473
Views
134
CrossRef citations to date
0
Altmetric
Review

Chitosan-based systems for the delivery of vaccine antigens

, &
Pages 937-953 | Published online: 09 Jan 2014

References

  • Ogra PL, Faden H, Wellinger RC. Vaccination strategies for mucosal immune responses. Clin. Microbiol. Rev.14(2), 430–445 (2001).
  • Shahiwala A, Amiji MM. Enhanced mucosal and systemic immune response with squalane oil containing multiple emulsions upon intranasal and oral administration in mice. J. Drug Target.16(4), 302–310 (2008).
  • Olesen OF, Lonnroth A, Mulligan B. Human vaccine research in the European Union. Vaccine27(5), 640–645 (2009).
  • Katz SL. Future vaccines and a global perspective. Lancet350(9093), 1767–1770 (1997).
  • Del Giudice G, Pizza M, Rappuoli R. Mucosal delivery of vaccines. Methods19(1), 148–155 (1999).
  • Holmgren J, Czerkinsky C. Mucosal immunity and vaccines. Nat. Med.11(4), S45–S53 (2005).
  • Kiyono H, Fukuyama S. NALT- versus Peyer’s patch-mediated mucosal immunity. Nat. Rev. Immunol.4(9), 699–710 (2004).
  • Neutra MR, Kozlowski PA. Mucosal vaccines: the promise and the challenge. Nat. Rev. Immunol.6(2), 148–158 (2006).
  • Reed SG, Bertholet S, Coler RN, Friede M. New horizons in adjuvants for vaccine development. Trends Immunol.30(1), 23–32 (2009).
  • Perrie Y, Mohammed AR, Kirby DJ, McNeil SE, Bramwell VW. Vaccine adjuvant systems: enhancing the efficacy of sub-unit protein antigens. Int. J. Pharm.364(2), 272–280 (2008).
  • Saupe A, McBurney W, Rades T, Hook S. Immunostimulatory colloidal delivery systems for cancer vaccines. Expert Opin. Drug Deliv.3(3), 345–354 (2006).
  • Garcon N, Van Mechelen M, Wettendorff M. Development and evaluation of AS04, a novel and improved adjuvant system containing MPL and aluminium salt. In:Immunopotentiators in Modern Vaccines. Schinjs VEJC, O’Hagan DT (Eds.). Elsevier Academic Press, London, UK, 161–177 (2006).
  • Lin X, Hudock H, Arumugham R, Loun B. Identification of particulates in vaccine formulations containing aluminum phosphate. Vaccine26(52), 6814–6817 (2008).
  • Miles AP, McClellan HA, Rausch KM et al. Montanide® ISA 720 vaccines: quality control of emulsions, stability of formulated antigens, and comparative immunogenicity of vaccine formulations. Vaccine23(19), 2530–2539 (2005).
  • Peter K, Men Y, Pantaleo G, Gander B, Corradin G. Induction of a cytotoxic T-cell response to HIV-1 proteins with short synthetic peptides and human compatible adjuvants. Vaccine19(30), 4121–4129 (2001).
  • de Bruijn I, Meyer I, Gerez L, Nauta J, Giezeman K, Palache B. Antibody induction by virosomal, MF59-adjuvanted, or conventional influenza vaccines in the elderly. Vaccine26, 119–127 (2007).
  • Cavanagh DR, Remarque EJ, Sauerwein RW, Hermsen CC, Luty AJF. Influenza virosomes: a flu jab for malaria? Trends Parasitol.24(9), 382–385 (2008).
  • Li Q, Gao JQ, Qiu LY, Cui FD, Jin Y. Enhanced immune responses induced by vaccine using Sendai virosomes as carrier. Int. J. Pharm.329(1–2), 117–121 (2007).
  • Wilson-Welder JH, Torres MP, Kipper MJ, Mallapragada SK, Wannemuehler MJ, Narasimhan B. Vaccine adjuvants: current challenges and future approaches. J. Pharm. Sci.98(4), 1278–1316 (2009).
  • Liang MT, Davies NM, Blanchfield JT, Toth I. Particulate systems as adjuvants and carriers for peptide and protein antigens. Curr. Drug Deliv.3(4), 379–388 (2006).
  • Cox E, Verdonck F, Vanrompay D, Goddeeris B. Adjuvants modulating mucosal immune responses or directing systemic responses towards the mucosa. Vet. Res.37(3), 511–539 (2006).
