273
Views
29
CrossRef citations to date
0
Altmetric
Review

Update on Campylobacter jejuni vaccine development for preventing human campylobacteriosis

, &
Pages 625-645 | Published online: 09 Jan 2014

References

  • Walker RI. Considerations for development of whole cell bacterial vaccines to prevent diarrheal diseases in children in developing countries. Vaccine23(26), 3369–3385 (2005).
  • Coker AO, Isokpehi RD, Thomas BN, Amisu KO, Obi CL. Human campylobacteriosis in developing countries. Emerg. Infect. Dis.8(3), 237–244 (2002).
  • Ekdahl K, Andersson Y. Regional risks and seasonality in travel-associated campylobacteriosis. BMC Infect. Dis.4(1), 54 (2004).
  • Janssen R, Krogfelt KA, Cawthraw SA, van Pelt W, Wagenaar JA, Owen RJ. Host–pathogen interactions in Campylobacter infections: the host perspective. Clin. Microbiol. Rev.21(3), 505–518 (2008).
  • Humphrey T, O’Brien S, Madsen M. Campylobacters as zoonotic pathogens: a food production perspective. Int. J. Food Microbiol.117(3), 237–257 (2007).
  • Samuel MC, Vugia DJ, Shallow S et al. Epidemiology of sporadic Campylobacter infection in the United States and declining trend in incidence, FoodNet 1996–1999. Clin. Infect. Dis.38(Suppl. 3), S165–S174 (2004).
  • Prevention CfDCa. Preliminary FoodNet data on the incidence of infection with pathogens transmitted commonly through food – 10 States, 2006. MMWR Morb. Mortal. Wkly Rep.56, 336–339 (2007).
  • Tribble DR, Baqar S, Thompson A. Development of a human vaccine. In: Campylobacter (3rd Edition). Nachamkin I, Szymanski CM, Blaser MJ (Eds.). ASM Press, Washington, DC, USA 429–444 (2008).
  • Moore JE, Barton MD, Blair IS et al. The epidemiology of antibiotic resistance in Campylobacter. Microbes Infect.8(7), 1955–1966 (2006).
  • de Zoete MR, van Putten JP, Wagenaar JA. Vaccination of chickens against Campylobacter. Vaccine25(30), 5548–5557 (2007).
  • Moore JE, Corcoran D, Dooley JS et al.Campylobacter. Vet. Res.36(3), 351–382 (2005).
  • Young KT, Davis LM, DiRita VJ. Campylobacter jejuni: molecular biology and pathogenesis. Nat. Rev. Microbiol.5(9), 665–679 (2007).
  • Zilbauer M, Dorrell N, Wren BW, Bajaj-Elliott M. Campylobacter jejuni-mediated disease pathogenesis: an update. Trans R. Soc. Trop. Med. Hyg.102(2), 123–129 (2008).
  • Woodward DL, Rodgers FG. Identification of Campylobacter heat-stable and heat-labile antigens by combining the Penner and Lior serotyping schemes. J. Clin. Microbiol.40(3), 741–745 (2002).
  • Karlyshev AV, Linton D, Gregson NA, Lastovica AJ, Wren BW. Genetic and biochemical evidence of a Campylobacter jejuni capsular polysaccharide that accounts for Penner serotype specificity. Mol. Microbiol.35(3), 529–541 (2000).
  • Karlyshev AV, Champion OL, Churcher C et al. Analysis of Campylobacter jejuni capsular loci reveals multiple mechanisms for the generation of structural diversity and the ability to form complex heptoses. Mol. Microbiol.55(1), 90–103 (2005).
  • Dorrell N, Mangan JA, Laing KG et al. Whole genome comparison of Campylobacter jejuni human isolates using a low-cost microarray reveals extensive genetic diversity. Genome Res.11(10), 1706–1715 (2001).
  • McNally DJ, Jarrell HC, Khieu NH et al. The HS:19 serostrain of Campylobacter jejuni has a hyaluronic acid-type capsular polysaccharide with a nonstoichiometric sorbose branch and O-methyl phosphoramidate group. FEBS J.273(17), 3975–3989 (2006).
  • Chen YH, Poly F, Pakulski Z, Guerry P, Monteiro MA. The chemical structure and genetic locus of Campylobacter jejuni CG8486 (serotype HS:4) capsular polysaccharide: the identification of 6-deoxy-D-ido-heptopyranose. Carbohydr. Res.343(6), 1034–1040 (2008).
  • Gilbert M, Mandrell RE, Parker CT, Li J, Vinogradov E. Structural analysis of the capsular polysaccharide from Campylobacter jejuni RM1221. Chembiochem8(6), 625–631 (2007).
  • St Michael F, Szymanski CM, Li J et al. The structures of the lipooligosaccharide and capsule polysaccharide of Campylobacter jejuni genome sequenced strain NCTC 11168. Eur. J. Biochem.269(21), 5119–5136 (2002).
