152
Views
55
CrossRef citations to date
0
Altmetric
Review

Vaccination approaches against Trypanosoma cruzi infection

, &
Pages 921-935 | Published online: 09 Jan 2014

References

  • Aufderheide AC, Salo W, Madden M et al. A 9,000-year record of Chagas’ disease. Proc. Natl Acad. Sci. USA101(7), 2034–2039 (2004).
  • Yoshida N. Trypanosoma cruzi infection by oral route: how the interplay between parasite and host components modulates infectivity. Parasitol. Int.57(2), 105–109 (2008).
  • Tarleton RL, Reithinger R, Urbina JA, Kitron U, Gürtler RE. The challenges of chagas disease – grim outlook or glimmer of hope? PLoS Med.4(12), e332 (2007).
  • Mady C, Ianni BM, de Souza JL Jr. Benznidazole and Chagas disease: can an old drug be the answer to an old problem? Expert Opin. Investig. Drugs17(10), 1427–1433 (2008).
  • Sülsen VP, Cazorla SI, Frank FM et al. Trypanocidal and leishmanicidal activities of flavonoids from Argentine medicinal plants. Am. J. Trop. Med. Hyg.77(4), 654–659 (2007).
  • Sülsen VP, Frank FM, Cazorla SI et al. Trypanocidal and leishmanicidal activities of sesquiterpene lactones from Ambrosia tenuifolia Sprengel (Asteraceae). Antimicrob. Agents Chemother.52(7), 2415–2419 (2008).
  • Soeiro MN, de Castro SL. Trypanosoma cruzi targets for new chemotherapeutic approaches. Expert Opin. Ther. Targets13(1), 105–121 (2009).
  • Duschak VG, Couto AS. An insight on targets and patented drugs for chemotherapy of Chagas disease. Recent Pat. Antiinfect. Drug Discov.2(1), 19–51 (2007).
  • Tarleton RL. Immune system recognition of Trypanosoma cruzi. Curr. Op. Immunol.129, 430–434 (2007).
  • Sun JC, Beilke JN, Lanier LL. Adaptive immune features of natural killer cells. Nature457(7229), 557–561 (2009).
  • Sardinha LR, Elias RM, Mosca T et al. Contribution of NK, NKT, γδ T, and αβ T cells to the γ interferon response required for liver protection against Trypanosoma cruzi. Infect. Immun.74(4), 2031–2042 (2006).
  • Lieke T, Graefe SEB, Klauenberg U, Fleischer B, Jacobs T. NK cells contribute to the control of Trypanosoma cruzi infection by killing free parasites by perforin-independent mechanisms. Infect. Immun.72, 6817–6825 (2004).
  • Duthie MS, Kahn SJ. NK cell activation and protection occur independently of natural killer T cells during Trypanosoma cruzi infection. Int Immunol.17(5), 607–613 (2005).
  • Duthie MS, Kahn SJ. During acute Trypanosoma cruzi infection highly susceptible mice deficient in natural killer cells are protected by a single α-galactosylceramide treatment. Immunology119(3), 355–361 (2006).
  • Madison MN, Kleshchenko YY, Nde PN, Simmons KJ, Lima MF, Villalta F. Human defensin α-1 causes Trypanosoma cruzi membrane pore formation and induces DNA fragmentation, which leads to trypanosome destruction. Infect. Immun.75(10), 4780–4791 (2007).
  • Miyahira Y. Trypanosoma cruzi infection from the view of CD8+ T cell immunity – an infection model for developing T cell vaccine. Parasitol. Int.57(1), 38–48. Erratum in: Parasitol. Int.57(2), 242 (2008).
  • Hoft DF, Eickhoff CS. Type 1 immunity provides both optimal mucosal and systemic protection against a mucosally invasive, intracellular pathogen. Infect. Immun.73(8), 4934–4940 (2005).
