines (5th Edition). Plotkin SA, Orenstein WA, Offit PA (Eds). Saunders Elsevier, PA, USA 1–16 (2008).
  • Plotkin SA, Vidor E. Poliovirus vaccine – inactivated. In: Vaccines (5th Edition). Plotkin SA, Orenstein WA, Offit PA (Eds). Saunders Elsevier, PA, USA 605–629 (2008).
  • Dang-Tan T, Mahmud SM, Puntoni R, Franco EL. Polio vaccines, Simian v September irus 40, and human cancer: the epidemiologic evidence for a causal association. Oncogene23, 6535–6540 (2004).
  • Hayflick L, Moorehead PS. The serial cultivation of human diploid cell substrates. Exp. Cell. Res.25, 585–621 (1961).
  • Plotkin SA. Rabies vaccine prepared in human cell cultures: progress and perspectives. Rev. Infect. Dis.2, 433–448 (1980).
  • US Department of Health, Education and Welfare, Public Health Service. Regulation for the Manufacture of Biological Products, title 42, part 73. DHEW pub. No. (NIH) 71–161, formerly PHS publ. No. 437, revised 1971–1976.
  • Cells, Products, Safety. Backgrounds papers from the WHO Study Group on Biologicals. Dev. Biol. Standard.68, 1–90 (1987).
  • Yasumura Y, Kawakita Y. Study of SV40 in tissue culture. Nippon Rinsho.21, 1201–1205 (1963).
  • Horaud F. Absence of viral sequences in the WHO-Vero cell bank a collaborative study. Dev. Biol. Standard.76, 43–46 (1992).
  • Levenbook IS, Petricciano JC, Elisberg BL. Tumorigenicity of Vero cells. J. Biol. Stand.12, 391–398 (1984).
  • Furesz J, Fanok A, Contreras G, Becker B. Tumorigenicity testing of various cell line substrates for production of biologicals. Dev. Biol. Stand.70, 233–243 (1989).
  • Vincent-Falquet JC, Peyron L, Souvras M, Moulin JC, Tektoff J, Patet J. Qualification of working cell banks for the Vero cell line to produce licensed human vaccines. Dev. Biol. Stand.70, 153–156 (1989).
  • Montagnon BJ, Vincent-Falquet JC, Saluzzo JF. Experience with Vero cells at Pasteur Mérieux Connaught. Dev. Biol. Stand.98, 137–140 (1999).
  • WHO. Biological Substances No. 37. Requirements for continuous cell lines used for biologicals production. WHO technical report series, No. 745, 1987, Annex 3.
  • European Pharmacopoeia. Cell substrates for the production of vaccines for human use 2005: 50203 (2005).
  • US Department of Health and Human Services FDA. Guidance for industry: characterization and qualification of cell substrates and other biological starting materials used in the production of viral vaccines for the prevention and treatment of infectious disease (2006).
  • ICH Guidance Q5D: Derivation and characterization of cell substrates used for production of biotechnological/biological products. 63 FR 50244; 21 September, 1998.
  • Palache AM, Brands R, van Scharrenburg GJM. Immunogenicity and reactogenicity of influenza subunit vaccines produced in MDCK cells or fertilized chicken eggs. J. Infect. Dis.176, 20–23 (1997).
  • Pau MG, Ophorst C, Koldijk MH, Schouten G, Mehtali M, Uytdehaag F. The human cell line PER-C6 provides a new manufacturing system for the production of influenza vaccines. Vaccine19, 2716–2721 (2001).
  • Montagnon BJ, Fanget B, Nicolas AJ. The large-scale cultivation of Vero cells in microcarrier culture for virus vaccine production: preliminary results for killed poliovirus vaccine. Dev. Biol. Stand.47, 55–64 (1981).
  • Sutter RW, Kew OM, Cochi SL. Poliovirus vaccine – live. In: Vaccines (5th Edition). Plotkin SA, Orenstein WA, Offit PA (Eds). Saunders Elsevier, PA, USA 631–685 (2008).
  • Vidor E, Meschievitz C, Plotkin S. Fifteen years of experience with Vero-produced enhanced potency inactivated poliovirus vaccine. Pediatr. Infect. Dis. J.16, 312–322 (1997).
  • Rhim JS, Schell K, Creasy B, Case W. Biological characteristics and viral susceptibility of an African green monkey kidney cell line (Vero). Proc. Soc. Exp. Biol. Med.132, 670–678 (1969).
  • Desmyter J, Melnick JL, Rawls WE. Defectiveness of interferon production and of Rubella virus interference in a line of African green monkey kidney cells (Vero). J. Virol.2, 955–961 (1968).