  • Nachamkin I, Liu J, Li M et al.Campylobacter jejuni from patients with Guillain-Barre syndrome preferentially expresses a GD(1a)-like epitope. Infect. Immun.70(9), 5299–5303 (2002).
  • Pope JE, Krizova A, Garg AX, Thiessen-Philbrook H, Ouimet JM. Campylobacter reactive arthritis: a systematic review. Semin. Arthritis Rheum.37(1), 48–55 (2007).
  • Le Bourhis L, Benko S, Girardin SE. Nod1 and Nod2 in innate immunity and human inflammatory disorders. Biochem. Soc. Trans.35(Pt 6), 1479–1484 (2007).
  • Rosenstiel P, Till A, Schreiber S. NOD-like receptors and human diseases. Microbes Infect.9(5), 648–657 (2007).
  • Axelsson-Olsson D, Ellstrom P, Waldenstrom J, Haemig PD, Brudin L, Olsen B. Acanthamoeba Acanthamoeba–Campylobacter coculture as a novel method for enrichment of Campylobacter species. Appl. Environ. Microbiol.73(21), 6864–6869 (2007).
  • Axelsson-Olsson D, Waldenstrom J, Broman T, Olsen B, Holmberg M. Protozoan Acanthamoeba polyphaga as a potential reservoir for Campylobacter jejuni. Appl. Environ. Microbiol.71(2), 987–992 (2005).
  • Greub G, Raoult D. Microorganisms resistant to free-living amoebae. Clin. Microbiol. Rev.17(2), 413–433 (2004).
  • Dusserre E, Ginevra C, Hallier-Soulier S et al. A PCR-based method for monitoring Legionella pneumophila in water samples detects viable but noncultivable legionellae that can recover their cultivability. Appl. Environ. Microbiol.74(15), 4817–4824 (2008).
  • Van Deun K, Pasmans F, Ducatelle R et al. Colonization strategy of Campylobacter jejuni results in persistent infection of the chicken gut. Vet. Microbiol.130(3–4), 285–297 (2008).
  • Conlan AJ, Coward C, Grant AJ, Maskell DJ, Gog JR. Campylobacter jejuni colonization and transmission in broiler chickens: a modelling perspective. J. R. Soc. Interface4(16), 819–829 (2007).
  • Sahin O, Luo N, Huang S, Zhang Q. Effect of Campylobacter-specific maternal antibodies on Campylobacter jejuni colonization in young chickens. Appl. Environ. Microbiol.69(9), 5372–5379 (2003).
  • Shoaf-Sweeney KD, Larson CL, Tang X, Konkel ME. Identification of Campylobacter jejuni proteins recognized by maternal antibodies of chickens. Appl. Environ. Microbiol.74(22), 6867–6875 (2008).
  • Konkel ME, Christensen JE, Dhillon AS et al.Campylobacter jejuni strains compete for colonization in broiler chicks. Appl. Environ. Microbiol.73(7), 2297–2305 (2007).
  • Skanseng B, Trosvik P, Zimonja M et al. Co-infection dynamics of a major food-borne zoonotic pathogen in chicken. PLoS Pathog.3(11), e175 (2007).
  • Davis L, DiRita V. Experimental chick colonization by Campylobacter jejuni. Curr. Protoc. Microbiol. Chapter 8, Unit 8A 3 (2008).
  • Davis L, Young K, DiRita V. Genetic manipulation of Campylobacter jejuni. Curr. Protoc. Microbiol. Chapter 8, Unit 8A, 2, 1–8A, 2, 17 (2008).
  • Parkhill J, Wren BW, Mungall K et al. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature403(6770), 665–668 (2000).
  • Gundogdu O, Bentley SD, Holden MT, Parkhill J, Dorrell N, Wren BW. Re-annotation and re-analysis of the Campylobacter jejuni NCTC11168 genome sequence. BMC Genomics8, 162 (2007).
  • Medini D, Serruto D, Parkhill J et al. Microbiology in the post-genomic era. Nat. Rev. Microbiol.6(6), 419–430 (2008).
  • Hofreuter D, Tsai J, Watson RO et al. Unique features of a highly pathogenic Campylobacter jejuni strain. Infect. Immun.74(8), 4694–4707 (2006).
  • Poly F, Read T, Tribble DR, Baqar S, Lorenzo M, Guerry P. Genome sequence of a clinical isolate of Campylobacter jejuni from Thailand. Infect. Immun.75(7), 3425–3433 (2007).
  • Fouts DE, Mongodin EF, Mandrell RE et al. Major structural differences and novel potential virulence mechanisms from the genomes of multiple campylobacter species. PLoS Biol.3(1), e15 (2005).
  • Pearson BM, Gaskin DJ, Segers RP, Wells JM, Nuijten PJ, van Vliet AH. The complete genome sequence of Campylobacter jejuni strain 81116 (NCTC11828). J. Bacteriol.189(22), 8402–8403 (2007).
  • Miller WG, Wang G, Binnewies TT, Parker CT. The complete genome sequence and analysis of the human pathogen Campylobacter lari. Foodborne Pathog. Dis.5(4), 371–386 (2008).
  • Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R. The microbial pan-genome. Curr. Opin. Genet. Dev.15(6), 589–594 (2005).
  • Taboada EN, Acedillo RR, Carrillo CD et al. Large-scale comparative genomics meta-analysis of Campylobacter jejuni isolates reveals low level of genome plasticity. J. Clin. Microbiol.42(10), 4566–4576 (2004).
  • Parker CT, Quinones B, Miller WG, Horn ST, Mandrell RE. Comparative genomic analysis of Campylobacter jejuni strains reveals diversity due to genomic elements similar to those present in C. jejuni strain RM1221. J. Clin. Microbiol.44(11), 4125–4135 (2006).
  • Quinones B, Guilhabert MR, Miller WG, Mandrell RE, Lastovica AJ, Parker CT. Comparative genomic analysis of clinical strains of Campylobacter jejuni from South Africa. PLoS ONE3(4), e2015 (2008).
  • Leonard EE 2nd, Tompkins LS, Falkow S, Nachamkin I. Comparison of Campylobacter jejuni isolates implicated in Guillain-Barre syndrome and strains that cause enteritis by a DNA microarray. Infect. Immun.72(2), 1199–1203 (2004).
  • Stintzi A. Gene expression profile of Campylobacter jejuni in response to growth temperature variation. J. Bacteriol.185(6), 2009–2016 (2003).
  • Woodall CA, Jones MA, Barrow PA et al.Campylobacter jejuni gene expression in the chick cecum: evidence for adaptation to a low-oxygen environment. Infect. Immun.73(8), 5278–5285 (2005).
  • Hiett KL, Stintzi A, Andacht TM, Kuntz RL, Seal BS. Genomic differences between Campylobacter jejuni isolates identify surface membrane and flagellar function gene products potentially important for colonizing the chicken intestine. Funct. Integr. Genomics8(4), 407–420 (2008).
  • Seal BS, Hiett KL, Kuntz RL et al. Proteomic analyses of a robust versus a poor chicken gastrointestinal colonizing isolate of Campylobacter jejuni. J. Proteome Res.6(12), 4582–4591 (2007).
  • Van Deun K, Haesebrouck F, Heyndrickx M et al. Virulence properties of Campylobacter jejuni isolates of poultry and human origin. J. Med. Microbiol.56(Pt 10), 1284–1289 (2007).
  • Kalmokoff M, Lanthier P, Tremblay TL et al. Proteomic analysis of Campylobacter jejuni 11168 biofilms reveals a role for the motility complex in biofilm formation. J. Bacteriol.188(12), 4312–4320 (2006).
  • Sampathkumar B, Napper S, Carrillo CD et al. Transcriptional and translational expression patterns associated with immobilized growth of Campylobacter jejuni. Microbiology152(Pt 2), 567–577 (2006).
  • Hofreuter D, Novik V, Galan JE. Metabolic diversity in Campylobacter jejuni enhances specific tissue colonization. Cell Host Microbe4(5), 425–433 (2008).
  • Thompson SA, Gaynor EC. Campylobacter jejuni host tissue tropism: a consequence of its low-carb lifestyle? Cell Host Microbe4(5), 409–410 (2008).
  • Gaynor EC, Cawthraw S, Manning G, MacKichan JK, Falkow S, Newell DG. The genome-sequenced variant of Campylobacter jejuni NCTC 11168 and the original clonal clinical isolate differ markedly in colonization, gene expression, and virulence-associated phenotypes. J. Bacteriol.186(2), 503–517 (2004).
  • Chen L, Geys H, Cawthraw S, Havelaar A, Teunis P. Dose response for infectivity of several strains of Campylobacter jejuni in chickens. Risk Anal.26(6), 1613–1621 (2006).
  • Krause-Gruszczynska M, Rohde M, Hartig R et al. Role of the small Rho GTPases Rac1 and Cdc42 in host cell invasion of Campylobacter jejuni. Cell. Microbiol.9(10), 2431–2444 (2007).
  • Monteville MR, Konkel ME. Fibronectin-facilitated invasion of T84 eukaryotic cells by Campylobacter jejuni occurs preferentially at the basolateral cell surface. Infect. Immun.70(12), 6665–6671 (2002).
  • Watson RO, Galan JE. Signal transduction in Campylobacter jejuni-induced cytokine production. Cell. Microbiol.7(5), 655–665 (2005).
  • Watson RO, Galan JE. Campylobacter jejuni survives within epithelial cells by avoiding delivery to lysosomes. PLoS Pathog.4(1), e14 (2008).
  • van Alphen LB, Bleumink-Pluym NM, Rochat KD, van Balkom BW, Wosten MM, van Putten JP. Active migration into the subcellular space precedes Campylobacter jejuni invasion of epithelial cells. Cell. Microbiol.10(1), 53–66 (2008).
  • Hu L, Tall BD, Curtis SK, Kopecko DJ. Enhanced microscopic definition of Campylobacter jejuni 81–176 adherence to, invasion of, translocation across, and exocytosis from polarized human intestinal Caco-2 cells. Infect. Immun.76(11), 5294–5304 (2008).