  • Tzelepis F, de Alencar BC, Penido ML, Gazzinelli RT, Persechini PM, Rodrigues MM. Distinct kinetics of effector CD8+ cytotoxic T cells after infection with Trypanosoma cruzi in naive or vaccinated mice. Infect. Immun.74(4), 2477–2481 (2006).
  • Kotner J, Tarleton R. Endogenous CD4+ CD25+ regulatory T cells have a limited role in the control of Trypanosoma cruzi infection in mice. Infect. Immun.75(2), 861–869 (2007).
  • Bixby LM, Tarleton RL. Stable CD8+ T cell memory during persistent Trypanosoma cruzi infection. J. Immunol.181(4), 2644–2650 (2008).
  • Bustamante JM, Bixby LM, Tarleton RL. Drug-induced cure drives conversion to a stable and protective CD8+ T central memory response in chronic Chagas disease. Nat Med.14(5), 542–550 (2008).
  • Martin DL, Weatherly DB, Laucella SA et al. CD8+ T-cell responses to Trypanosoma cruzi are highly focused on strain-variant trans-sialidase epitopes. PLoS Pathog.2(8), 77 (2006).
  • Tzelepis F, de Alencar BC, Penido M et al. Infection with Trypanosoma cruzi restricts the repertoire of parasite-specific CD8+ T cells leading to immunodominance. J. Immunol.180(3), 1737–1748 (2008).
  • Chou B, Hisaeda H, Shen J et al. Critical contribution of immunoproteasomes in the induction of protective immunity against Trypanosoma cruzi in mice vaccinated with a plasmid encoding a CTL epitope fused to green fluorescence protein. Microbes Infect.10(3), 241–250 (2008).
  • Garg N, Bhatia V. Current status and future prospects for a vaccine against American trypanosomiasis. Expert Rev. Vaccines4(6), 867–880 (2005).
  • Cazzulo JJ, Cazzulo Franke MC, Martínez J, Franke de Cazzulo BM. Some kinetic properties of a cysteine proteinase (cruzipain) from Trypanosoma cruzi. Biochim. Biophys. Acta1037(2), 186–191 (1990).
  • Eakin AE, Mills AA, Harth G, McKerrow JH, Craik CS. The sequence, organization, and expression of the major cysteine protease (cruzain) from Trypanosoma cruzi. J. Biol. Chem.267(11), 7411–7420 (1992).
  • Murta AC, Persechini PM, Padron Tde S, de Souza W, Guimarães JA, Scharfstein J. Structural and functional identification of GP57/51 antigen of Trypanosoma cruzi as a cysteine proteinase. Mol. Biochem. Parasitol.43(1), 27–38 (1990).
  • Malchiodi EL, Chiaramonte MG, Martinez JA, Zwirner NW, Margni RA, Cazzulo JJ. Identity of the major cysteine proteinase (cruzipain) from Trypanosoma cruzi and an antigen (Ag163B6) isolated with a monoclonal antibody. Immunol. Lett.35, 59–62 (1993).
  • Guiñazú N, Pellegrini A, Carrera-Silva EA et al. Immunisation with a major Trypanosoma cruzi antigen promotes pro-inflammatory cytokines, nitric oxide production and increases TLR2 expression. Int. J. Parasitol.37(11), 1243–1254 (2007).
  • Frank FM, Petray PB, Cazorla SI, Muñoz MC, Corral RS, Malchiodi EL. Use of a purified Trypanosoma cruzi antigen and CpG oligodeoxynucleotides for immunoprotection against a lethal challenge with trypomastigotes. Vaccine22, 77–86 (2003).
  • Cazorla SI, Frank FM, Becker P, Corral RS, Guzman CA, Malchiodi EL. Prime-boost immunization with recombinant cruzipain co-administered with MALP-2 as adjuvant triggers a protective immune response able to decrease tissue injury in experimental Trypanosoma cruzi infection. Vaccine26, 1999–2009 (2008).
  • Cazorla SI, Becker P, Frank FM et al. Oral vaccination with Salmonella enterica as a cruzipain-DNA delivery system confers protective immunity against Trypanosoma cruzi. Infect. Immun.76(1), 324–333 (2008).
