7,107
Views
133
CrossRef citations to date
0
Altmetric
Review

SARS vaccines: where are we?

&
Pages 887-898 | Published online: 09 Jan 2014

References

  • Marra MA, Jones SJ, Astell CR et al. The genome sequence of the SARS-associated coronavirus. Science300(5624), 1399–1404 (2003).
  • Rota PA, Oberste MS, Monroe SS et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science300(5624), 1394–1399 (2003).
  • Fouchier RA, Kuiken T, Schutten M et al. Aetiology: Koch’s postulates fulfilled for SARS virus. Nature423(6937), 240 (2003).
  • Zheng BJ, Wong KH, Zhou J et al. SARS-related virus predating SARS outbreak, Hong Kong. Emerg. Infect. Dis.10(2), 176–178 (2004).
  • Fleck F. SARS virus returns to China as scientists race to find effective vaccine. Bull. World Health Organ.82(2), 152–153 (2004).
  • Guan YJ, Tang XP, Zhang FC et al. Study of laboratory characteristic of 4 patients with sporadic severe acute respiratory syndrome in 2004. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue17(6), 332–334 (2005).
  • Che XY, Di B, Zhao GP et al. A patient with asymptomatic severe acute respiratory syndrome (SARS) and antigenemia from the 2003–2004 community outbreak of SARS in Guangzhou, China. Clin. Infect. Dis.43(1), e1–e5 (2006).
  • Chen W, Yan M, Yang L et al. SARS-associated coronavirus transmitted from human to pig. Emerg. Infect. Dis.11(3), 446–448 (2005).
  • Martina BE, Haagmans BL, Kuiken T et al. Virology: SARS virus infection of cats and ferrets. Nature425(6961), 915 (2003).
  • Wang M, Jing HQ, Xu HF et al. Surveillance on severe acute respiratory syndrome associated coronavirus in animals at a live animal market of Guangzhou in 2004. Zhonghua Liu Xing Bing Xue Za Zhi26(2), 84–87 (2005).
  • Guan Y, Zheng BJ, He YQ et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science302(5643), 276–278 (2003).
  • Lau SK, Woo PC, Li KS et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc. Natl Acad. Sci. USA102(39), 14040–14045 (2005).
  • Drosten C, Gunther S, Preiser W et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med.348(20), 1967–1976 (2003).
  • Ksiazek TG, Erdman D, Goldsmith CS et al. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med.348(20), 1953–1966 (2003).
  • Peiris JS, Lai ST, Poon LL et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet361(9366), 1319–1325 (2003).
  • Peiris JS, Chu CM, Cheng VC et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet361(9371), 1767–1772 (2003).
  • Yam WC, Chan KH, Poon LL et al. Evaluation of reverse transcription-PCR assays for rapid diagnosis of severe acute respiratory syndrome associated with a novel coronavirus. J. Clin. Microbiol.41(10), 4521–4524 (2003).
  • Ding Y, He L, Zhang Q et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J. Pathol.203(2), 622–630 (2004).
  • Wang JT, Chang SC. Severe acute respiratory syndrome. Curr. Opin. Infect. Dis.17(2), 143–148 (2004).
  • Knudsen TB, Kledal TN, Andersen O, Eugen-Olsen J, Kristiansen TB. Severe acute respiratory syndrome – a new coronavirus from the Chinese dragon’s lair. Scand. J. Immunol.58(3), 277–284 (2003).
  • Nicholls J, Dong XP, Jiang G, Peiris M. SARS: clinical virology and pathogenesis. Respirology8(Suppl.), S6–S8 (2003).
  • Lee N, Hui D, Wu A et al. A major outbreak of severe acute respiratory syndrome in Hong Kong. N. Engl. J. Med.348(20), 1986–1994 (2003).
  • Pearson H, Clarke T, Abbott A, Knight J, Cyranoski D. SARS: what have we learned? Nature424(6945), 121–126 (2003).
  • Rabenau HF, Cinatl J, Morgenstern B et al. Stability and inactivation of SARS coronavirus. Med. Microbiol. Immunol. (Berl.)194(1–2), 1–6 (2005).