  • Malik-Kale P, Parker CT, Konkel ME. Culture of Campylobacter jejuni with sodium deoxycholate induces virulence gene expression. J. Bacteriol.190(7), 2286–2297 (2008).
  • Tu QV, McGuckin MA, Mendz GL. Campylobacter jejuni response to human mucin MUC2: modulation of colonization and pathogenicity determinants. J. Med. Microbiol.57(Pt 7), 795–802 (2008).
  • Chen ML, Ge Z, Fox JG, Schauer DB. Disruption of tight junctions and induction of proinflammatory cytokine responses in colonic epithelial cells by Campylobacter jejuni. Infect. Immun.74(12), 6581–6589 (2006).
  • Hu L, McDaniel JP, Kopecko DJ. Signal transduction events involved in human epithelial cell invasion by Campylobacter jejuni 81–176. Microb. Pathog.40(3), 91–100 (2006).
  • Jin S, Song YC, Emili A, Sherman PM, Chan VL. JlpA of Campylobacter jejuni interacts with surface-exposed heat shock protein 90a and triggers signalling pathways leading to the activation of NF-kB and p38 MAP kinase in epithelial cells. Cell. Microbiol.5(3), 165–174 (2003).
  • Andersen-Nissen E, Smith KD, Strobe KL et al. Evasion of Toll-like receptor 5 by flagellated bacteria. Proc. Natl Acad. Sci. USA102(26), 9247–9252 (2005).
  • Galkin VE, Yu X, Bielnicki J et al. Divergence of quaternary structures among bacterial flagellar filaments. Science320(5874), 382–385 (2008).
  • Zilbauer M, Dorrell N, Elmi A et al. A major role for intestinal epithelial nucleotide oligomerization domain 1 (NOD1) in eliciting host bactericidal immune responses to Campylobacter jejuni. Cell. Microbiol.9(10), 2404–2416 (2007).
  • Boneca IG. The role of peptidoglycan in pathogenesis. Curr. Opin. Microbiol.8(1), 46–53 (2005).
  • Ferrero RL. Innate immune recognition of the extracellular mucosal pathogen, Helicobacter pylori. Mol. Immunol.42(8), 879–885 (2005).
  • Bacon DJ, Alm RA, Hu L et al. DNA sequence and mutational analyses of the pVir plasmid of Campylobacter jejuni 81–176. Infect. Immun.70(11), 6242–6250 (2002).
  • Johanesen PA, Dwinell MB. Flagellin-independent regulation of chemokine host defense in Campylobacter jejuni-infected intestinal epithelium. Infect. Immun.74(6), 3437–3447 (2006).
  • Hu L, Bray MD, Osorio M, Kopecko DJ. Campylobacter jejuni induces maturation and cytokine production in human dendritic cells. Infect. Immun.74(5), 2697–2705 (2006).
  • Al-Salloom FS, Al Mahmeed A, Ismaeel A, Botta GA, Bakhiet M. Campylobacter-stimulated INT407 cells produce dissociated cytokine profiles. J. Infect.47(3), 217–224 (2003).
  • Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol.3(3), 238–250 (2005).
  • Sperandio B, Regnault B, Guo J et al. Virulent Shigella flexneri subverts the host innate immune response through manipulation of antimicrobial peptide gene expression. J. Exp. Med.205(5), 1121–1132 (2008).
  • Zilbauer M, Dorrell N, Boughan PK et al. Intestinal innate immunity to Campylobacter jejuni results in induction of bactericidal human β-defensins 2 and 3. Infect. Immun.73(11), 7281–7289 (2005).
  • Artis D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat. Rev. Immunol.8(6), 411–420 (2008).
  • Byrne CM, Clyne M, Bourke B. Campylobacter jejuni adhere to and invade chicken intestinal epithelial cells in vitro. Microbiology153(Pt 2), 561–569 (2007).
  • Biswas D, Fernando UM, Reiman CD et al. Correlation between in vitro secretion of virulence-associated proteins of Campylobacter jejuni and colonization of chickens. Curr. Microbiol.54(3), 207–212 (2007).
  • Smith CK, Kaiser P, Rothwell L, Humphrey T, Barrow PA, Jones MA. Campylobacter jejuni-induced cytokine responses in avian cells. Infect. Immun.73(4), 2094–2100 (2005).
  • Borrmann E, Berndt A, Hanel I, Kohler H. Campylobacter-induced interleukin-8 responses in human intestinal epithelial cells and primary intestinal chick cells. Vet. Microbiol.124(1–2), 115–124 (2007).
  • Li YP, Ingmer H, Madsen M, Bang DD. Cytokine responses in primary chicken embryo intestinal cells infected with Campylobacter jejuni strains of human and chicken origin and the expression of bacterial virulence-associated genes. BMC Microbiol.8, 107 (2008).
