321
Views
48
CrossRef citations to date
0
Altmetric
Review

Novel adjuvants and delivery systems for enhancing immune responses induced by immunogens

&
Pages 227-251 | Published online: 09 Jan 2014

References

  • Ramon G. Sur la toxine et surranatoxine diphtheriques. Ann. Inst. Pasteur38, 1–7 (1924).
  • Vogel FR, Powell MF. A compendium of vaccine adjuvants and excipients. In: Vaccine Design: The Subunit and Adjuvant Approach. Powell MF, Newman MJ (Eds). Plenum Press, NY, USA, 141–228 (1995).
  • Edelman R. Adjuvants for the future. In: New Generation Vaccines. Levine MM, Woodrow GC, Kaper JB, Cobon GS (Eds). Marcel Dekker Inc., NY, USA, 173–192 (1997).
  • Lindblad EB. Aluminium compounds for use in vaccines. Immunol. Cell Biol.82(5), 497–505 (2004).
  • Lindblad EB. Aluminium adjuvant – in retrospect and prospect. Vaccine22(27–28), 3658–3668 (2004).
  • O’Hagan DT. MF59 is a safe and potent vaccine adjuvant that enhances protection against influenza virus infection. Expert Rev. Vaccines6(5), 699–710 (2007).
  • Stephenson I, Nicholson KG, Hoschler K et al. Antigenically distinct MF59-adjuvanted vaccine to boost immunity to H5N1. N. Engl. J. Med.359(15), 1631–1633 (2008).
  • Petaja T, Keranen H, Karppa T et al. Immunogenicity and safety of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine in healthy boys aged 10–18 years. J. Adolesc. Health44(1), 33–40 (2009).
  • Baldridge JR, Crane RT. Monophosphoryl lipid A (MPL) formulations for the next generation of vaccines. Methods19(1), 103–107 (1999).
  • Dagan R, Amir J, Livni G et al. Concomitant administration of a virosome-adjuvanted hepatitis a vaccine with routine childhood vaccines at age twelve to fifteen months: a randomized controlled trial. Pediatr. Infect. Dis. J.26(9), 787–793 (2007).
  • Patel GB, Sprott GD. Archaeobacterial ether lipid liposomes (archaeosomes) as novel vaccine and drug delivery systems. Crit. Rev. Biotechnol.19(4), 317–357 (1999).
  • Krishnan L, Dennis Sprott G. Archaeosomes as self-adjuvanting delivery systems for cancer vaccines. J. Drug Target.11(8–10), 515–524 (2003).
  • Krishnan L, Dicaire CJ, Patel GB, Sprott GD. Archaeosome vaccine adjuvants induce strong humoral, cell-mediated, and memory responses: comparison to conventional liposomes and alum. Infect. Immun.68(1), 54–63 (2000).
  • Mishra N, Goyal AK, Tiwari S et al. Recent advances in mucosal delivery of vaccines: role of mucoadhesive/biodegradable polymeric carriers. Expert Opin. Ther. Pat.20(5), 661–679 (2010).
  • Lambrecht BN, Kool M, Willart MA, Hammad H. Mechanism of action of clinically approved adjuvants. Curr. Opin Immunol.21(1), 23–29 (2009).
  • McKee AS, Munks MW, Marrack P. How do adjuvants work? Important considerations for new generation adjuvants. Immunity27(5), 687–690 (2007).
  • Zinkernagel RM, Ehl S, Aichele P, Oehen S, Kundig T, Hengartner H. Antigen localisation regulates immune responses in a dose- and time-dependent fashion: a geographical view of immune reactivity. Immunol. Rev.156, 199–209 (1997).
  • Janeway CA Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol.54, 1–13 (1989).
  • Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity [see comments]. Nature388(6640), 394–397 (1997).
  • Fearon DT. Seeking wisdom in innate immunity. Nature388(6640), 323–324 (1997).
  • Fearon DT, Locksley RM. The instructive role of innate immunity in the acquired immune response. Science272(5258), 50–53 (1996).
  • Yip HC, Karulin AY, Tary-Lehmann M et al. Adjuvant-guided type-1 and type-2 immunity: infectious/noninfectious dichotomy defines the class of response. J. Immunol.162(7), 3942–3949 (1999).
  • Ribi E, Amano K, Cantrell JL, Schwartzman S, Parker R, Takayama K. Preparation and antitumor activity of nontoxic lipid A. Cancer Immunol. Immunother.12, 91–96 (1982).
  • Qureshi N, Takayama K, Ribi E. Purification and structural determination of nontoxic lipid A obtained form the lipopolysaccharide of Salmonella typhimurium. J. Biol. Chem.257(19), 11808–11815 (1982).
  • Baker PJ, Haslov KR, Fauntleroy MB, Stashak PW, Myers K, Ulrich JT. Enrichment of suppressor T cells by means of binding to monophosphoryl lipid A. Infect. Immun.58(3), 726–731 (1990).
  • Brunner R, Wallmann J, Szalai K et al. The impact of aluminium in acid-suppressing drugs on the immune response of BALB/c mice. Clin. Exp. Allergy37(10), 1566–1573 (2007).
  • Domer JE, Human LG, Andersen GB, Rudbach JA, Asherson GL. Abrogation of suppression of delayed hypersensitivity induced by Candida albicans-derived mannan by treatment with monophosphoryl lipid A. Infect. Immun.61(5), 2122–2130 (1993).
  • Gustafson GL, Rhodes MJ. Bacterial cell wall products as adjuvants: early interferon γ as a marker for adjuvants that enhance protective immunity. Res. Immunol.143(5), 483–488 (1992).