  • Hon KL, Leung CW, Cheng WT et al. Clinical presentations and outcome of severe acute respiratory syndrome in children. Lancet361(9370), 1701–1703 (2003).
  • Olsen CW, Corapi WV, Jacobson RH et al. Identification of antigenic sites mediating antibody-dependent enhancement of feline infectious peritonitis virus infectivity. J. Gen. Virol.74(Pt 4), 745–749 (1993).
  • Anton IM, Gonzalez S, Bullido MJ et al. Cooperation between transmissible gastroenteritis coronavirus (TGEV) structural proteins in the in vitro induction of virus-specific antibodies. Virus Res.46(1–2), 111–124 (1996).
  • Cavanagh D. Severe acute respiratory syndrome vaccine development: experiences of vaccination against avian infectious bronchitis coronavirus. Avian Pathol.32(6), 567–582 (2003).
  • Lai MM, Holmes KV. In: Fields Virology. Knipe DM, Howley PM (Eds). Lippincott-Raven, PA, USA, 1163–1203 (2001).
  • Lai MMC, Perlman S, Anderson LJ. Coronaviridae. In: Fields Virology. Knipe DM, Howley PM (Eds). Lippincott Williams & Wilkins, PA, USA 1305–1335 (2007).
  • Wong SK, Li W, Moore MJ, Choe H, Farzan M. A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J. Biol. Chem.279(5), 3197–3201 (2004).
  • Jeffers SA, Tusell SM, Gillim-Ross L et al. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc. Natl Acad. Sci. USA, 101(44), 15748–15753 (2004).
  • Holmes KV. SARS coronavirus: a new challenge for prevention and therapy. J. Clin. Invest.111(11), 1605–1609 (2003).
  • Navas-Martin SR, Weiss S. Coronavirus replication and pathogenesis: implications for the recent outbreak of severe acute respiratory syndrome (SARS), and the challenge for vaccine development. J. Neurovirol.10(2), 75–85 (2004).
  • Guo JP, Petric M, Campbell W, McGeer PL. SARS corona virus peptides recognized by antibodies in the sera of convalescent cases. Virology324(2), 251–256 (2004).
  • Kamitani W, Narayanan K, Huang C et al. Severe acute respiratory syndrome coronavirus nsp1 protein suppresses host gene expression by promoting host mRNA degradation. Proc. Natl Acad. Sci. USA103(34), 12885–12890 (2006).
  • Huang J, Cao Y, Du J et al. Priming with SARS CoV S DNA and boosting with SARS CoV S epitopes specific for CD4+ and CD8+ T cells promote cellular immune responses. Vaccine25(39–40), 6981–6991 (2007).
  • Ito N, Mossel EC, Narayanan K et al. Severe acute respiratory syndrome coronavirus 3a protein is a viral structural protein. J. Virol.79(5), 3182–3186 (2005).
  • Schaecher SR, Mackenzie JM, Pekosz A. The ORF7b protein of severe acute respiratory syndrome coronavirus (SARS-CoV) is expressed in virus-infected cells and incorporated into SARS-CoV particles. J. Virol.81(2), 718–731 (2007).
  • Shen S, Lin PS, Chao YC et al. The severe acute respiratory syndrome coronavirus 3a is a novel structural protein. Biochem. Biophys. Res. Commun.330(1), 286–292 (2005).
  • Xiong S, Wang YF, Zhang MY et al. Immunogenicity of SARS inactivated vaccine in BALB/c mice. Immunol. Lett.95(2), 139–143 (2004).
  • Tsunetsugu-Yokota Y. Large-scale preparation of UV-inactivated SARS coronavirus virions for vaccine antigen. Methods Mol. Biol.454, 1–8 (2008).
  • He Y, Zhou Y, Siddiqui P, Jiang S. Inactivated SARS-CoV vaccine elicits high titers of spike protein-specific antibodies that block receptor binding and virus entry. Biochem. Biophys. Res. Commun.325(2), 445–452 (2004).
  • Takasuka N, Fujii H, Takahashi Y et al. A subcutaneously injected UV-inactivated SARS coronavirus vaccine elicits systemic humoral immunity in mice. Int. Immunol.16(10), 1423–1430 (2004).