  • Boyd A, Philbin VJ, Smith AL. Conserved and distinct aspects of the avian Toll-like receptor (TLR) system: implications for transmission and control of bird-borne zoonoses. Biochem. Soc. Trans.35(Pt 6), 1504–1507 (2007).
  • van Dijk A, Veldhuizen EJ, Kalkhove SI, Tjeerdsma-van Bokhoven JL, Romijn RA, Haagsman HP. The β-defensin gallinacin-6 is expressed in the chicken digestive tract and has antimicrobial activity against food-borne pathogens. Antimicrob. Agents Chemother.51(3), 912–922 (2007).
  • Mangen MJ, Havelaar AH, Poppe KP, de Wit GA. Cost–utility analysis to control Campylobacter on chicken meat: dealing with data limitations. Risk Anal.27(4), 815–830 (2007).
  • Havelaar AH, Mangen MJ, de Koeijer AA et al. Effectiveness and efficiency of controlling Campylobacter on broiler chicken meat. Risk Anal.27(4), 831–844 (2007).
  • Atterbury RJ, Connerton PL, Dodd CE, Rees CE, Connerton IF. Isolation and characterization of Campylobacter bacteriophages from retail poultry. Appl. Environ. Microbiol.69(8), 4511–4518 (2003).
  • El-Shibiny A, Connerton PL, Connerton IF. Enumeration and diversity of campylobacters and bacteriophages isolated during the rearing cycles of free-range and organic chickens. Appl. Environ. Microbiol.71(3), 1259–1266 (2005).
  • Loc Carrillo C, Atterbury RJ, el-Shibiny A et al. Bacteriophage therapy to reduce Campylobacter jejuni colonization of broiler chickens. Appl. Environ. Microbiol.71(11), 6554–6563 (2005).
  • Wagenaar JA, Van Bergen MA, Mueller MA, Wassenaar TM, Carlton RM. Phage therapy reduces Campylobacter jejuni colonization in broilers. Vet. Microbiol.109(3–4), 275–283 (2005).
  • Atterbury RJ, Connerton PL, Dodd CE, Rees CE, Connerton IF. Application of host-specific bacteriophages to the surface of chicken skin leads to a reduction in recovery of Campylobacter jejuni. Appl. Environ. Microbiol.69(10), 6302–6306 (2003).
  • Scott AE, Timms AR, Connerton PL, Loc Carrillo C, Adzfa Radzum K, Connerton IF. Genome dynamics of Campylobacter jejuni in response to bacteriophage predation. PLoS Pathog.3(8), e119 (2007).
  • Garmory HS, Brown KA, Titball RW. Salmonella vaccines for use in humans: present and future perspectives. FEMS Microbiol. Rev.26(4), 339–353 (2002).
  • Levine MM, Kotloff KL, Barry EM, Pasetti MF, Sztein MB. Clinical trials of Shigella vaccines: two steps forward and one step back on a long, hard road. Nat. Rev. Microbiol.5(7), 540–553 (2007).
  • Venkatesan MM, Ranallo RT. Live-attenuated Shigella vaccines. Expert Rev. Vaccines5(5), 669–686 (2006).
  • Phalipon A, Mulard LA, Sansonetti PJ. Vaccination against shigellosis: is it the path that is difficult or is it the difficult that is the path? Microbes Infect.10(9), 1057–1062 (2008).
  • Guerry P, Pope PM, Burr DH, Leifer J, Joseph SW, Bourgeois AL. Development and characterization of recA mutants of Campylobacter jejuni for inclusion in attenuated vaccines. Infect. Immun.62(2), 426–432 (1994).
  • Negash T, al-Garib SO, Gruys E. Comparison of in ovo and post-hatch vaccination with particular reference to infectious bursal disease. A review. Vet. Q.26(2), 76–87 (2004).
  • Burr DH, Rollins D, Lee LH et al. Prevention of disease in ferrets fed an inactivated whole cell Campylobacter jejuni vaccine. Vaccine23(34), 4315–4321 (2005).
  • Baqar S, Bourgeois AL, Applebee LA et al. Murine intranasal challenge model for the study of Campylobacter pathogenesis and immunity. Infect. Immun.64(12), 4933–4939 (1996).
  • Baqar S, Applebee LA, Gilliland TC Jr, Lee LH, Porter CK, Guerry P. Immunogenicity and protective efficacy of recombinant Campylobacter jejuni flagellum-secreted proteins in mice. Infect. Immun.76(7), 3170–3175 (2008).
  • Monteiro MA, Baqar S, Hall ER et al. Capsule polysaccharide conjugate vaccine against diarrheal disease caused by Campylobacter jejuni. Infect. Immun.77(3), 1128–1136 (2009).
  • Chang C, Miller JF. Campylobacter jejuni colonization of mice with limited enteric flora. Infect. Immun.74(9), 5261–5271 (2006).
  • Mansfield LS, Bell JA, Wilson DL et al. C57BL/6 and congenic interleukin-10-deficient mice can serve as models of Campylobacter jejuni colonization and enteritis. Infect. Immun.75(3), 1099–1115 (2007).