  • Trujillo-Vargas CM, Mayer KD, Bickert T et al. Vaccinations with T-helper type 1 directing adjuvants have different suppressive effects on the development of allergen-induced T-helper type 2 responses. Clin. Exp. Allergy.35(8), 1003–1013 (2005).
  • Lutsiak ME, Kwon GS, Samuel J. Biodegradable nanoparticle delivery of a Th2-biased peptide for induction of Th1 immune responses. J. Pharm. Pharmacol.58(6), 739–747 (2006).
  • Petrovsky N. Novel human polysaccharide adjuvants with dual Th1 and Th2 potentiating activity. Vaccine24(Suppl. 2), S2–26–29 (2006).
  • Das G, Sheridan S, Janeway CA Jr. The source of early IFN-γ that plays a role in Th1 priming. J. Immunol.167(4), 2004–2010 (2001).
  • Morein B, Sundquist B, Hoglund S, Dalsgaard K, Osterhaus A. Iscom, a novel structure for antigenic presentation of membrane proteins from enveloped viruses. Nature308(5058), 457–460 (1984).
  • Pearse MJ, Drane D. ISCOMATRIX® adjuvant for antigen delivery. Adv. Drug Deliv. Rev.57(3), 465–474 (2005).
  • Wee JL, Scheerlinck JP, Snibson KJ et al. Pulmonary delivery of ISCOMATRIX influenza vaccine induces both systemic and mucosal immunity with antigen dose sparing. Mucosal Immunol.1(6), 489–496 (2008).
  • Jaafari MR, Badiee A, Khamesipour A et al. The role of CpG ODN in enhancement of immune response and protection in BALB/c mice immunized with recombinant major surface glycoprotein of Leishmania (rgp63) encapsulated in cationic liposome. Vaccine25(32), 6107–6117 (2007).
  • Yan W, Huang L. The effects of salt on the physicochemical properties and immunogenicity of protein based vaccine formulated in cationic liposome. Int. J. Pharm.368(1–2), 56–62 (2009).
  • Yan W, Chen W, Huang L. Reactive oxygen species play a central role in the activity of cationic liposome based cancer vaccine. J. Control. Release130(1), 22–28 (2008).
  • He X, Jiang L, Wang F et al. Augmented humoral and cellular immune responses to hepatitis B DNA vaccine adsorbed onto cationic microparticles. J. Control. Release107(2), 357–372 (2005).
  • Zhao A, Rodgers VGJ. Using TEM to couple transient protein distribution and release for PLGA microparticles for potential use as vaccine delivery vehicles. J. Control. Release113(1), 15–22 (2006).
  • Estevan M, Gamazo C, Grilló MJ, Del Barrio GG, Blasco JM, Irache JM. Experiments on a sub-unit vaccine encapsulated in microparticles and its efficacy against Brucella melitensis in mice. Vaccine24(19), 4179–4187 (2006).
  • Borges O, Borchard G, Verhoef JC, de Sousa A, Junginger HE. Preparation of coated nanoparticles for a new mucosal vaccine delivery system. Int. J. Pharm.299(1–2), 155–166 (2005).
  • Sayın B, Somavarapu S, Li XW et al. Mono-N-carboxymethyl chitosan (MCC) and N-trimethyl chitosan (TMC) nanoparticles for non-invasive vaccine delivery. Int. J. Pharm.363(1–2), 139–148 (2008).
  • O’Hagan DT, Singh M, Ulmer JB. Microparticle-based technologies for vaccines. Methods40(1), 10–19 (2006).
  • Fehr T, Skrastina D, Pumpens P, Zinkernagel RM. T cell-independent type I antibody response against B cell epitopes expressed repetitively on recombinant virus particles. Immunology95(16), 9477–9481 (1998).
  • O’Hagan DT, Singh M. Microparticles as vaccine adjuvants and delivery systems. Expert Rev. Vaccines2(2), 269–283 (2003).
  • Kipper MJ, Wilson JH, Wannemuehler MJ, Narasimhan B. Single dose vaccine based on biodegradable polyanhydride microspheres can modulate immune response mechanism. J. Biomed. Mater. Res. A.76(4), 798–810 (2006).
  • Florindo HF, Pandit S, Goncalves LMD, Alpar HO, Almeida AJ.Streptococcus equi antigens adsorbed onto surface modified poly-ε-caprolactone microspheres induce humoral and cellular specific immune responses. Vaccine26(33), 4168–4177 (2008).