  • Tang L, Zhu Q, Qin E et al. Inactivated SARS-CoV vaccine prepared from whole virus induces a high level of neutralizing antibodies in BALB/c mice. DNA Cell. Biol.23(6), 391–394 (2004).
  • Qu D, Zheng B, Yao X et al. Intranasal immunization with inactivated SARS-CoV (SARS-associated coronavirus) induced local and serum antibodies in mice. Vaccine23(7), 924–931 (2005).
  • Zhang CH, Lu JH, Wang YF et al. Immune responses in Balb/c mice induced by a candidate SARS-CoV inactivated vaccine prepared from F69 strain. Vaccine23(24), 3196–3201 (2005).
  • Stadler K, Roberts A, Becker S et al. SARS vaccine protective in mice. Emerg. Infect. Dis.11(8), 1312–1314 (2005).
  • See RH, Zakhartchouk AN, Petric M et al. Comparative evaluation of two severe acute respiratory syndrome (SARS) vaccine candidates in mice challenged with SARS coronavirus. J. Gen. Virol.87(Pt 3), 641–650 (2006).
  • Lokugamage KG, Yoshikawa-Iwata N, Ito N et al. Chimeric coronavirus-like particles carrying severe acute respiratory syndrome coronavirus (SCoV) S protein protect mice against challenge with SCoV. Vaccine26(6), 797–808 (2008).
  • Kobinger GP, Figueredo JM, Rowe T et al. Adenovirus-based vaccine prevents pneumonia in ferrets challenged with the SARS coronavirus and stimulates robust immune responses in macaques. Vaccine25(28), 5220–5231 (2007).
  • See RH, Petric M, Lawrence DJ et al. Severe acute respiratory syndrome vaccine efficacy in ferrets: whole killed virus and adenovirus-vectored vaccines. J. Gen. Virol.89(Pt 9), 2136–2146 (2008).
  • Darnell ME, Plant EP, Watanabe H et al. Severe acute respiratory syndrome coronavirus infection in vaccinated ferrets. J. Infect. Dis.196(9), 1329–1338 (2007).
  • Zhou J, Wang W, Zhong Q et al. Immunogenicity, safety, and protective efficacy of an inactivated SARS-associated coronavirus vaccine in rhesus monkeys. Vaccine23(24), 3202–3209 (2005).
  • Lin JT, Zhang JS, Su N et al. Safety and immunogenicity from a Phase I trial of inactivated severe acute respiratory syndrome coronavirus vaccine. Antivir. Ther.12(7), 1107–1113 (2007).
  • Rocha CD, Caetano BC, Machado AV, Bruna-Romero O. Recombinant viruses as tools to induce protective cellular immunity against infectious diseases. Int. Microbiol.7(2), 83–94 (2004).
  • Zakhartchouk AN, Viswanathan S, Mahony JB, Gauldie J, Babiuk LA. Severe acute respiratory syndrome coronavirus nucleocapsid protein expressed by an adenovirus vector is phosphorylated and immunogenic in mice. J. Gen. Virol.86(Pt 1), 211–215 (2005).
  • Rolph MS, Ramshaw IA. Recombinant viruses as vaccines and immunological tools. Curr. Opin. Immunol.9(4), 517–524 (1997).
  • Imler JL. Adenovirus vectors as recombinant viral vaccines. Vaccine13(13), 1143–1151 (1995).
  • Gao W, Tamin A, Soloff A et al. Effects of a SARS-associated coronavirus vaccine in monkeys. Lancet362(9399), 1895–1896 (2003).
  • Hogan RJ, Gao G, Rowe T et al. Resolution of primary severe acute respiratory syndrome-associated coronavirus infection requires stat1. J. Virol.78(20), 11416–11421 (2004).
  • Bisht H, Roberts A, Vogel L et al. Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Proc. Natl Acad. Sci. USA101(17), 6641–6646 (2004).
  • Czub M, Weingartl H, Czub S, He R, Cao J. Evaluation of modified vaccinia virus Ankara based recombinant SARS vaccine in ferrets. Vaccine23(17–18), 2273–2279 (2005).