  • Fralish BH, Tarleton RL. Genetic immunization with LYT1 or a pool of trans-sialidase genes protects mice from lethal Trypanosoma cruzi infection. Vaccine21(21–22), 3070–3080 (2003).
  • Machado AV, Cardoso JE, Claser C, Rodrigues MM, Gazzinelli RT, Bruna-Romero O. Long-term protective immunity induced against Trypanosoma cruzi infection after vaccination with recombinant adenoviruses encoding amastigote surface protein-2 and trans-sialidase. Hum. Gene Ther.17(9), 898–908 (2006).
  • Fontanella GH, De Vusser K, Laroy W et al. Immunization with an engineered mutant trans-sialidase highly protects mice from experimental Trypanosoma cruzi infection: a vaccine candidate. Vaccine26(19), 2322–2334 (2008).
  • Hoft DF, Eickhoff CS, Giddings OK, Vasconcelos JR, Rodrigues MM. Trans-sialidase recombinant protein mixed with CpG motif-containing oligodeoxynucleotide induces protective mucosal and systemic Trypanosoma cruzi immunity involving CD8+ CTL and B cell-mediated cross-priming. J. Immunol.179(10), 6889–6900 (2007).
  • Boscardin SB, Kinoshita SS, Fujimura AE, Rodrigues MM. Immunization with cDNA expressed by amastigotes of Trypanosoma cruzi elicits protective immune response against experimental infection. Infect. Immun.71(5), 2744–2757 (2003).
  • Vasconcelos JR, Hiyane MI, Marinho CR et al. Protective immunity against Trypanosoma cruzi infection in a highly susceptible mouse strain after vaccination with genes encoding the amastigote surface protein-2 and transialidase. Hum. Gene Ther.15(9), 878–886 (2004).
  • Araújo AF, de Alencar BC, Vasconcelos JR et al. CD8+-T-cell-dependent control of Trypanosoma cruzi infection in a highly susceptible mouse strain after immunization with recombinant proteins based on amastigote surface protein 2. Infect. Immun.73(9), 6017–6025 (2005).
  • Claser C, Espíndola NM, Sasso G, Vaz AJ, Boscardin SB, Rodrigues MM. Immunologically relevant strain polymorphism in the amastigote surface protein 2 of Trypanosoma cruzi. Microbes Infect.9(8), 1011–1019 (2007).
  • Silveira EL, Claser C, Haolla FA, Zanella LG, Rodrigues MM. Novel protective antigens expressed by amastigotes provide immunity to highly susceptible mice to Chagas disease. Clin. Vaccine Immunol.15(8), 1292–1300 (2008).
  • Morell M, Thomas MC, Caballero T, Alonso C, López MC. The genetic immunization with paraflagellar rod protein-2 fused to the HSP70 confers protection against late Trypanosoma cruzi infection. Vaccine24(49–50), 7046–7055 (2006).
  • García GA, Arnaiz MR, Laucella SA et al. Immunological and pathological responses in BALB/c mice induced by genetic administration of Tc 13 Tul antigen of Trypanosoma cruzi. Parasitology132(6), 855–866 (2006).
  • Pereira VR, Lorena VM, Nakazawa M et al. Humoral and cellular immune responses in BALB/c and C57BL/6 mice immunized with cytoplasmic (CRA) and flagellar (FRA) recombinant repetitive antigens, in acute experimental Trypanosoma cruzi infection. Parasitol. Res.96(3), 154–161 (2005).
  • Bhatia V, Sinha M, Luxon B, Garg N. Utility of the Trypanosoma cruzi sequence database for identification of potential vaccine candidates by in silico and in vitro screening. Infect. Immun.72(11), 6245–6254 (2004).
  • Bhatia V, Garg NJ. Previously unrecognized vaccine candidates control Trypanosoma cruzi infection and immunopathology in mice. Clin. Vaccine Immunol.15(8), 1158–1164 (2008).