  • Alpar HO, Somavarapu S, Atuah KN, Bramwell VW. Biodegradable mucoadhesive particulates for nasal and pulmonary antigen and DNA delivery. Adv. Drug. Deliv. Rev.57, 411–430 (2005).
  • Singh M, Fang J, Kazzaz J et al. A modified process for preparing cationic polylactide-co-glycolide microparticles with adsorbed DNA. Int. J. Pharm.327(1–2), 1–5 (2006).
  • Gombotz WR, Wee SF. Protein release from alginate matrices Adv. Drug Deliv. Rev.31(3), 267–285 (1998).
  • Sayın B, Şenel S. Chitosan and its derivatives for mucosal immunization. In: Current Research and Developments on Chitin and Chitosan in Biomaterials Science (Volume 1). Jayakumar R, Prabaharan M (Eds). Research Signpost, Kerala, India, 145–165 (2008).
  • Combadiére B, Mahe B. Particle-based vaccines for transcutaneous vaccination. Comp. Immunol. Microbiol. Infect. Dis.31(2–3), 293–315 (2008).
  • McGeary RP, Olive C, Toth I. Lipid and carbohydrate based adjuvant/carriers in immunology. J. Peptide Sci.9(7), 405–418 (2003).
  • Champion JA, Katare YK, Mitragotri S. Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J. Control. Release121(1–2), 3–9 (2007).
  • Peek LJ, Middaugh CR, Berkland C. Nanotechnology in vaccine delivery. Adv. Drug Deliv. Rev.60(8), 915–928 (2008).
  • Şenel S, Kaş HS, Squier CA. Application of chitosan in dental drug delivery and therapy. In: Chitosan Per os: From Dietary Supplement to Drug Carrier. Muzzarelli RAA (Ed.). Atec, Grottammare, Italy, 241–256 (2000).
  • Şenel S, McClure SJ. Potential applications of chitosan in veterinary medicine. Adv. Drug Deliv. Rev.56(10), 1467–1480 (2004).
  • Şenel S, Kremer MJ, Kaş HS, Wertz PW, Hıncal AA, Squier CA. Effect of chitosan in enhancing drug delivery across buccal mucosa. In: Advances in Chitin Sciences (Volume 4). Peter MG, Muzzarelli RAA, Domard A (Eds). University of Potsdam, Germany, 254–258 (2000).
  • Illum L, Farraj NF, Davis SS. Chitosan as a novel nasal delivery system for peptide drugs. Pharm. Res.11(8), 1186–1189 (1994).
  • Thanou M, Verhoef JC, Junginger HE. Oral drug absorption enhancement by chitosan and its derivatives. Adv. Drug Deliv. Rev.52(2), 117–126 (2001).
  • Şenel S, Kremer MJ, Kaş S, Wertz PW, Hıncal AA, Squier CA. Enhancing effect of chitosan on peptide drug delivery across buccal mucosa. Biomaterials21(20), 2067–2071 (2000).
  • Berth G, Voigt A, Dautzenberg H, Donath E, Möhwald H. Polyelectrolyte complexes and layer-by-layer capsules from chitosan/chitosan sulfate. Biomacromolecules3(3), 579–590 (2002).
  • Sorlier P, Denuziere A, Viton C, Domard A. Relation between the degree of acetylation and the electrostatic properties of chitin and chitosan. Biomacromolecules2(3), 765–772 (2001).
  • Kang ML, Kang SG, Jiang HL et al. Chitosan microspheres containing Bordetella bronchiseptica antigens as novel vaccine against atrophic rhinitis in pigs. J. Microbiol. Biotechnol.18(6), 1179–1185 (2008).
  • Lai WF, Lin MC. Nucleic acid delivery with chitosan and its derivatives. J. Control. Release134(3), 158–168 (2009).
  • Wimer-Mackin S, Hinchcliffe M, Petrie CR et al. An intranasal vaccine targeting both the Bacillus anthracis toxin and bacterium provides protection against aerosol spore challenge in rabbits. Vaccine24(18), 3953–3963 (2006).
  • Zaharoff DA, Rogers CJ, Hance KW, Schlom J, Greiner JW. Chitosan solution enhances both humoral and cell-mediated immune responses to subcutaneous vaccination. Vaccine25(11), 2085–2094 (2007).
  • Issa MM, Köping-Höggard M, Artursson P. Chitosan and the mucosal delivery of biotechnology drugs. Drug Discov. Today2(1), 1–6 (2005).