  • Bukreyev A, Lamirande EW, Buchholz UJ et al. Mucosal immunisation of African green monkeys (Cercopithecus aethiops) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of SARS. Lancet363(9427), 2122–2127 (2004).
  • Buchholz UJ, Bukreyev A, Yang L et al. Contributions of the structural proteins of severe acute respiratory syndrome coronavirus to protective immunity. Proc. Natl Acad. Sci. USA101(26), 9804–9809 (2004).
  • Du L, Zhao G, Lin Y et al. Intranasal vaccination of recombinant adeno-associated virus encoding receptor-binding domain of severe acute respiratory syndrome coronavirus (SARS-CoV) spike protein induces strong mucosal immune responses and provides long-term protection against SARS-CoV infection. J. Immunol.180(2), 948–956 (2008).
  • DiNapoli JM, Kotelkin A, Yang L et al. Newcastle disease virus, a host range-restricted virus, as a vaccine vector for intranasal immunization against emerging pathogens. Proc. Natl Acad. Sci. USA104(23), 9788–9793 (2007).
  • Kapadia SU, Simon ID, Rose JK. SARS vaccine based on a replication-defective recombinant vesicular stomatitis virus is more potent than one based on a replication-competent vector. Virology376(1), 165–172 (2008).
  • Liniger M, Zuniga A, Tamin A et al. Induction of neutralising antibodies and cellular immune responses against SARS coronavirus by recombinant measles viruses. Vaccine26(17), 2164–2174 (2008).
  • Faber M, Lamirande EW, Roberts A et al. A single immunization with a rhabdovirus-based vector expressing severe acute respiratory syndrome coronavirus (SARS-CoV) S protein results in the production of high levels of SARS-CoV-neutralizing antibodies. J. Gen. Virol.86(Pt 5), 1435–1440 (2005).
  • Bai B, Lu X, Meng J et al. Vaccination of mice with recombinant baculovirus expressing spike or nucleocapsid protein of SARS-like coronavirus generates humoral and cellular immune responses. Mol. Immunol.45(4), 868–875 (2008).
  • Luo F, Feng Y, Liu M et al. Type IVB pilus operon promoter controlling expression of the severe acute respiratory syndrome-associated coronavirus nucleocapsid gene in Salmonella enterica serovar Typhi elicits full immune response by intranasal vaccination. Clin. Vaccine Immunol.14(8), 990–997 (2007).
  • Enjuanes L, Smerdou C, Castilla J et al. Development of protection against coronavirus induced diseases. A review. Adv. Exp. Med. Biol.380, 197–211 (1995).
  • Navas-Martin S, Weiss SR. SARS: lessons learned from other coronaviruses. Viral Immunol.16(4), 461–474 (2003).
  • See R, Roper RL, Brunham RC, Finlay BB. Rapid response research – SARS coronavirus vaccines and application of processes to other emerging infectious diseases. Curr. Immunol. Rev.1(2), 185–200 (2005).
  • Li W, Moore MJ, Vasilieva N et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature426(6965), 450–454 (2003).
  • Berger A, Drosten C, Doerr HW, Sturmer M, Preiser W. Severe acute respiratory syndrome (SARS) – paradigm of an emerging viral infection. J. Clin. Virol.29(1), 13–22 (2004).
  • Yang ZY, Kong WP, Huang Y et al. A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature428(6982), 561–564 (2004).
  • Pang H, Liu Y, Han X et al. Protective humoral responses to severe acute respiratory syndrome-associated coronavirus: implications for the design of an effective protein-based vaccine. J. Gen. Virol.85(Pt 10), 3109–3113 (2004).
  • Olsen CW. A review of feline infectious peritonitis virus: molecular biology, immunopathogenesis, clinical aspects, and vaccination. Vet. Microbiol.36(1–2), 1–37 (1993).
  • Wesseling JG, Godeke GJ, Schijns VE et al. Mouse hepatitis virus spike and nucleocapsid proteins expressed by adenovirus vectors protect mice against a lethal infection. J. Gen. Virol.74, 2061–2069 (1993).