  • Watson RO, Novik V, Hofreuter D, Lara-Tejero M, Galan JE. A MyD88-deficient mouse model reveals a role for Nramp1 in Campylobacter jejuni infection. Infect. Immun.75(4), 1994–2003 (2007).
  • Islam D, Lewis MD, Srijan A et al. Establishment of a non-human primate Campylobacter disease model for the pre-clinical evaluation of Campylobacter vaccine formulations. Vaccine24(18), 3762–3771 (2006).
  • Jones FR, Baqar S, Gozalo A et al. New World monkey Aotus nancymae as a model for Campylobacter jejuni infection and immunity. Infect. Immun.74(1), 790–793 (2006).
  • Black RE, Levine MM, Clements ML, Hughes TP, Blaser MJ. Experimental Campylobacter jejuni infection in humans. J. Infect. Dis.157(3), 472–479 (1988).
  • Walz SE, Baqar S, Beecham HJ et al. Pre-exposure anti-Campylobacter jejuni immunoglobulin a levels associated with reduced risk of Campylobacter diarrhea in adults traveling to Thailand. Am. J. Trop. Med. Hyg.65(5), 652–656 (2001).
  • Kitchen LW, Vaughn DW. Role of U.S. military research programs in the development of U.S.-licensed vaccines for naturally occurring infectious diseases. Vaccine25(41), 7017–7030 (2007).
  • Poly F, Read TD, Chen YH et al. Characterization of two Campylobacter jejuni strains for use in volunteer experimental-infection studies. Infect. Immun.76(12), 5655–5667 (2008).
  • Baqar S, Applebee LA, Bourgeois AL. Immunogenicity and protective efficacy of a prototype Campylobacter killed whole-cell vaccine in mice. Infect. Immun.63(9), 3731–3735 (1995).
  • Baqar S, Bourgeois AL, Schultheiss PJ et al. Safety and immunogenicity of a prototype oral whole-cell killed Campylobacter vaccine administered with a mucosal adjuvant in non-human primates. Vaccine13(1), 22–28 (1995).
  • Rice BE, Rollins DM, Mallinson ET, Carr L, Joseph SW. Campylobacter jejuni in broiler chickens: colonization and humoral immunity following oral vaccination and experimental infection. Vaccine15(17–18), 1922–1932 (1997).
  • van der Woude MW, Baumler AJ. Phase and antigenic variation in bacteria. Clin. Microbiol. Rev.17(3), 581–611 (2004).
  • Prendergast MM, Tribble DR, Baqar S et al.In vivo phase variation and serologic response to lipooligosaccharide of Campylobacter jejuni in experimental human infection. Infect. Immun.72(2), 916–922 (2004).
  • Abuoun M, Manning G, Cawthraw SA et al. Cytolethal distending toxin (CDT)-negative Campylobacter jejuni strains and anti-CDT neutralizing antibodies are induced during human infection but not during colonization in chickens. Infect. Immun.73(5), 3053–3062 (2005).
  • Lee LH, Burg E 3rd, Baqar S et al. Evaluation of a truncated recombinant flagellin subunit vaccine against Campylobacter jejuni. Infect. Immun.67(11), 5799–5805 (1999).
  • Karlyshev AV, Ketley JM, Wren BW. The Campylobacter jejuni glycome. FEMS Microbiol. Rev.29(2), 377–390 (2005).
  • Logan SM, Kelly JF, Thibault P, Ewing CP, Guerry P. Structural heterogeneity of carbohydrate modifications affects serospecificity of Campylobacter flagellins. Mol. Microbiol.46(2), 587–597 (2002).
  • Galan JE, Wolf-Watz H. Protein delivery into eukaryotic cells by type III secretion machines. Nature444(7119), 567–573 (2006).
  • Coburn B, Sekirov I, Finlay BB. Type III secretion systems and disease. Clin. Microbiol. Rev.20(4), 535–549 (2007).
  • Konkel ME, Klena JD, Rivera-Amill V et al. Secretion of virulence proteins from Campylobacter jejuni is dependent on a functional flagellar export apparatus. J. Bacteriol.186(11), 3296–3303 (2004).
  • Song YC, Jin S, Louie H et al. FlaC, a protein of Campylobacter jejuni TGH9011 (ATCC43431) secreted through the flagellar apparatus, binds epithelial cells and influences cell invasion. Mol. Microbiol.53(2), 541–553 (2004).
  • Poly F, Ewing C, Goon S et al. Heterogeneity of a Campylobacter jejuni protein that is secreted through the flagellar filament. Infect. Immun.75(8), 3859–3867 (2007).
  • Trotter CL, McVernon J, Ramsay ME et al. Optimising the use of conjugate vaccines to prevent disease caused by Haemophilus influenzae type B, Neisseria meningitidis and Streptococcus pneumoniae. Vaccine26(35), 4434–4445 (2008).