  • Van Wezel AL, Van Steenis G, Hannik CA, Cohen H. New approach to the production of concentrated and purified inactivated polio and rabies tissue culture vaccines. Dev. Biol. Stand.41, 159–168 (1978).
  • Kistner O, Barrett PN, Mundt W, Reiter M, Schober-Bendixen S, Dorner F. Development of a mammalian cell (Vero) derived candidate influenza virus vaccine. Vaccine16, 960–968 (1998).
  • Spruth M, Kistner O, Savidis-Dacho H et al. A double-inactivated whole virus candidate SARS coronavirus vaccine stimulates neutralizing and protective antibody responses. Vaccine24, 652–661 (2006).
  • Kistner O, Howard K, Spruth M et al. Cell culture (Vero) derived whole-virus (H5N1) vaccine based on wild-type virus strain induces cross-protective immune responses. Vaccine25, 6028–6036 (2007).
  • Ehrlich HJ, Müller M, Oh HML et al. A cell culture (Vero) derived whole virus H5N1 vaccine is safe and induces antibody responses: results of a Phase I/II randomized controlled clinical trial. N. Engl. J. Med.358, 2573–2584 (2008).
  • Dennehy PH. Rotavirus vaccines: an overview. Clin. Microbiol. Rev.21, 198–208 (2008).
  • Clark HF, Offit PA, Plotkin SA, Heaton PM. The new pentavalent rotavirus vaccine composed of bovine (strain WC3) – human rotavirus reassortants. Pediatr. Infect. Dis. J.25, 577–583 (2006).
  • Vesikari T, Giaquinto C, Huppertz HI. Clinical trials of rotavirus vaccines in Europe. Pediatr. Infect. Dis. J.25, 42–47 (2006).
  • Bernstein DI. Live attenuated human rotavirus vaccine, Rotarix. Semin. Pediatr. Infect. Dis.17, 188–194 (2006).
  • O’Ryan M. Rotarix (RIX4414): an oral human rotavirus vaccine. Expert Rev. Vaccines6, 11–19 (2007).
  • Ruiz-Palacios GM, Perez-Schael I, Velazquez FR et al. Safety and efficacy of an attenuated vaccine against severe rotavirus gastroenteritis. N. Engl. J. Med.354, 11–22 (2006).
  • Kitano T, Oya A. Japanese encephalitis vaccine. In: Vaccine Handbook. Researcher’s Associates TNIoH (Ed.). Maruzen, Tokyo 103–113 (1996).
  • Sugawara K, Nishiyama K, Ishikawa Y et al. Development of Vero cell-derived inactivated Japanese encephalitis vaccine. Biologicals30, 303–314 (2002).
  • Mackenzie JS, Gubler DJ, Petersen LR. Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat. Med.10, 98–109 (2004).
  • Jelinek T. Japanese encephalitis vaccine in travelers. Expert Rev. Vaccines7, 689–693 (2008).
  • Tauber E, Kollaritsch H, Korinek M et al. Safety and immunogenicity of a Vero-cell-derived, inactivated Japanese encephalitis vaccine: a non-inferiority, Phase III, randomised controlled trial. Lancet370, 1847–1853 (2007).
  • Tauber E, Kollaritsch H, von Sonnenburg F et al. Randomized, double-blind, placebo-controlled Phase 3 trial of the safety and tolerability of IC51, an inactivated Japanese encephalitis vaccine. J. Infect. Dis.198, 493–499 (2008).
  • Srivastava AK, Putnak JR, Lee SH et al. A purified inactivated Japanese encephalitis virus vaccine made in Vero cells. Vaccine19, 4557–4565 (2001).
  • Lyons A, Kanesa-thasan N, Kuschner RA et al. A Phase 2 study of a purified, inactivated virus vaccine to prevent Japanese encephalitis. Vaccine25, 3445–3453 (2007).
  • Torinawa H, Tomoyoshi K. Long-term stability of Vero cell-derived inactivated Japanese encephalitis vaccine prepared using serum-free medium Vaccine26, 3680–3689 (2008).
  • Kuzuhara S, Nakamura H, Hayashida K et al. Non-clinical and Phase I clinical trials of a Vero cell-derived inactivated Japanese encephalitis vaccine. Vaccine21, 4519–4526 (2003).
  • Guirakhoo F, Zhang ZX, Chambers TJ et al. Immunogenicity, genetic stability, and protective efficacy of a recombinant, chimeric yellow fever–Japanese encephalitis virus (ChimeriVax–JE) as a live, attenuated vaccine candidate against Japanese encephalitis. Virology257, 363–372 (1999).