  • Stohlman SA, Bergmann CC, van der Veen RC, Hinton DR. Mouse hepatitis virus-specific cytotoxic T lymphocytes protect from lethal infection without eliminating virus from the central nervous system. J. Virol.69(2), 684–694 (1995).
  • Stohlman SA, Kyuwa S, Polo JM et al. Characterization of mouse hepatitis virus-specific cytotoxic T cells derived from the central nervous system of mice infected with the JHM strain. J. Virol.67(12), 7050–7059 (1993).
  • Seo SH, Wang L, Smith R, Collisson EW. The carboxyl-terminal 120-residue polypeptide of infectious bronchitis virus nucleocapsid induces cytotoxic T lymphocytes and protects chickens from acute infection. J. Virol.71(10), 7889–7894 (1997).
  • Boots AM, Kusters JG, van Noort JM et al. Localization of a T-cell epitope within the nucleocapsid protein of avian coronavirus. Immunology74(1), 8–13 (1991).
  • Collisson EW, Pei J, Dzielawa J, Seo SH. Cytotoxic T lymphocytes are critical in the control of infectious bronchitis virus in poultry. Dev. Comp. Immunol.24(2–3), 187–200 (2000).
  • Zhu MS, Pan Y, Chen HQ et al. Induction of SARS-nucleoprotein-specific immune response by use of DNA vaccine. Immunol. Lett.92(3), 237–243 (2004).
  • Kim TW, Lee JH, Hung CF et al. Generation and characterization of DNA vaccines targeting the nucleocapsid protein of severe acute respiratory syndrome coronavirus. J. Virol.78(9), 4638–4645 (2004).
  • Du L, He Y, Jiang S, Zheng BJ. Development of subunit vaccines against severe acute respiratory syndrome. Drugs Today (Barc.)44(1), 63–73 (2008).
  • Gurunathan S, Klinman DM, Seder RA. DNA vaccines: immunology, application, and optimization. Annu. Rev. Immunol.18, 927–974 (2000).
  • Zeng F, Chow KY, Hon CC et al. Characterization of humoral responses in mice immunized with plasmid DNAs encoding SARS-CoV spike gene fragments. Biochem. Biophys. Res. Commun.315(4), 1134–1139 (2004).
  • Zakhartchouk AN, Viswanathan S, Moshynskyy I, Petric M, Babiuk LA. Optimization of a DNA vaccine against SARS. DNA Cell. Biol.26(10), 721–726 (2007).
  • Callendret B, Lorin V, Charneau P et al. Heterologous viral RNA export elements improve expression of severe acute respiratory syndrome (SARS) coronavirus spike protein and protective efficacy of DNA vaccines against SARS. Virology363(2), 288–302 (2007).
  • Wang Z, Yuan Z, Matsumoto M, Hengge UR, Chang YF. Immune responses with DNA vaccines encoded different gene fragments of severe acute respiratory syndrome coronavirus in BALB/c mice. Biochem. Biophys. Res. Commun.327(1), 130–135 (2005).
  • Wang X, Xu W, Tong D et al. A chimeric multi-epitope DNA vaccine elicited specific antibody response against severe acute respiratory syndrome-associated coronavirus which attenuated the virulence of SARS-CoV in vitro. Immunol. Lett.119(1–2), 71–77 (2008).
  • Zhao P, Cao J, Zhao LJ et al. Immune responses against SARS-coronavirus nucleocapsid protein induced by DNA vaccine. Virology331(1), 128–135 (2005).
  • Gupta V, Tabiin TM, Sun K et al. SARS coronavirus nucleocapsid immunodominant T-cell epitope cluster is common to both exogenous recombinant and endogenous DNA-encoded immunogens. Virology347(1), 127–139 (2006).
  • Cheung YK, Cheng SC, Sin FW, Chan KT, Xie Y. Induction of T-cell response by a DNA vaccine encoding a novel HLA-A*0201 severe acute respiratory syndrome coronavirus epitope. Vaccine25(32), 6070–6077 (2007).
  • Okada M, Okuno Y, Hashimoto S et al. Development of vaccines and passive immunotherapy against SARS corona virus using SCID-PBL/hu mouse models. Vaccine25(16), 3038–3040 (2007).