  • Kotze AF, Thanou M, Lueßen HL, de Boerd BG, Verhoef JC, Junginger HE. Effect of the degree of quaternization of N-trimethyl chitosan chloride on the permeability of intestinal epithelial cells (Caco-2). Eur. J. Pharm. Biopharm.47(3), 269–274 (1999).
  • Colo GD, Zambito Y, Burgalassi S, Nardini I, Saettone MF. Effect of chitosan and of N-carboxymethylchitosan on intraocular penetration of topically applied ofloxacin. Int. J. Pharm.273(1–2), 37–44 (2004).
  • Kean T, Roth S, Thanou MJ. Trimethylated chitosans as nonviral gene delivery vectors: cytotoxicity and transfection efficiency. J. Control. Release103(3), 643–653 (2005).
  • Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J. Control. Release100(1), 5–28 (2004).
  • Zaharoff DA, Rogers CJ, Hance KW, Schlom J, Greiner JW. Chitosan solution enhances the immunoadjuvant properties of GM-CSF. Vaccine25(52), 8673–8686 (2007).
  • Ghendon Y, Markushin S, Krivtsov G, Akopova I. Chitosan as an adjuvant for parenterally administered inactivated influenza vaccines. Arch. Virol.153(5), 831–837 (2008).
  • Coeshott CM, Smithson SL, Verderber Eet al. Pluronic F127-based systemic vaccine delivery systems. Vaccine22(19), 2396–2405 (2004).
  • Kang ML, Jiang HL, Kang SG et al. Pluronic® F127 enhances the effect as an adjuvant of chitosan microspheres in the intranasal delivery of Bordetella bronchiseptica antigens containing dermonecrotoxin. Vaccine25(23), 4602–4610 (2007).
  • Gordon S, Saupe A, McBurney W, Rades T, Hook S. Comparison of chitosan nanoparticles and chitosan hydrogels for vaccine delivery. J. Pharm. Pharmacol.60(12), 1591–600 (2008).
  • Lee JW, Park JH, Robinson JR. Bioadhesive-based dosage forms: the next generation. J. Pharm. Sci.89(7), 850–66 (2000).
  • Illum L, Jabbal-Gill I, Hinchcliffe M, Fisher AN, Davis SS. Chitosan as a novel nasal delivery system for vaccines. Adv. Drug Deliv. Rev.51(1–3), 81–96 (2001).
  • Klas SD, Petrie CR, Warwood SJ et al. A single immunization with a dry powder anthrax vaccine protects rabbits against lethal aerosol challenge. Vaccine26(43), 5494–5502 (2008).
  • Baudner BC, Giuliani MM, Verhoef JC, Rappuoli R, Junginger HE, Giudice GD. The concomitant use of the LTK63 mucosal adjuvant and of chitosan-based delivery system enhances the immunogenicity and efficacy of intranasally administered vaccines. Vaccine21(25–26), 3837–3844 (2003).
  • Moschos SA, Bramwell VW, Somavarapu S, Alpar HO. Comparative immunomodulatory properties of a chitosan–MDP adjuvant combination following intranasal or intramuscular immunisation. Vaccine23(16), 1923–1930 (2005).
  • Borges O, Cordeiro-da-Silva A, Tavares J et al. Immune response by nasal delivery of hepatitis B surface antigen and codelivery of a CpG ODN in alginate coated chitosan nanoparticles. Eur. J. Pharm. Biopharm.69(2), 405–416 (2008).
  • Davies OR, Head L, Armitage D et al. Surface modification of microspheres with steric stabilizing and cationic polymers for gene delivery. Langmuir24(14), 7138–7146 (2008).
  • Csaba N, Garcia-Fuentes M, Alonso MJ. Nanoparticles for nasal vaccination. Adv. Drug Deliv. Rev.61(2), 140–157 (2009).
  • Jaganathan KS, Vyas SP. Strong systemic and mucosal immune responses to surface-modified PLGA microspheres containing recombinant hepatitis B antigen administered intranasally. Vaccine24(19), 4201–4211 (2006).
  • Amidi M, Romeijn SG, Verhoef JCet al.N-trimethyl chitosan (TMC) nanoparticles loaded with influenza subunit antigen for intranasal vaccination: biological properties and immunogenicity in a mouse model. Vaccine25(1), 144–153 (2007).