  • Monath TP, Guirakhoo F, Nichols R et al. Chimeric live, attenuated vaccine against Japanese encephalitis (ChimeriVax–JE): Phase 2 clinical trials for safety and immunogenicity, effect of vaccine dose and schedule, and memory response to challenge with inactivated Japanese encephalitis antigen. J. Infect. Dis.188, 1213–1230 (2003).
  • Gubler DJ. Dengue and dengue hemorrhagic fever. Clin. Microbiol. Rev.11, 480–496 (1998).
  • Edelman R. Dengue vaccines approach the finish line. Clin. Infect. Dis.45, 56–60 (2007).
  • Durbin AP, Karron RA, Sun W et al. Attenuation and immunogenicity in humans of a live dengue virus type-4 vaccine candidate with a 30 nucleotide deletion in its 3´-untranslated region. Am. J. Trop. Med. Hyg.65, 405–413 (2001).
  • Blaney JE Jr, Sathe NS, Hanson CT, Firestone CY, Murphy BR, Whitehead SS. Vaccine candidates for dengue virus type 1 (DEN1) generated by replacement of the structural genes of rDEN4 and rDEN4Delta30 with those of DEN1. Virol. J.4, 23 (2007).
  • Blaney JE Jr, Sathe NS, Goddard L et al. Dengue virus type 3 vaccine candidates generated by introduction of deletions in the 3´ untranslated region (3´-UTR) or by exchange of the DENV-3 3´-UTR with that of DENV-4. Vaccine26, 817–828 (2008).
  • Durbin AP, McArthur J, Marron JA et al. The live attenuated dengue serotype 1 vaccine rDEN1D30 is safe and highly immunogenic in healthy adult volunteers. Hum. Vaccin.2, 167–173 (2006).
  • Durbin AP, McArthur JH, Marron JA et al. rDEN2/4D30(ME), a live attenuated chimeric dengue serotype 2 vaccine is safe and highly immunogenic in healthy dengue-naive adults. Hum. Vaccin.2, 255–260 (2006).
  • Durbin AP, Whitehead SS, McArthur J et al. rDEN4D30, a live attenuated dengue virus type 4 vaccine candidate, is safe, immunogenic, and highly infectious in healthy adult volunteers. J. Infect. Dis.191, 710–718 (2005).
  • McArthur JH, Durbin AP, Marron JA et al. Phase I clinical evaluation of rDEN4D30–200,201: a live attenuated dengue 4 vaccine candidate designed for decreased hepatotoxicity. Am. J. Trop. Med. Hyg.79, 678–684 (2008).
  • Lai CJ, Monath TP. Chimeric flaviviruses: novel vaccines against dengue fever, tick-borne encephalitis and Japanese encephalitis Adv. Virus Res.61, 469–509 (2003).
  • Guirakhoo F, Pugachev K, Zhang Z et al. Safety and efficacy of chimeric yellow fever-dengue virus tetravalent vaccine formulations in nonhuman primates. J. Virol.78, 4761–4775 (2004).
  • Campbell GL, Marfin AA, Lanciotti RS, Gubler DJ. West Nile virus. Lancet Infect. Dis.2, 519–29 (2002).
  • Elizondo-Quiroga D, Davis CT, Fernandez-Salas I et al. West Nile virus isolation in human and mosquitoes, Mexico. Emerg. Infect. Dis.11, 1449–1452 (2005).
  • Morales MA, Barrandeguy M, Fabbri C et al. West Nile virus isolation from equines in Argentina, 2006. Emerg. Infect. Dis.12, 1559–1561 (2006).
  • Pepperell C, Rau N, Krajden S et al. West Nile virus infection in 2002: morbidity and mortality among patients admitted to hospital in southcentral Ontario. CMAJ168, 1399–1405 (2003).
  • Monath TP, Liu J, Kanesa-thasan N et al. A live, attenuated recombinant West Nile virus vaccine. Proc. Natl Acad. Sci. USA103, 6694–6699 (2006).
  • Arroyo J, Miller C, Catalan J et al. ChimeriVax-West Nile virus live-attenuated vaccine: preclinical evaluation of safety, immunogenicity, and efficacy. J. Virol.78, 12497–12507 (2004).
  • Lim CK, Takasaki T, Kotaki A, Kurane I. Vero cell-derived inactivated West Nile (WN) vaccine induces protective immunity against lethal WN virus infection in mice and shows a facilitated neutralizing antibody response in mice previously immunized with Japanese encephalitis vaccine. Virology374, 60–70 (2008).
  • Pittman PR, Plotkin SA. Biodefense and special pathogen vaccines. In: Vaccines (5th Edition). Plotkin SA, Orenstein WA, Offit PA (Eds). Saunders Elsevier, PA, USA 1123–1133 (2008).