  • Schneerson R, Fattom A, Szu SC et al. Evaluation of monophosphoryl lipid A (MPL) as an adjuvant. Enhancement of the serum antibody response in mice to polysaccharide-protein conjugates by concurrent injection with MPL. J. Immunol.147(7), 2136–2140 (1991).
  • Garg M, Subbarao B. Immune responses of systemic and mucosal lymphoid organs to Pnu-Imune vaccine as a function of age and the efficacy of monophosphoryl lipid A as an adjuvant. Infect. Immun.60(6), 2329–2336 (1992).
  • Ambrosch F, Wiedermann G, Kundi M et al. A hepatitis B vaccine formulated with a novel adjuvant system. Vaccine18(20), 2095–2101 (2000).
  • Fries LF, Gordon DM, Richards RL et al. Liposomal malaria vaccine in humans: a safe and potent adjuvant strategy. Proc. Natl Acad. Sci. USA89(1), 358–362 (1992).
  • Keefer MC, Graham BS, McElrath MJ et al. Safety and immunogenicity of Env 2–3, a human immunodeficiency virus type 1 candidate vaccine, in combination with a novel adjuvant, MTP-PE/MF59. NIAID AIDS Vaccine Evaluation Group. AIDS Res. Hum. Retroviruses12(8), 683–693 (1996).
  • Le TP, Church LW, Corradin G et al. Immunogenicity of Plasmodium falciparum circumsporozoite protein multiple antigen peptide vaccine formulated with different adjuvants. Vaccine16(2–3), 305–312 (1998).
  • Schultz N, Oratz R, Chen D, Zeleniuch-Jacquotte A, Abeles G, Bystryn JC. Effect of DETOX as an adjuvant for melanoma vaccine. Vaccine13(5), 503–508 (1995).
  • Mitchell AD, Myhr BC, Rudd CJ, Caspary WJ, Dunkel VC. Evaluation of the L5178Y mouse lymphoma cell mutagenesis assay: methods used and chemicals evaluated. Environ. Mol. Mutagen.12(Suppl. 13), 1–18 (1988).
  • Mitchell MS, Kan-Mitchell J, Kempf RA, Harel W, Shau HY, Lind S. Active specific immunotherapy for melanoma: Phase I trial of allogeneic lysates and a novel adjuvant. Cancer Res.48(20), 5883–5893 (1988).
  • MacLean GD, Bowen-Yacyshyn MB, Samuel J et al. Active immunization of human ovarian cancer patients against a common carcinoma (Thomsen–Friedenreich) determinant using a synthetic carbohydrate antigen. J. Immunother.11(4), 292–305 (1992).
  • MacLean GD, Reddish M, Koganty RR et al. Immunization of breast cancer patients using a synthetic sialyl-Tn glycoconjugate plus Detox adjuvant. Cancer Immunol. Immunother.36(4), 215–222 (1993).
  • Rickman LS, Gordon DM, Wistar R Jr et al. Use of adjuvant containing mycobacterial cell-wall skeleton, monophosphoryl lipid A, and squalane in malaria circumsporozoite protein vaccine. Lancet337(8748), 998–1001 (1991).
  • Gordon DM, McGovern TW, Krzych U et al. Safety, immunogenicity, and efficacy of a recombinantly produced Plasmodium falciparum circumsporozoite protein–hepatitis B surface antigen subunit vaccine. J. Infect. Dis.171(6), 1576–1585 (1995).
  • Drachenberg KJ, Wheeler AW, Stuebner P, Horak F. A well-tolerated grass pollen-specific allergy vaccine containing a novel adjuvant, monophosphoryl lipid A, reduces allergic symptoms after only four preseasonal injections. Allergy56(6), 498–505 (2001).
  • Patel P, Salapatek AM. Pollinex Quattro: a novel and well-tolerated, ultra short-course allergy vaccine. Expert Rev. Vaccines5(5), 617–629 (2006).
  • Bahr GM, Darcissac E, Bevec D, Dukor P, Chedid L. Immunopharmacological activities and clinical development of muramyl peptides with particular emphasis on murabutide. Int. J. Immunopharmacol.17(2), 117–131 (1995).
  • Palache AM, Beyer WE, Hendriksen E et al. Adjuvancy and reactogenicity of N-acetylglucosaminyl-N-acetylmuramyl-dipeptide (GMDP) orally administered just prior to trivalent influenza subunit vaccine. A double-blind placebo-controlled study in nursing home residents. Vaccine14(14), 1327–1330 (1996).
  • Hart MK, Palker TJ, Matthews TJ et al. Synthetic peptides containing T and B cell epitopes from human immunodeficiency virus envelope gp120 induce anti-HIV proliferative responses and high titers of neutralizing antibodies in rhesus monkeys. J. Immunol.145(8), 2677–2685 (1990).
  • Ivins BE, Welkos SL, Little SF, Crumrine MH, Nelson GO. Immunization against anthrax with Bacillus anthracis protective antigen combined with adjuvants. Infect. Immun.60(2), 662–668 (1992).
  • Kahn JO, Sinangil F, Baenziger J et al. Clinical and immunologic responses to human immunodeficiency virus (HIV) type 1SF2 gp120 subunit vaccine combined with MF59 adjuvant with or without muramyl tripeptide dipalmitoyl phosphatidylethanolamine in non-HIV-infected human volunteers. J. Infect. Dis.170(5), 1288–1291 (1994).
  • Namba K, Nakajima R, Otani T, Azuma I. Oral application of romurtide, a synthetic muramyl dipeptide derivative, stimulates nonspecific resistance to microbial infections and hematopoiesis in mice. Vaccine14(12), 1149–1153 (1996).