  • Dumonteil E. DNA vaccines against protozoan parasites: advances and challenges. J. Biomed. Biotechnol.2007(6), 90520 (2007).
  • Tekiel V, Alba-Soto CD, González Cappa SM, Postan M, Sánchez DO. Identification of novel vaccine candidates for Chagas disease by immunization with sequential fractions of a trypomastigote cDNA expression library. Vaccine27(9), 1323–1332 (2009).
  • Basso B, Cervetta L, Moretti E, Carlier Y, Truyens C. Acute Trypanosoma cruzi infection: IL-12, IL-18, TNF, sTNFR and NO in T. rangeli-vaccinated mice. Vaccine22(15–16), 1868–1872 (2004).
  • Basso B, Castro I, Introini V, Gil P, Truyens C, Moretti E. Vaccination with Trypanosoma rangeli reduces the infectiousness of dogs experimentally infected with Trypanosoma cruzi. Vaccine25(19), 3855–3858 (2007).
  • Benabdellah K, González-Rey E, González A. Alternative trans-splicing of the Trypanosoma cruzi LYT1 gene transcript results in compartmental and functional switch for the encoded protein. Mol. Microbiol.65(6), 1559–1567 (2007).
  • Zago MP, Barrio AB, Cardozo RM, Duffy T, Schijman AG, Basombrío MA. Impairment of infectivity and immunoprotective effect of a LYT1 null mutant of Trypanosoma cruzi. Infect. Immun.76(1), 443–451 (2008).
  • Chamekh M, Vercruysse V, Habib M et al. Transfection of Trypanosoma cruzi with host CD40 ligand results in improved control of parasite infection. Infect. Immun.73(10), 6552–6561 (2005).
  • Liu MA, Ulmer JB. Human clinical trials of plasmid DNA vaccines. Adv. Genet.55, 25–40 (2005).
  • Barouch DH. Rational design of gene-based vaccines. J. Pathol.208(2), 283–289 (2006).
  • Calarota SA, Weiner DB. Approaches for the design and evaluation of HIV-1 DNA vaccines. Expert Rev. Vaccines3(4), 135–149 (2004).
  • Garmory HS, Brown KA, Titball RW. DNA vaccines: improving expression of antigens. Genet. Vaccines Ther.1(1), 2 (2003).
  • Moore AC, Hill AV. Progress in DNA-based heterologous prime-boost immunization strategies for malaria. Immunol. Rev.199, 126–143 (2004).
  • Woodland DL. Jump-starting the immune system: prime-boosting comes of age. Trends Immunol.25(2), 98–104 (2004).
  • Barouch DH, Letvin NL, Seder RA. The role of cytokine DNAs as vaccine adjuvants for optimizing cellular immune responses. Immunol. Rev.202, 266–274 (2004).
  • Miyahira Y, Takashima Y, Kobayashi S et al. Immune responses against a single CD8+-T-cell epitope induced by virus vector vaccination can successfully control Trypanosoma cruzi infection. Infect. Immun.73(11), 7356–7365 (2005).
  • Kim BM, Lee DS, Choi JH et al.In vivo kinetics and biodistribution of a HIV-1 DNA vaccine after administration in mice. Arch. Pharm. Res.26(6), 493–498 (2003).
  • Bureau MF, Naimi S, Torero Ibad R et al. Intramuscular plasmid DNA electrotransfer: biodistribution and degradation. Biochim. Biophys. Acta676(2), 138–148 (2004).
  • Wolff JA, Ludtke JJ, Acsadi G, Williams P, Jani A. Long-term persistence of plasmid DNA and foreign gene expression in mouse muscle. Hum. Mol. Genet.1(6), 363–369 (1992).
  • Armengol G, Ruiz LM, Orduz S. The injection of plasmid DNA in mouse muscle results in lifelong persistence of DNA, gene expression, and humoral response. Mol. Biotechnol.27(2), 109–118 (2004).
  • Dumonteil E, Escobedo-Ortegon J, Reyes-Rodriguez N, Arjona-Torres A, Ramirez-Sierra MJ. Immunotherapy of Trypanosoma cruzi infection with DNA vaccines in mice. Infect. Immun.72, 46–53 (2004).