  • Zakhartchouk AN, Liu Q, Petric M, Babiuk LA. Augmentation of immune responses to SARS coronavirus by a combination of DNA and whole killed virus vaccines. Vaccine23(35), 4385–4391 (2005).
  • Ma C, Yao K, Zhou F, Zhu M. Comparative immunization in BALB/c mice with recombinant replication-defective adenovirus vector and DNA plasmid expressing a SARS-CoV nucleocapsid protein gene. Cell Mol. Immunol.3(6), 459–465 (2006).
  • DeDiego ML, Alvarez E, Almazan F et al. A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo. J. Virol.81(4), 1701–1713 (2007).
  • Dediego ML, Pewe L, Alvarez E et al. Pathogenicity of severe acute respiratory coronavirus deletion mutants in hACE-2 transgenic mice. Virology376(2), 379–389 (2008).
  • Lamirande EW, DeDiego ML, Roberts A et al. A live attenuated severe acute respiratory syndrome coronavirus is immunogenic and efficacious in golden Syrian hamsters. J. Virol.82(15), 7721–7724 (2008).
  • Zust R, Cervantes-Barragan L, Kuri T et al. Coronavirus non-structural protein 1 is a major pathogenicity factor: implications for the rational design of coronavirus vaccines. PLoS Pathog.3(8), e109 (2007).
  • Yount B, Roberts RS, Sims AC et al. Severe acute respiratory syndrome coronavirus group-specific open reading frames encode nonessential functions for replication in cell cultures and mice. J. Virol.79(23), 14909–14922 (2005).
  • de Haan CA, Masters PS, Shen X, Weiss S, Rottier PJ. The group-specific murine coronavirus genes are not essential, but their deletion, by reverse genetics, is attenuating in the natural host. Virology296(1), 177–189 (2002).
  • Enjuanes L, Dediego ML, Alvarez E et al. Vaccines to prevent severe acute respiratory syndrome coronavirus-induced disease. Virus Res.133(1), 45–62 (2008).
  • Kuiken T, Fouchier RA, Schutten M et al. Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet362(9380), 263–270 (2003).
  • McAuliffe J, Vogel L, Roberts A et al. Replication of SARS coronavirus administered into the respiratory tract of African Green, rhesus and cynomolgus monkeys. Virology330(1), 8–15 (2004).
  • Subbarao K, McAuliffe J, Vogel L et al. Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus in the respiratory tract of mice. J. Virol.78(7), 3572–3577 (2004).
  • Glass WG, Subbarao K, Murphy B, Murphy PM. Mechanisms of host defense following severe acute respiratory syndrome-coronavirus (SARS-CoV) pulmonary infection of mice. J. Immunol.173(6), 4030–4039 (2004).
  • Roberts A, Vogel L, Guarner J et al. Severe acute respiratory syndrome coronavirus infection of golden Syrian hamsters. J. Virol.79(1), 503–511 (2005).
  • Xiao Y, Meng Q, Yin X et al. Pathological changes in masked palm civets experimentally infected by severe acute respiratory syndrome (SARS) coronavirus. J. Comp. Pathol.138(4), 171–179 (2008).
  • Roberts A, Lamirande EW, Vogel L et al. Animal models and vaccines for SARS-CoV infection. Virus Res.133(1), 20–32 (2008).
  • Rockx B, Sheahan T, Donaldson E et al. Synthetic reconstruction of zoonotic and early human severe acute respiratory syndrome coronavirus isolates that produce fatal disease in aged mice. J. Virol.81(14), 7410–7423 (2007).
  • McCray PB Jr, Pewe L, Wohlford-Lenane C et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J. Virol.81(2), 813–821 (2007).
  • Tseng CT, Huang C, Newman P et al. Severe acute respiratory syndrome coronavirus infection of mice transgenic for the human angiotensin-converting enzyme 2 virus receptor. J. Virol.81(3), 1162–1173 (2007).
  • Yang XH, Deng W, Tong Z et al. Mice transgenic for human angiotensin-converting enzyme 2 provide a model for SARS coronavirus infection. Comp. Med.57(5), 450–459 (2007).