  • Amidi M, Pellikaan HC, Hirschberg H et al. Diphtheria toxoid-containing microparticulate powder formulations for pulmonary vaccination: preparation, characterization and evaluation in guinea pigs. Vaccine25(37–38), 6818–6829 (2007).
  • Jiang HL, Kang ML, Quan JS et al. The potential of mannosylated chitosan microspheres to target macrophage mannose receptors in an adjuvant-delivery system for intranasal immunization. Biomaterials29(12), 1931–1939 (2008).
  • Svirshchevskaya EV, Alekseeva LG, Reshetov PD et al. Mucoadjuvant properties of lipo- and glycoconjugated derivatives of oligochitosans. Eur. J. Med. Chem.44(5), 2030–2037 (2009).
  • Jiang L, Qian F, He X et al. Novel chitosan derivative nanoparticles enhance the immunogenicity of a DNA vaccine encoding hepatitis B virus core antigen in mice. J. Gene Med.9(4), 253–264 (2007).
  • Read RC, Naylor SC, Potter CW et al. Effective nasal influenza vaccine delivery using chitosan. Vaccine23(35), 4367–4374 (2005).
  • McNeela EA, Jabbal-Gill I, Illum L et al. Intranasal immunization with genetically detoxified diphtheria toxin induces T cell responses in humans: enhancement of Th2 responses and toxin-neutralizing antibodies by formulation with chitosan. Vaccine22(8), 909–914 (2004).
  • Huo Z, Sinha R, McNeela EA et al. Induction of protective serum meningococcal bactericidal and diphtheria-neutralizing antibodies and mucosal immunoglobulin a in volunteers by nasal insufflations of the Neisseria meningitidis serogroup C polysaccharide CRM197 conjugate vaccine mixed with chitosan. Infect. Immun.73(12), 8256–8265 (2005).
  • Maxwell S, Şenel S, McClure S. Mucosal vaccination of sheep with heliotrine antigen. Presented at: 13th International Pharmaceutical Technology Symposium. Ankara, Turkey, 10–13 September 2006.
  • Maxwell S, Şenel S, McClure S. Chitosan for delivery of mucosal vaccines in ruminants. Presented at: 33rd Annual Meeting and Exposition of the Controlled Release Society. Vienna, Austria, 18–22 July 2006.
  • Çokçalişkan C, Gürsoy RN, Günbeyaz M et al. Chitosan for mucosal immunization against the foot and mouth disease. Presented at: 35th Annual Meeting and Exposition of the Controlled Release Society. New York, USA, 12–16 July 2008.
  • Gogev S, de Fays K, Versali MF, Gautier S, Thiry E. Glycol chitosan improves the efficacy of intranasally administrated replication defective human adenovirus type 5 expressing glycoprotein D of bovine herpesvirus 1. Vaccine22(15–16), 1946–1953 (2004).
  • Peluso G, Petillo O, Ranieri M et al. Chitosan-mediated stimulation of macrophage function. Biomaterials15(15), 1215–1220 (1994).
  • Nishimura K, Nishimura S, Nishi N, Saiki I, Tokura S, Azuma I. Immunological activity of chitin and its derivatives. Vaccine2(1), 93–99 (1984).
  • Nagamoto T, Hattori Y, Takayama K, Maitani Y. Novel chitosan particles and chitosan-coated emulsions inducing immune response via intranasal vaccine delivery. Pharm. Res.21(4), 671–674 (2004).
  • Nishimura K, Nishimura S, Nishi N et al. Adjuvant activity of chitin derivatives in mice and guinea-pigs. Vaccine3(5), 379–384 (1985).
  • Foged C, Brodin B, Frokjaer S, Sundblad A. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int. J. Pharm.298(2), 315–322 (2005).
  • Porporatto C, Bianco ID, Correa SG. Local and systemic activity of the polysaccharide chitosan at lymphoid tissues after oral administration. J. Leukoc. Biol.78(1), 62–69 (2005).
  • McNeela EA, O’Connor D, Jabbal-Gill I et al. A mucosal vaccine against diphtheria: formulation of cross reacting material (CRM197) of diphtheria toxin with chitosan enhances local and systemic antibody and Th2 responses following nasal delivery. Vaccine19(9–10), 1188–1198 (2001).
  • Davis SS. The use of soluble polymers and polymer microparticles to provide improved vaccine responses after parenteral and mucosal delivery. Vaccine24(2), S2–7–10 (2006).