  • Namba K, Nitanai H, Otani T, Azuma I. Romurtide, a synthetic muramyl dipeptide derivative, accelerates peripheral platelet recovery in nonhuman primate chemotherapy model. Vaccine14(14), 1322–1326 (1996).
  • Kaji M, Kaji Y, Kaji M et al. Phase 1 clinical tests of influenza MDP-virosome vaccine (KD-5382). Vaccine10(10), 663–667 (1992).
  • van den Akker F, Sarfaty S, Twiddy EM, Connell TD, Holmes RK, Hol WG. Crystal structure of a new heat-labile enterotoxin, LT-IIb. Structure4(6), 665–678 (1996).
  • Vajdy M, Singh M, Ugozzoli M et al. Enhanced mucosal and systemic immune responses to Helicobacter pylori antigens through mucosal priming followed by systemic boosting immunizations. Immunology110(1), 86–94 (2003).
  • Spangler BD. Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microbiol. Rev.56(4), 622–647 (1992).
  • Dickinson BL, Clements JD. Dissociation of Escherichia coli heat-labile enterotoxin adjuvanticity from ADP-ribosyltransferase activity. Infect. Immun.63(5), 1617–1623 (1995).
  • Douce G, Fontana M, Pizza M, Rappuoli R, Dougan G. Intranasal immunogenicity and adjuvanticity of site-directed mutant derivatives of cholera toxin. Infect. Immun.65(7), 2821–2828 (1997).
  • Douce G, Giannelli V, Pizza M et al. Genetically detoxified mutants of heat-labile toxin from Escherichia coli are able to act as oral adjuvants. Infect. Immun.67(9), 4400–4406 (1999).
  • Di Tommaso A, Saletti G, Pizza M et al. Induction of antigen-specific antibodies in vaginal secretions by using a nontoxic mutant of heat-labile enterotoxin as a mucosal adjuvant. Infect. Immun.64(3), 974–979 (1996).
  • Giannelli V, Fontana MR, Giuliani MM, Guangcai D, Rappuoli R, Pizza M. Protease susceptibility and toxicity of heat-labile enterotoxins with a mutation in the active site or in the protease-sensitive loop. Infect. Immun.65(1), 331–334 (1997).
  • Giuliani MM, Del Giudice G, Giannelli V et al. Mucosal adjuvanticity and immunogenicity of LTR72, a novel mutant of Escherichia coli heat-labile enterotoxin with partial knockout of ADP-ribosyltransferase activity. J. Exp. Med.187, 1123–1132 (1998).
  • Barchfeld GL, Hessler AL, Chen M, Pizza M, Rappuoli R, Van Nest GA. The adjuvants MF59 and LT-K63 enhance the mucosal and systemic immunogenicity of subunit influenza vaccine administered intranasally in mice. Vaccine17(7–8), 695–704 (1999).
  • Vajdy M, Singh M, Kazzaz J et al. Mucosal and systemic anti-HIV responses in rhesus macaques following combinations of intranasal and parenteral immunizations. AIDS Res. Hum. Retroviruses20(11), 1269–1281 (2004).
  • Srivastava IK, Stamatatos L, Kan E et al. Purification, characterization, and immunogenicity of a soluble trimeric envelope protein containing a partial deletion of the V2 loop derived from SF162, an R5-tropic human immunodeficiency virus type 1 isolate. J. Virol.77(20), 11244–11259 (2003).
  • Zhou F, Goodsell A, Uematsu Y, Vajdy M. Prolonged protection against Intranasal challenge with influenza virus following systemic immunization or combinations of mucosal and systemic immunizations with a heat-labile toxin mutant. Clin. Vaccine Immunol.16(4), 471–478 (2009).
  • Vajdy M, Baudner B, Del Giudice G, O’Hagan D. A vaccination strategy to enhance mucosal and systemic antibody and T cell responses against influenza. Clin. Immunol.123(2), 166–175 (2007).
  • Goodsell A, Zhou F, Gupta S et al. β7-integrin-independent enhancement of mucosal and systemic anti-HIV antibody responses following combined mucosal and systemic gene delivery. Immunology123(3), 378–389 (2008).
  • Bogers WM, Davis D, Baak I et al. Systemic neutralizing antibodies induced by long interval mucosally primed systemically boosted immunization correlate with protection from mucosal SHIV challenge. Virology382(2), 217–225 (2008).
  • Barnett SW, Srivastava IK, Kan E et al. Protection of macaques against vaginal SHIV challenge by systemic or mucosal and systemic vaccinations with HIV-envelope. AIDS22(3), 339–348 (2008).
  • Glenn GM, Rao M, Matyas GR, Alving CR. Skin immunization made possible by cholera toxin. Nature391(6670), 851 (1998).
  • Glenn GM, Taylor DN, Li X, Frankel S, Montemarano A, Alving CR. Transcutaneous immunization: a human vaccine delivery strategy using a patch. Nat. Med.6(12), 1403–1406 (2000).
  • Barackman JD, Ott G, Pine S, O’Hagan DT. Oral administration of influenza vaccine in combination with the adjuvants LT-K63 and LT-R72 induces potent immune responses comparable to or stronger than traditional intramuscular immunization. Clin. Diagn. Lab. Immunol.8(3), 652–657 (2001).
  • Ryan EJ, McNeela E, Murphy GA et al. Mutants of Escherichia coli heat-labile toxin act as effective mucosal adjuvants for nasal delivery of an acellular pertussis vaccine: differential effects of the nontoxic AB complex and enzyme activity on Th1 and Th2 cells. Infect. Immun.67(12), 6270–6280 (1999).