  • Bacon DJ, Szymanski CM, Burr DH, Silver RP, Alm RA, Guerry P. A phase-variable capsule is involved in virulence of Campylobacter jejuni 81–176. Mol. Microbiol.40(3), 769–777 (2001).
  • Bachtiar BM, Coloe PJ, Fry BN. Knockout mutagenesis of the kpsE gene of Campylobacter jejuni 81116 and its involvement in bacterium–host interactions. FEMS Immunol. Med. Microbiol.49(1), 149–154 (2007).
  • Cordwell SJ, Len AC, Touma RG et al. Identification of membrane-associated proteins from Campylobacter jejuni strains using complementary proteomics technologies. Proteomics8(1), 122–139 (2008).
  • Prokhorova TA, Nielsen PN, Petersen J et al. Novel surface polypeptides of Campylobacter jejuni as traveller’s diarrhoea vaccine candidates discovered by proteomics. Vaccine24(40–41), 6446–6455 (2006).
  • Muller A, Leon-Kempis Mdel R, Dodson E, Wilson KS, Wilkinson AJ, Kelly DJ. A bacterial virulence factor with a dual role as an adhesin and a solute-binding protein: the crystal structure at 1.5 A resolution of the PEB1a protein from the food-borne human pathogen Campylobacter jejuni. J. Mol. Biol.372(1), 160–171 (2007).
  • Sizemore DR, Warner B, Lawrence J, Jones A, Killeen KP. Live, attenuated Salmonella typhimurium vectoring Campylobacter antigens. Vaccine24(18), 3793–3803 (2006).
  • Velayudhan J, Kelly DJ. Analysis of gluconeogenic and anaplerotic enzymes in Campylobacter jejuni: an essential role for phosphoenolpyruvate carboxykinase. Microbiology148(Pt 3), 685–694 (2002).
  • Wyszynska A, Tomczyk K, Jagusztyn-Krynicka EK. Comparison of the localization and post-translational modification of Campylobacter coli CjaC and its homolog from Campylobacter jejuni, Cj0734c/HisJ. Acta Biochim. Pol.54(1), 143–150 (2007).
  • Muller A, Thomas GH, Horler R et al. An ATP-binding cassette-type cysteine transporter in Campylobacter jejuni inferred from the structure of an extracytoplasmic solute receptor protein. Mol. Microbiol.57(1), 143–155 (2005).
  • Holmes K, Mulholland F, Pearson BM et al.Campylobacter jejuni gene expression in response to iron limitation and the role of Fur. Microbiology151(Pt 1), 243–257 (2005).
  • Wyszynska A, Raczko A, Lis M, Jagusztyn-Krynicka EK. Oral immunization of chickens with avirulent Salmonella vaccine strain carrying C. jejuni 72Dz/92 cjaA gene elicits specific humoral immune response associated with protection against challenge with wild-type Campylobacter. Vaccine22(11–12), 1379–1389 (2004).
  • Hanniffy S, Wiedermann U, Repa A et al. Potential and opportunities for use of recombinant lactic acid bacteria in human health. Adv. Appl. Microbiol.56, 1–64 (2004).
  • Holmgren J, Czerkinsky C, Eriksson K, Mharandi A. Mucosal immunisation and adjuvants: a brief overview of recent advances and challenges. Vaccine21(Suppl. 2), S89–S95 (2003).
  • Klinman DM. Adjuvant activity of CpG oligodeoxynucleotides. Int. Rev. Immunol.25(3–4), 135–154 (2006).
  • Kochi SK, Killeen KP, Ryan US. Advances in the development of bacterial vector technology. Expert Rev. Vaccines2(1), 31–43 (2003).
  • Curtiss R III, Zhang X, Wanda S et al. Induction of host immune response using Salmonella-vector vaccine. In: Virulence Mechanisms of Bacterial Pathogens (4th Edition). Brogden KA (Ed.). ASM Press, Washington, DC, USA 297–313 (2007).
  • Qu A, Brulc JM, Wilson MK et al. Comparative metagenomics reveals host specific metavirulomes and horizontal gene transfer elements in the chicken cecum microbiome. PLoS ONE3(8), e2945 (2008).
  • Parrish JR, Yu J, Liu G et al. A proteome-wide protein interaction map for Campylobacter jejuni. Genome Biol.8(7), R130 (2007).
  • Ziprin RL, Young CR, Stanker LH, Hume ME, Konkel ME. The absence of cecal colonization of chicks by a mutant of Campylobacter jejuni not expressing bacterial fibronectin-binding protein. Avian Dis.43(3), 586–589 (1999).
  • Monteville MR, Yoon JE, Konkel ME. Maximal adherence and invasion of INT 407 cells by Campylobacter jejuni requires the CadF outer-membrane protein and microfilament reorganization. Microbiology149(Pt 1), 153–165 (2003).
  • Jin S, Joe A, Lynett J, Hani EK, Sherman P, Chan VL. JlpA, a novel surface-exposed lipoprotein specific to Campylobacter jejuni, mediates adherence to host epithelial cells. Mol. Microbiol.39(5), 1225–1236 (2001).