  • Sanchez-Burgos G, Mezquita-Vega RG, Escobedo-Ortegon J et al. Comparative evaluation of therapeutic DNA vaccines against Trypanosoma cruzi in mice. FEMS Immunol. Med. Microbiol.50(3), 333–341 (2007).
  • Duthie MS, Kahn M, Zakayan A, White M, Kahn SJ. Parasite-induced chronic inflammation is not exacerbated by immunotherapy before or during Trypanosoma cruzi Infection. Clin. Vaccine Immunol.14(8), 1005–1012 (2007).
  • Zapata-Estrella H, Hummel-Newell C, Sanchez-Burgos et al. Control of Trypanosoma cruzi infection and changes in T-cell populations induced by a therapeutic DNA vaccine in mice. Immunol. Lett.103(2), 186–191 (2006).
  • de Alencar BC, Araújo AF, Penido ML, Gazzinelli RT, Rodrigues MM. Cross-priming of long lived protective CD8+ T cells against Trypanosoma cruzi infection: importance of a TLR9 agonist and CD4+ T cells. Vaccine25(32), 6018–6027 (2007).
  • Machado FS, Koyama NS, Carregaro V et al. CCR5 plays a critical role in the development of myocarditis and host protection in mice infected with Trypanosoma cruzi. J. Infect. Dis.191(4), 627–636 (2005).
  • Marino AP, da Silva A, dos Santos P et al. Regulated on activation, normal T cell expressed and secreted (RANTES) antagonist (Met-RANTES) controls the early phase of Trypanosoma cruzi-elicited myocarditis. Circulation110(11), 1443–1449 (2004).
  • Roffê E, Souza AL, Caetano BC et al. A DNA vaccine encoding CCL4/MIP-1β enhances myocarditis in experimental Trypanosoma cruzi infection in rats. Microbes Infect.8(12–13), 2745–2755 (2006).
  • Dennis VA, Jefferson A, Singh SR, Ganapamo F, Philipp MT. Interleukin-10 anti-inflammatory response to Borrelia burgdorferi, the agent of Lyme disease: a possible role for suppressors of cytokine signaling 1 and 3. Infect. Immun.74(10), 5780–5789 (2006).
  • Rajasingh J, Bord E, Luedemann C et al. IL-10-induced TNF-α mRNA destabilization is mediated via IL-10 suppression of p38 MAP kinase activation and inhibition of HuR expression. FASEB J.20(12), 2112–2114 (2006).
  • Vitelli-Avelar DM, Sathler-Avelar R, Massara RL et al. Are increased frequency of macrophage-like and natural killer (NK) cells, together with high levels of NKT and CD4+CD25high T cells balancing activated CD8+ T cells, the key to control Chagas’ disease morbidity? Clin. Exp. Immunol.145(1), 81–92 (2006).
  • Mussalem JS, Vasconcelos JR, Squaiella CC et al. Adjuvant effect of the Propionibacterium acnes and its purified soluble polysaccharide on the immunization with plasmidial DNA containing a Trypanosoma cruzi gene. Microbiol Immunol.50(4), 253–263 (2006).
  • Fontanella GH, Pascutti MF, Daurelio L et al. Improved outcome of Trypanosoma cruzi infection in rats following treatment in early life with suspensions of heat-killed environmental Actinomycetales. Vaccine25(17), 3492–3500 (2007).
  • Migliaccio V, Santos FR, Ciancaglini P, Ramalho-Pinto FJ. Use of proteoliposome as a vaccine against Trypanosoma cruzi in mice. Chem. Phys. Lipids.152(2), 86–94 (2008).
  • El-Sayed NM, Myler PJ, Bartholomeu D et al. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science309, 409–415 (2005).
  • Atwood JA 3rd, Weatherly DB, Minning TA et al. The Trypanosoma cruzi proteome. Science309, 473–476 (2005).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.