  • Jakobsen H, Schulz D, Pizza M, Rappuoli R, Jonsdottir I. Intranasal immunization with pneumococcal polysaccharide conjugate vaccines with nontoxic mutants of Escherichia coli heat-labile enterotoxins as adjuvants protects mice against invasive pneumococcal infections. Infect. Immun.67(11), 5892–5897 (1999).
  • Kazzaz J, Neidleman J, Singh M, Ott G, O’Hagan DT. Novel anionic microparticles are a potent adjuvant for the induction of cytotoxic T lymphocytes against recombinant p55 gag from HIV-1. J. Control Release67(2–3), 347–356 (2000).
  • Colwell WM, Simmons DG, Harris JR, Fulp TG, Carrozza JH, Maag TA. Influence of some physical factors on survival of Marek’s disease vaccine virus. Avian Dis.19(4), 781–790 (1975).
  • Singh M, Vajdy M, Gardner J, Briones M, O’Hagan D. Mucosal immunization with HIV-1 gag DNA on cationic microparticles prolongs gene expression and enhances local and systemic immunity. Vaccine20(3–4), 594–602 (2001).
  • Messina JP, Gilkeson GS, Pisetsky DS. Stimulation of in vitro murine lymphocyte proliferation by bacterial DNA. J. Immunol.147(6), 1759–1764 (1991).
  • Tokunaga T, Yamamoto H, Shimada S et al. Antitumor activity of deoxyribonucleic acid fraction from Mycobacterium bovis BCG. I. Isolation, physicochemical characterization, and antitumor activity. J. Natl Cancer Inst.72(4), 955–962 (1984).
  • Krieg AM, Stein CA. Phosphorothioate oligodeoxynucleotides: antisense or anti-protein? Antisense Res. Dev.5(4), 241 (1995).
  • Krieg AM, Yi AK, Matson S et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature374(6522), 546–549 (1995).
  • Klinman DM, Yi AK, Beaucage SL, Conover J, Krieg AM. CpG motifs expressed by bacterial DNA rapidly induce lymphocytes to secrete IL-6, IL-12, and IFNγ. Proc. Natl Acad. Sci. USA93(7), 2879–2883 (1996).
  • Halpern MD, Kurlander RJ, Pisetsky DS. Bacterial-DNA induces murine interferon-γ production by stimulation of interleukin-12 and tumor-necrosis-factor-α. Cell. Immunol.167(1), 72–78 (1996).
  • Yi AK, Chace JH, Cowdery JS, Krieg AM. IFN-γ promotes IL-6 and IgM secretion in response to CpG motifs in bacterial DNA and oligodeoxynucleotides. J. Immunol.156(2), 558–564 (1996).
  • Bernasconi NL, Traggiai E, Lanzavecchia A. Maintenance of serological memory by polyclonal activation of human memory B cells. Science298(5601), 2199–2202 (2002).
  • Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immune response. Nature406(6797), 782–787 (2000).
  • Thomas LJ, Hammond RA, Forsberg EM et al. Co-administration of a CpG adjuvant (VaxImmune, CPG 7909) with CETP vaccines increased immunogenicity in rabbits and mice. Hum. Vaccin.5(2), 79–84 (2009).
  • Malaspina A, Moir S, DiPoto AC et al. CpG oligonucleotides enhance proliferative and effector responses of B cells in HIV-infected individuals. J. Immunol.181(2), 1199–1206 (2008).
  • Jurk M, Vollmer J. Therapeutic applications of synthetic CpG oligodeoxynucleotides as TLR9 agonists for immune modulation. BioDrugs21(6), 387–401 (2007).
  • Takeshita F, Leifer CA, Gursel I et al. Cutting edge: role of Toll-like receptor 9 in CpG DNA-induced activation of human cells. J. Immunol.167(7), 3555–3558 (2001).
  • Bauer M, Redecke V, Ellwart JW et al. Bacterial CpG-DNA triggers activation and maturation of human CD11c-, CD123+ dendritic cells. J. Immunol.166(8), 5000–5007 (2001).
  • Cazeaux N, Bennasser Y, Vidal PL, Li Z, Paulin D, Bahraoui E. Comparative study of immune responses induced after immunization with plasmids encoding the HIV-1 Nef protein under the control of the CMV-IE or the muscle-specific desmin promoter. Vaccine20(27–28), 3322–3331 (2002).
  • Klinman DM, Yamshchikov G, Ishigatsubo Y. Contribution of CpG motifs to the immunogenicity of DNA vaccines. J. Immunol.158(8), 3635–3639 (1997).
  • Krieg AM, Davis HL. Enhancing vaccines with immune stimulatory CpG DNA. Curr. Opin. Mol. Ther.3(1), 15–24 (2001).
  • Barnett SW, Lu S, Srivastava I et al. The ability of an oligomeric human immunodeficiency virus type 1 (HIV-1) envelope antigen to elicit neutralizing antibodies against primary HIV-1 isolates is improved following partial deletion of the second hypervariable region. J. Virol.75(12), 5526–5540 (2001).
  • Klinman DM. Therapeutic applications of CpG-containing oligodeoxynucleotides. Antisense Nucleic Acid Drug Dev.8(2), 181–184 (1998).
  • Krieg AM, Love-Homan L, Yi AK, Harty JT. CpG DNA induces sustained IL-12 expression in vivo and resistance to Listeria monocytogenes challenge. J. Immunol.161(5), 2428–2434 (1998).
  • Moldoveanu Z, Clements ML, Prince SJ, Murphy BR, Mestecky J. Human immune responses to influenza virus vaccines administered by systemic or mucosal routes. Vaccine13(11), 1006–1012 (1995).