  • ter Meulen J, Bakker AB, van den Brink EN et al. Human monoclonal antibody as prophylaxis for SARS coronavirus infection in ferrets. Lancet363(9427), 2139–2141 (2004).
  • Weingartl H, Czub M, Czub S et al. Immunization with modified vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferrets. J. Virol.78(22), 12672–12676 (2004).
  • To KF, Tong JH, Chan PK et al. Tissue and cellular tropism of the coronavirus associated with severe acute respiratory syndrome: an in-situ hybridization study of fatal cases. J. Pathol.202(2), 157–163 (2004).
  • Skowronski DM, Astell C, Brunham RC et al. Severe acute respiratory syndrome (SARS): a year in review. Annu. Rev. Med.56, 357–381 (2005).
  • Lawler JV, Endy TP, Hensley LE et al. Cynomolgus macaque as an animal model for severe acute respiratory syndrome. PLoS Med.3(5), e149 (2006).
  • Weiss RC, Scott FW. Antibody-mediated enhancement of disease in feline infectious peritonitis: comparisons with dengue hemorrhagic fever. Comp. Immunol. Microbiol. Infect. Dis.4(2), 175–189 (1981).
  • Kam YW, Kien F, Roberts A et al. Antibodies against trimeric S glycoprotein protect hamsters against SARS-CoV challenge despite their capacity to mediate FcγRII-dependent entry into B cells in vitro. Vaccine25(4), 729–740 (2007).
  • Deming D, Sheahan T, Heise M et al. Vaccine efficacy in senescent mice challenged with recombinant SARS-CoV bearing epidemic and zoonotic spike variants. PLoS Med.3(12), 525 (2006).
  • Tan YJ, Goh PY, Fielding BC et al. Profiles of antibody responses against severe acute respiratory syndrome coronavirus recombinant proteins and their potential use as diagnostic markers. Clin. Diagn. Lab. Immunol.11(2), 362–371 (2004).
  • Woo PC, Lau SK, Wong BH et al. Detection of specific antibodies to severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein for serodiagnosis of SARS coronavirus pneumonia. J. Clin. Microbiol.42(5), 2306–2309 (2004).
  • Liu X, Shi Y, Li P et al. Profile of antibodies to the nucleocapsid protein of the severe acute respiratory syndrome (SARS)-associated coronavirus in probable SARS patients. Clin. Diagn. Lab. Immunol.11(1), 227–228 (2004).
  • Greenough TC, Carville A, Coderre J et al. Pneumonitis and multi-organ system disease in common marmosets (Callithrix jacchus) infected with the severe acute respiratory syndrome-associated coronavirus. Am J. Pathol.167(2), 455–463 (2005).
  • Sui J, Li W, Murakami A et al. Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc. Natl Acad. Sci. USA101(8), 2536–2541 (2004).
  • Traggiai E, Becker S, Subbarao K et al. An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nat. Med.10(8), 871–875 (2004).
  • Roper RL, Payne LG, Moss B. Extracellular vaccinia virus envelope glycoprotein encoded by the A33R gene. J. Virol.70(6), 3753–3762 (1996).
  • Fogg C, Lustig S, Whitbeck JC et al. Protective immunity to vaccinia virus induced by vaccination with multiple recombinant outer membrane proteins of intracellular and extracellular virions. J. Virol.78(19), 10230–10237 (2004).
  • Golden JW, Hooper JW. Heterogeneity in the A33 protein impacts the cross-protective efficacy of a candidate smallpox DNA vaccine. Virology377(1), 19–29 (2008).
  • Hu MC, Jones T, Kenney RT et al. Intranasal protollin-formulated recombinant SARS S-protein elicits respiratory and serum neutralizing antibodies and protection in mice. Vaccine25(34), 6334–6340 (2007).
  • Yang L, Peng H, Zhu Z et al. Persistent memory CD4+ and CD8+ T-cell responses in recovered severe acute respiratory syndrome (SARS) patients to SARS coronavirus M antigen. J. Gen.Virol.88(Pt 10), 2740–2748 (2007).
  • Qiu M, Shi Y, Guo Z et al. Antibody responses to individual proteins of SARS coronavirus and their neutralization activities. Microbes Infect.7(5–6), 882–889 (2005).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.