  • Moser I, Schroeder W, Salnikow J. Campylobacter jejuni major outer membrane protein and a 59-kDa protein are involved in binding to fibronectin and INT 407 cell membranes. FEMS Microbiol. Lett.157(2), 233–238 (1997).
  • Pei Z, Burucoa C, Grignon B et al. Mutation in the peb1 A locus of Campylobacter jejuni reduces interactions with epithelial cells and intestinal colonization of mice. Infect. Immun.66(3), 938–943 (1998).
  • Konkel ME, Kim BJ, Rivera-Amill V, Garvis SG. Bacterial secreted proteins are required for the internaliztion of Campylobacter jejuni into cultured mammalian cells. Mol. Microbiol.32(4), 691–701 (1999).
  • Ziprin RL, Young CR, Byrd JA et al. Role of Campylobacter jejuni potential virulence genes in cecal colonization. Avian Dis.45(3), 549–557 (2001).
  • Guerry P. Campylobacter flagella: not just for motility. Trends Microbiol.15(10), 456–461 (2007).
  • Hendrixson DR. Restoration of flagellar biosynthesis by varied mutational events in Campylobacter jejuni. Mol. Microbiol.70(2), 519–536 (2008).
  • Fernando U, Biswas D, Allan B, Willson P, Potter AA. Influence of Campylobacter jejuni fliA, rpoN and flgK genes on colonization of the chicken gut. Int. J. Food Microbiol.118(2), 194–200 (2007).
  • Bacon DJ, Alm RA, Burr DH et al. Involvement of a plasmid in virulence of Campylobacter jejuni 81–176. Infect. Immun.68(8), 4384–4390 (2000).
  • Biswas D, Fernando U, Reiman C, Willson P, Potter A, Allan B. Effect of cytolethal distending toxin of Campylobacter jejuni on adhesion and internalization in cultured cells and in colonization of the chicken gut. Avian Dis.50(4), 586–593 (2006).
  • Karlyshev AV, Everest P, Linton D, Cawthraw S, Newell DG, Wren BW. The Campylobacter jejuni general glycosylation system is important for attachment to human epithelial cells and in the colonization of chicks. Microbiology150(Pt 6), 1957–1964 (2004).
  • Szymanski CM, Burr DH, Guerry P. Campylobacter protein glycosylation affects host cell interactions. Infect. Immun.70(4), 2242–2244 (2002).
  • Ashgar SS, Oldfield NJ, Wooldridge KG et al. CapA, an autotransporter protein of Campylobacter jejuni, mediates association with human epithelial cells and colonization of the chicken gut. J. Bacteriol.189(5), 1856–1865 (2007).
  • Kakuda T, DiRita VJ. Cj1496c encodes a Campylobacter jejuni glycoprotein that influences invasion of human epithelial cells and colonization of the chick gastrointestinal tract. Infect. Immun.74(8), 4715–4723 (2006).
  • Barnes IH, Bagnall MC, Browning DD, Thompson SA, Manning G, Newell DG. γ-glutamyl transpeptidase has a role in the persistent colonization of the avian gut by Campylobacter jejuni. Microb. Pathog.43(5–6), 198–207 (2007).
  • Quinones B, Miller WG, Bates AH, Mandrell RE. Autoinducer-2 production in Campylobacter jejuni contributes to chicken colonization. Appl. Environ. Microbiol.75(1), 281–285 (2009).
  • Guo B, Wang Y, Shi F et al. CmeR functions as a pleiotropic regulator and is required for optimal colonization of Campylobacter jejuniin vivo. J. Bacteriol.190(6), 1879–1890 (2008).
  • Svensson SL, Davis LM, MacKichan JK et al. The CprS sensor kinase of the zoonotic pathogen Campylobacter jejuni influences biofilm formation and is required for optimal chick colonization. Mol. Microbiol.71(1), 253–272 (2009).
  • Davis LM, Kakuda T, DiRita VJ. A Campylobacter jejuni znuA orthologue is essential for growth in low-zinc environments and chick colonization. J. Bacteriol.191(5), 1631–1640 (2009).
  • Weingarten RA, Grimes JL, Olson JW. Role of Campylobacter jejuni respiratory oxidases and reductases in host colonization. Appl. Environ. Microbiol.74(5), 1367–1375 (2008).
  • Bingham-Ramos LK, Hendrixson DR. Characterization of two putative cytochrome c peroxidases of Campylobacter jejuni involved in promoting commensal colonization of poultry. Infect. Immun.76(3), 1105–1114 (2008).
  • Pajaniappan M, Hall JE, Cawthraw SA et al. A temperature-regulated Campylobacter jejuni gluconate dehydrogenase is involved in respiration-dependent energy conservation and chicken colonization. Mol. Microbiol.68(2), 474–491 (2008).
  • Candon HL, Allan BJ, Fraley CD, Gaynor EC. Polyphosphate kinase 1 is a pathogenesis determinant in Campylobacter jejuni. J. Bacteriol.189(22), 8099–8108 (2007).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.