  • Kovarik J, Bozzotti P, Love-Homan L et al. CpG oligodeoxynucleotides can circumvent the Th2 polarization of neonatal responses to vaccines but may fail to fully redirect Th2 responses established by neonatal priming. J. Immunol.162(3), 1611–1617 (1999).
  • McCluskie MJ, Davis HL. CpG DNA is a potent enhancer of systemic and mucosal immune responses against hepatitis B surface antigen with intranasal administration to mice. J. Immunol.161(9), 4463–4466 (1998).
  • Brazolot Millan CL, Weeratna R, Krieg AM, Siegrist CA, Davis HL. CpG DNA can induce strong Th1 humoral and cell-mediated immune responses against hepatitis B surface antigen in young mice. Proc. Natl Acad. Sci. USA95(26), 15553–15558 (1998).
  • Eastcott JW, Holmberg CJ, Dewhirst FE, Esch TR, Smith DJ, Taubman MA. Oligonucleotide containing CpG motifs enhances immune response to mucosally or systemically administered tetanus toxoid. Vaccine19(13–14), 1636–1642 (2001).
  • Horner AA, Ronaghy A, Cheng PM et al. Immunostimulatory DNA is a potent mucosal adjuvant. Cell. Immunol.190(1), 77–82 (1998).
  • McCluskie MJ, Davis HL. Oral, intrarectal and intranasal immunizations using CpG and non-CpG oligodeoxynucleotides as adjuvants. Vaccine19(4–5), 413–422 (2000).
  • Klinman DM, Barnhart KM, Conover J. CpG motifs as immune adjuvants. Vaccine17(1), 19–25 (1999).
  • Broide D, Schwarze J, Tighe H et al. Immunostimulatory DNA sequences inhibit IL-5, eosinophilic inflammation, and airway hyperresponsiveness in mice. J. Immunol.161(12), 7054–7062 (1998).
  • Burke B, Gomez-Roman VR, Lian Y et al. Neutralizing antibody responses to subtype B and C adjuvanted HIV envelope protein vaccination in rabbits. Virology387(1), 147–156 (2009).
  • Kensil CR, Patel U, Lennick M, Marciani D. Separation and characterization of saponins with adjuvant activity from Quillaja saponaria Molina cortex. J. Immunol.146(2), 431–437 (1991).
  • Glaueri AM, Dingle JT, Lucy JA. Action of saponins on biological membranes. Nature196, 953 (1962).
  • Powell MF, Cleland JL, Eastman DJ et al. Immunogenicity and HIV-1 virus neutralization of MN recombinant glycoprotein 120/HIV-1 QS21 vaccine in baboons [published erratum appears in AIDS Res. Hum. Retroviruses 1995 May; 11(5), 661]. AIDS Res. Hum. Retroviruses10(Suppl. 2), S105–S108 (1994).
  • Kensil CR, Barrett C, Kushner N et al. Development of a genetically engineered vaccine against feline leukemia virus infection. J. Am. Vet. Med. Assoc.199(10), 1423–1427 (1991).
  • Sun HX, Xie Y, Ye YP. Advances in saponin-based adjuvants. Vaccine27(12), 1787–1796 (2009).
  • Kircheis R, Vondru P, Zinocker I et al. Immunization of Rhesus monkeys with the conjugate vaccine IGN402 induces an IgG immune response against carbohydrate and protein antigens, and cancer cells. Vaccine24(13), 2349–2357 (2006).
  • Garcon N, Chomez P, Van Mechelen M. GlaxoSmithKline adjuvant systems in vaccines: concepts, achievements and perspectives. Expert Rev. Vaccines6(5), 723–739 (2007).
  • Garcon N, Goldman M. Boosting vaccine power. Sci. Am.301(4), 72–79 (2009).
  • Cluff CW. Monophosphoryl lipid A (MPL) as an adjuvant for anti-cancer vaccines: clinical results. Adv. Exp. Med. Biol.667, 111–123 (2010).
  • Morein B, Sundquist B, Hoglund S, Dalsgaard K, Osterhaus A. Iscom, a novel structure for antigenic presentation of membrane proteins from enveloped viruses. Nature308(5958), 457–460 (1984).
  • Rimmelzwaan GF, Baars M, van Amerongen G, van Beek R, Osterhaus AD. A single dose of an ISCOM influenza vaccine induces long-lasting protective immunity against homologous challenge infection but fails to protect Cynomolgus macaques against distant drift variants of influenza A (H3N2) viruses. Vaccine20(1–2), 158–163 (2001).
  • Rimmelzwaan GF, Claas EC, van Amerongen G, de Jong JC, Osterhaus AD. ISCOM vaccine induced protection against a lethal challenge with a human H5N1 influenza virus. Vaccine17(11–12), 1355–1358 (1999).
  • Villacres-Eriksson M, Bergstrom-Mollaoglu M, Kaberg H, Lovgren K, Morein B. The induction of cell-associated and secreted IL-1 by iscoms, matrix or micelles in murine splenic cells. Clin. Exp. Immunol.93(1), 120–125 (1993).
  • Ozel M, Hoglund S, Gelderblom HR, Morein B. Quaternary structure of the immunostimulating complex (ISCOM). J. Ultrastruct. Mol. Struct. Res.102(3), 240–248 (1989).
  • Lovgren K. The serum antibody response distributed in subclasses and isotypes after intranasal and subcutaneous immunization with influenza virus immunostimulating complexes. Scand. J. Immunol.27(2), 241–245 (1988).