  • Murphy FA. Emerging zoonoses: the challenge for public health and biodefense. Prev. Vet. Med.86, 216–223 (2008).
  • Peiris JS, Lai ST, Poon LL et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet361, 1319–1325 (2003).
  • Communicable Diseases Surveillance. Commun. Dis. Intell.20, 356–364 (1996).
  • Aaskov JG, Mataika JU, Lawrence GW et al. An epidemic of Ross River virus infection in Fiji, 1979. Am. J. Trop. Med. Hyg.30, 1053–1059 (1981).
  • Kistner O, Barrett N, Brühmann A et al. The preclinical testing of a formaldehyde inactivated Ross River virus vaccine designed for use in humans. Vaccine25, 4845–4852 (2007).
  • Ravi V. Re-emergence of chikungunya virus in India. Indian J. Med. Microbiol.24, 83–84 (2006).
  • Hochedez P, Jaureguiberry S, Debruyne M et al. Chikungunya infection in travelers. Emerg. Infect. Dis.12, 1565–1567 (2006).
  • Dalla Pozza G, Majori G. First record of Aedes albopictus establishment in Italy. J. Am. Mosq. Control. Assoc.8, 318–320 (1992).
  • Schuffenecker I, Iteman I, Michault A et al. Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS Med.3, 1058–1070 (2006).
  • Wang E, Volkova E, Adams AP et al. Chimeric alphavirus vaccine candidates for chikungunya. Vaccine26, 5030–5039 (2008).
  • Qu D, Zheng B, Yao X et al. Intranasal immunization with inactivated SARS–CoV (SARS-associated coronavirus) induced local and serum antibodies in mice. Vaccine23, 924–931 (2005).
  • Qin E, Shi H, Tang L et al. Immunogenicity and protective efficacy in monkeys of purified inactivated Vero-cell SARS vaccine. Vaccine24, 1028–1034 (2006).
  • Monath TP, Caldwell JR, Mundt W et al. ACAM2000 clonal Vero cell culture vaccinia virus (New York City Board of Health strain) – a second-generation smallpox vaccine for biological defense. Int. J. Infect. Dis.8(Suppl. 2), 31–44 (2004).
  • Schild GC, Oxford JS, de Jong JC, Webster RG. Evidence for host-cell selection of influenza virus antigenic variants. Nature303, 706–709 (1983).
  • Robertson JS, Bootman JS, Newman R et al. Structural changes in the haemagglutinin which accompany egg adaptation of an influenza A(H1N1) virus. Virology160, 31–37 (1987).
  • Hardy CT, Young SA, Webster RG, Naeve CW, Owens RJ. Egg fluids and cells of the chorioallantoic membrane of embryonated chicken eggs can select different variants of influenza A (H3N2) viruses. Virology211, 302–306 (1995).
  • Robertson JS, Nicolson C, Major D, Robertson EW, Wood JM. The role of amniotic passage in the egg-adaptation of human influenza virus is revealed by haemagglutinin sequence analyses. J. Gen. Virol.74, 2047–2051 (1993).
  • Katz JM, Webster RG. Efficacy of inactivated influenza A virus (H3N2) vaccines grown in mammalian cells or embryonated eggs. J. Infect. Dis.160, 191–198 (1989).
  • Nakamura K, Homma M. Protein synthesis in Vero cells abortively infected with influenza B virus. J. Gen. Virol.56, 199–202 (1981).
  • Lau SC, Scholtissek C. Abortive infection of Vero cells by an influenza A virus (FPV). Virology212, 225–231 (1995).
  • Subbarao K, Chen H, Swayne D et al. Evaluation of a genetically modified reassortant H5N1 influenza A virus vaccine candidate generated by plasmid-based reverse genetics. Virology305, 192–200 (2003).
  • Nicolson C, Major D, Wood JM, Robertson JS. Generation of influenza vaccine viruses on Vero cells by reverse genetics: an H5N1 candidate vaccine strain produced under a quality system. Vaccine23, 2943–2952 (2005).
  • WHO. Annex 5. WHO biosafety risk assessment and guidelines for the production and quality control of human influenza pandemic vaccines. WHO, Geneva, Switzerland (2005).
  • Howard MK, Kistner O, Barrett PN. Pre-clinical development of cell culture (Vero)-derived H5N1 pandemic vaccines. Biol. Chem.389, 569–577 (2008).
  • Montagnon BJ. Polio and rabies vaccines produced in continuous cell lines: a reality for Vero cell line. Develop. Biol. Standard70, 27–47 (1989).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.