  • Kang ML, Kang SG, Jiang HL et al.In vivo induction of mucosal immune responses by intranasal administration of chitosan microspheres containing Bordetella bronchiseptica DNT. Eur. J. Pharm. Biopharm.63(2), 215–220 (2006).
  • Wang X, Zhang X, Kang Y et al. Interleukin-15 enhance DNA vaccine elicited mucosal and systemic immunity against foot and mouth disease virus. Vaccine26(40), 5135–5144 (2008).
  • Khatri K, Goyal AK, Gupta PN, Mishra N, Mehta A, Vyas SP. Surface modified liposomes for nasal delivery of DNA vaccine. Vaccine26(18), 2225–2233 (2008).
  • Khatri K, Goyal AK, Gupta PN, Mishra N, Vyas SP. Plasmid DNA loaded chitosan nanoparticles for nasal mucosal immunization against hepatitis B. Int. J. Pharm.354(1–2), 235–241 (2008).
  • Zhou X, Liu B, Yu X et al. Enhance immune response to DNA vaccine based on a novel multicomponent supramolecular assembly. Biomaterials28(31), 4684–4692 (2007).
  • Borges O, Tavares J, de Sousa A, Borchard G, Junginger HE, Cordeiro-da-Silva A. Evaluation of the immune response following a short oral vaccination schedule with hepatitis B antigen encapsulated into alginate-coated chitosan nanoparticles. Eur. J. Pharm. Sci.32(4–5), 278–290 (2007).
  • Yuan X, Yang X, Cai D et al. Intranasal immunization with chitosan/pCETP nanoparticles inhibits atherosclerosis in a rabbit model of atherosclerosis. Vaccine26(29–30), 3727–3734 (2008).
  • Garmise RJ, Staats HF, Hickey AJ. Novel dry powder preparations of whole inactivated influenza virus for nasal vaccination. AAPS Pharm. Sci. Tech.8(4), E81–E89 (2007).
  • Baudner BC, Morandi M, Giuliani MM et al. Modulation of immune response to group C meningococcal conjugate vaccine given intranasally to mice together with the LTK63 mucosal adjuvant and the trimethyl chitosan delivery system. J. Infect. Dis.189(5), 828–832 (2004).
  • Baudner BC, Verhoef JC, Giuliani MM et al. Protective immune responses to meningococcal C conjugate vaccine after intranasal immunization of mice with the LTK63 mutant plus chitosan or trimethyl chitosan chloride as novel delivery platform. J. Drug Target.13(8–9), 489–498 (2005).
  • Ahire VJ, Sawant KK, Doshi JB, Ravetkar SD. Chitosan microparticles as oral delivery system for tetanus toxoid. Drug Dev. Ind. Pharm.33(10), 1112–1124 (2007).
  • Vila A, Sánchez A, Janes K et al. Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice. Eur. J. Pharm. Biopharm.57(1), 123–131 (2004).
  • Ravichandran E, Al-Saleem FH, Ancharski DM et al. Trivalent vaccine against botulinum toxin serotypes A, B, and E that can be administered by the mucosal route. Infect. Immun.75(6), 3043–3054 (2007).
  • Xu W, Shen Y, Jiang Z, Wang Y, Chu Y, Xiong S. Intranasal delivery of chitosan–DNA vaccine generates mucosal SIgA and anti-CVB3 protection. Vaccine22(27–28), 3603–3612 (2004).
  • Xie Y, Zhou NJ, Gong YF et al. The immune response induced by H. pylori vaccine with chitosan as adjuvant and its relation to immune protection. World J. Gastroenterol.13(10), 1547–1553 (2007).
  • Chen F, Zhang ZR, Yuan F, Qin X, Wang M, Huang Y. In vitro and in vivo study of N-trimethyl chitosan nanoparticles for oral protein delivery. Int. J. Pharm.349(1–2), 226–233 (2008).
  • Jain S, Sharma KR, Vyas SP. Chitosan nanoparticles encapsulated vesicular systems for oral immunization: preparation, in vitro and in vivo characterization. J. Pharm. Pharmacol.58(3), 303–310 (2006).
  • Hori M, Onishi H, Machida Y. Evaluation of Eudragit-coated chitosan microparticles as an oral immune delivery system. Int. J. Pharm.297(1–2), 223–234 (2005).
  • Shahiwala A, Vyas TK, Amiji MM. Nanocarriers for systemic and mucosal vaccine delivery. Recent Pat. Drug Deliv. Formul.1(1), 1–9 (2007).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.