  • Jones LS, Cipolla D, Liu J, Shire SJ, Randolph TW. Investigation of protein–surfactant interactions by analytical ultracentrifugation and electron paramagnetic resonance: the use of recombinant human tissue factor as an example. Pharm. Res.16(6), 808–812 (1999).
  • Thaparr MA, Parr EL, Bozzola JJ, Parr MB. Secretory immune responses in the mouse vagina after parenteral or intravaginal immunization with an immunostimulating complex (ISCOM). Vaccine9(2), 129–133 (1991).
  • Rimmelzwaan GF, Osterhaus A. Cytotoxic T-lymphocyte memory – role in cross-protective immunity against influenza. Vaccine13(8), 703–705 (1995).
  • Ronnberg B, Fekadu M, Morein B. Adjuvant activity of non-toxic Quillaja saponaria Molina components for use in ISCOM matrix. Vaccine13(14), 1375–1382 (1995).
  • Sundquist B, Lovgren K, Morein B. Influenza virus ISCOMs: antibody response in animals. Vaccine6(1), 49–53 (1988).
  • Brey RN. Development of vaccines based on formulations containing nonionic block copolymers. Pharm. Biotechnol.6, 297–311 (1995).
  • Bennett B, Check IJ, Olsen MR, Hunter RL. A comparison of commercially available adjuvants for use in research. J. Immunol. Methods153(1–2), 31–40 (1992).
  • Howerton DA, Hunter RL, Ziegler HK, Check IJ. Induction of macrophage Ia expression in vivo by a synthetic block copolymer, L81. J. Immunol.144(5), 1578–1584 (1990).
  • Heath AW. Cytokines as immunological adjuvants. Pharm. Biotechnol.6, 645–658 (1995).
  • Salgaller ML, Lodge PA. Use of cellular and cytokine adjuvants in the immunotherapy of cancer. J. Surg. Oncol.68(2), 122–138 (1998).
  • Pettit DK, Lawter JR, Huang WJ et al. Characterization of poly(glycolide-co-D,L-lactide)/poly(D,L-lactide) microspheres for controlled release of GM-CSF. Pharm. Res.14(10), 1422–1430 (1997).
  • Egilmez NK, Jong YS, Sabel MS, Jacob JS, Mathiowitz E, Bankert RB. In situ tumor vaccination with interleukin-12-encapsulated biodegradable microspheres: induction of tumor regression and potent antitumor immunity. Cancer Res.60(14), 3832–3837 (2000).
  • Pashine A, Valiante NM, Ulmer JB. Targeting the innate immune response with improved vaccine adjuvants. Nat. Med.11(4 Suppl.), S63–S68 (2005).
  • Cooper CL, Davis HL, Morris ML et al. CPG 7909, an immunostimulatory TLR9 agonist oligodeoxynucleotide, as adjuvant to Engerix-B HBV vaccine in healthy adults: a double-blind Phase I/II study. J. Clin. Immunol.24(6), 693–701 (2004).
  • Mason KA, Ariga H, Neal R et al. Targeting Toll-like receptor 9 with CpG oligodeoxynucleotides enhances tumor response to fractionated radiotherapy. Clin. Cancer Res.11(1), 361–369 (2005).
  • Hengge UR, Cusini M. Topical immunomodulators for the treatment of external genital warts, cutaneous warts and molluscum contagiosum. Br. J. Dermatol.149(Suppl. 66), 15–19 (2003).
  • Hemmi H, Kaisho T, Takeuchi O et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol.3(2), 196–200 (2002).
  • Asai Y, Ohyama Y, Gen K, Ogawa T. Bacterial fimbriae and their peptides activate human gingival epithelial cells through Toll-like receptor 2. Infect. Immun.69(12), 7387–7395 (2001).
  • Chernysh S, Kim SI, Bekker G et al. Antiviral and antitumor peptides from insects. Proc. Natl Acad. Sci. USA99(20), 12628–12632 (2002).
  • Allison AC, Byars NE. An adjuvant formulation that selectively elicits the formation of antibodies of protective isotypes and of cell-mediated immunity. J. Immunol. Methods95(2), 157–168 (1986).
  • Lindblad EB. Freund’s adjuvants. In: Vaccine Adjuvants: Preparation Methods and Research Protocols. O’Hagan DT (Ed.). Humana Press, NJ, USA, 49–63 (2000).
  • Lindblad EB, Hau J. Escaping from the use of Freund’s complete adjuvant. In: Progress in the Reduction Refinement and Replacement of Animal Experimentation. Balls M, van Zeller A-M, Halder ME (Eds). Elsevier Science, Amsterdam, The Netherlands, 1681–1685 (2000).
  • Podda A, Del Giudice G. MF59-adjuvanted vaccines: increased immunogenicity with an optimal safety profile. Expert Rev. Vaccines2(2), 197–203 (2003).
  • Ott G, Barchfeld GL, Chernoff D, Radhakrishnan R, van Hoogevest P, Van Nest G. MF59. Design and evaluation of a safe and potent adjuvant for human vaccines. Pharm. Biotechnol.6, 277–296 (1995).
  • Higgins DA, Carlson JR, Van Nest G. MF59 adjuvant enhances the immunogenicity of influenza vaccine in both young and old mice. Vaccine14(6), 478–484 (1996).
  • Tinsley-Bown AM, Fretwell R, Dowsett AB, Davis SL, Farrar GH. Formulation of poly(D,L-lactic-co-glycolic acid) microparticles for rapid plasmid DNA delivery. J. Control. Release66(2–3), 229–241 (2000).
  • Heineman TC, Clements-Mann ML, Poland GA et al. A randomized, controlled study in adults of the immunogenicity of a novel hepatitis B vaccine containing MF59 adjuvant. Vaccine17(22), 2769–2778 (1999).
  • De Donato S, Granoff D, Minutello M et al. Safety and immunogenicity of MF59-adjuvanted influenza vaccine in the elderly. Vaccine17(23–24), 3094–3101 (1999).
  • Menegon T, Baldo V, Bonello C, Dalla CD, Di Tommaso A, Trivello R. Influenza vaccines: antibody responses to split virus and MF59-adjuvanted subunit virus in an adult population. Eur. J. Epidemiol.15(6), 573–576 (1999).
  • Cunningham CK, Wara DW, Kang M et al. Safety of 2 recombinant human immunodeficiency virus type 1 (HIV-1) envelope vaccines in neonates born to HIV-1-infected women. Clin. Infect. Dis.32(5), 801–807 (2001).
  • AIDS Vaccine Evaluation Group 022 Protocol Team. Cellular and humoral immune responses to a canarypox vaccine containing human immunodeficiency virus type 1 Env, Gag, and Pro in combination with rgp120. J. Infect. Dis.183(4), 563–570 (2001).
  • Makidon PE, Bielinska AU, Nigavekar SS et al. Pre-clinical evaluation of a novel nanoemulsion-based hepatitis B mucosal vaccine. PLoS One3(8), e2954 (2008).
  • Hamouda T, Chepurnov A, Mank N et al. Efficacy, immunogenicity and stability of a novel intranasal nanoemulsion-adjuvanted influenza vaccine in a murine model. Hum. Vaccin. DOI: 10.4161/hv.6.7.11818 (2010) (Epub ahead of print).
  • Bielinska AU, Chepurnov AA, Landers JJ et al. A novel, killed-virus nasal vaccinia virus vaccine. Clin. Vaccine Immunol.15(2), 348–358 (2008).
  • Bielinska AU, Janczak KW, Landers JJ et al. Mucosal immunization with a novel nanoemulsion-based recombinant anthrax protective antigen vaccine protects against Bacillus anthracis spore challenge. Infect. Immun.75(8), 4020–4029 (2007).
  • Bielinska AU, Janczak KW, Landers JJ, Markovitz DM, Montefiori DC, Baker JR Jr. Nasal immunization with a recombinant HIV gp120 and nanoemulsion adjuvant produces Th1 polarized responses and neutralizing antibodies to primary HIV type 1 isolates. AIDS Res. Hum. Retroviruses24(2), 271–281 (2008).
  • Bielinska AU, Gerber M, Blanco LP et al. Induction of Th17 cellular immunity with a novel nanoemulsion adjuvant. Crit. Rev. Immunol.30(2), 189–199 (2010).
  • Okada H, Toguchi H. Biodegradable microspheres in drug delivery. Crit. Rev. Ther. Drug Carrier Syst.12(1), 1–99 (1995).
  • Putney SD, Burke PA. Improving protein therapeutics with sustained-release formulations. Nat. Biotechnol.16 [published erratum appears in Nat. Biotechnol.16(5), 478 (1998)](2), 153–157 (1998).
  • Eldridge JH, Staas JK, Meulbroek JA, Tice TR, Gilley RM. Biodegradable and biocompatible poly(DL-lactide-co-glycolide) microspheres as an adjuvant for staphylococcal enterotoxin B toxoid which enhances the level of toxin-neutralizing antibodies. Infect. Immun.59(9), 2978–2986 (1991).
  • O’Hagan DT. HIV and mucosal immunity. Lancet337(8752), 1289 (1991).
  • Maloy KJ, Donachie AM, O’Hagan DT, Mowat AM. Induction of mucosal and systemic immune responses by immunization with ovalbumin entrapped in poly(lactide-co-glycolide) microparticles. Immunology81(4), 661–667 (1994).
  • Moore A, McGuirk P, Adams S et al. Immunization with a soluble recombinant HIV protein entrapped in biodegradable microparticles induces HIV-specific CD8+ cytotoxic T lymphocytes and CD4+ Th1 cells. Vaccine13(18), 1741–1749 (1995).
  • Nixon DF, Hioe C, Chen PD et al. Synthetic peptides entrapped in microparticles can elicit cytotoxic T cell activity. Vaccine14(16), 1523–1530 (1996).
  • Tabata Y, Ikada Y. Effect of the size and surface charge of polymer microspheres on their phagocytosis by macrophage. Biomaterials9(4), 356–362 (1988).
  • Tabata Y, Ikada Y. Macrophage phagocytosis of biodegradable microspheres composed of L-lactic acid/glycolic acid homo- and copolymers. J. Biomed. Mater. Res.22(10), 837–858 (1988).
  • Randolph GJ, Inaba K, Robbiani DF, Steinman RM, Muller WA. Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity11(6), 753–761 (1999).
  • Lutsiak ME, Robinson DR, Coester C, Kwon GS, Samuel J. Analysis of poly(D,L-lactic-co-glycolic acid) nanosphere uptake by human dendritic cells and macrophages in vitro. Pharm. Res.19(10), 1480–1487 (2002).
  • Newman KD, Elamanchili P, Kwon GS, Samuel J. Uptake of poly(D,L-lactic-co-glycolic acid) microspheres by antigen-presenting cells in vivo. J. Biomed. Mater. Res.60(3), 480–486 (2002).
  • Jung T, Kamm W, Breitenbach A, Hungerer KD, Hundt E, Kissel T. Tetanus toxoid loaded nanoparticles from sulfobutylated poly(vinyl alcohol)-graft-poly(lactide-co-glycolide), evaluation of antibody response after oral and nasal application in mice. Pharm. Res.18(3), 352–360 (2001).
  • Seder RA, Gurunathan S. DNA vaccines – designer vaccines for the 21st Century. N. Engl. J. Med.341(4), 277–278 (1999).
  • Calarota S, Bratt G, Nordlund S et al. Cellular cytotoxic response induced by DNA vaccination in HIV-1-infected patients. Lancet351(9112), 1320–1325 (1998).
  • Amara RR, Villinger F, Altman JD et al. Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Science292(5514), 69–74 (2001).
  • Schneider J, Gilbert SC, Blanchard TJ et al. Enhanced immunogenicity for CD8+ T cell induction and complete protective efficacy of malaria DNA vaccination by boosting with modified vaccinia virus Ankara. Nat. Med.4(4), 397–402 (1998).
  • Sullivan NJ, Sanchez A, Rollin PE, Yang ZY, Nabel GJ. Development of a preventive vaccine for Ebola virus infection in primates. Nature408(6812), 605–609 (2000).
  • Hedley ML, Curley J, Urban R. Microspheres containing plasmid-encoded antigens elicit cytotoxic T-cell responses. Nat. Med.4, 365–368 (1998).
  • Ando S, Putnam D, Pack DW, Langer R. PLGA microspheres containing plasmid DNA: preservation of supercoiled DNA via cryopreparation and carbohydrate stabilization. J. Pharm. Sci.88(1), 126–130 (1999).
  • Walter E, Moelling K, Pavlovic J, Merkle HP. Microencapsulation of DNA using poly(DL-lactide-co-glycolide), stability issues and release characteristics. J. Control. Release61(3), 361–374 (1999).
  • Otten GR, Schaefer M, Doe B et al. Enhanced potency of plasmid DNA microparticle human immunodeficiency virus vaccines in rhesus macaques by using a priming-boosting regimen with recombinant proteins. J. Virol.79(13), 8189–8200 (2005).
  • Denis-Mize KS, Dupuis M, MacKichan ML et al. Plasmid DNA adsorbed onto cationic microparticles mediates target gene expression and antigen presentation by dendritic cells. Gene Ther.7(24), 2105–2112 (2000).
  • O’Hagan DT, Singh M, Kazzaz J et al. Synergistic adjuvant activity of immunostimulatory DNA and oil/water emulsions for immunization with HIV p55 gag antigen. Vaccine20(27–28), 3389–3398 (2002).
  • Tabata Y, Ikada Y. Macrophage activation through phagocytosis of muramyl dipeptide encapsulated in gelatin microspheres. J. Pharm. Pharmacol.39(9), 698–704 (1987).
  • Puri N, Sinko PJ. Adjuvancy enhancement of muramyl dipeptide by modulating its release from a physicochemically modified matrix of ovalbumin microspheres. II. In vivo investigation. J. Control. Release69(1), 69–80 (2000).
  • Cleland JL, Barron L, Daugherty A et al. Development of a single-shot subunit vaccine for HIV-1. 3. Effect of adjuvant and immunization schedule on the duration of the humoral immune response to recombinant MN gp120. J. Pharm. Sci.85(12), 1350–1357 (1997).
  • Singh M, Carlson JR, Briones M et al. A comparison of biodegradable microparticles and MF59 as systemic adjuvants for recombinant gD from HSV-2. Vaccine16(19), 1822–1827 (1998).
  • Singh M, Li XM, McGee JP et al. Controlled release microparticles as a single dose hepatitis B vaccine: evaluation of immunogenicity in mice. Vaccine15(5), 475–481 (1997).
  • Challacombe SJ, Rahman D, Jeffery H, Davis SS, O’Hagan DT. Enhanced secretory IgA and systemic IgG antibody responses after oral immunization with biodegradable microparticles containing antigen. Immunology76(1), 164–168 (1992).
  • Challacombe SJ, Rahman D, O’Hagan DT. Salivary, gut, vaginal and nasal antibody responses after oral immunization with biodegradable microparticles. Vaccine15(2), 169–175 (1997).
  • Eldridge JH, Hammond CJ, Meulbroek JA, Staas JK, Gilley RM, Tice TR. Controlled vaccine release in the gut-associated lymphoid tissues. I. Orally administered biodegradable microspheres target the Peyer’s patches. J. Control. Release11, 205–214 (1990).
  • Conway MA, Madrigal-Estebas L, McClean S, Brayden DJ, Mills KH. Protection against Bordetella pertussis infection following parenteral or oral immunization with antigens entrapped in biodegradable particles: effect of formulation and route of immunization on induction of Th1 and Th2 cells. Vaccine19(15–16), 1940–1950 (2001).
  • Shahin R, Leef M, Eldridge J, Hudson M, Gilley R. Adjuvanticity and protective immunity elicited by Bordetella pertussis antigens encapsulated in poly(DL-lactide-co-glycolide) microspheres. Infect. Immun.63(4), 1195–1200 (1995).
  • Whittum-Hudson JA, An LL, Saltzman WM, Prendergast RA, MacDonald AB. Oral immunization with an anti-idiotypic antibody to the exoglycolipid antigen protects against experimental Chlamydia trachomatis infection. Nat. Med.2(10), 1116–1121 (1996).
  • Allaoui-Attarki K, Pecquet S, Fattal E et al. Protective immunity against Salmonella typhimurium elicited in mice by oral vaccination with phosphorylcholine encapsulated in poly(DL-lactide-co-glycolide) microspheres. Infect. Immun.65(3), 853–857 (1997).
  • Seo JY, Seong SY, Ahn BY, Kwon IC, Chung H, Jeong SY. Cross-protective immunity of mice induced by oral immunization with pneumococcal surface adhesin encapsulated in microspheres. Infect. Immun.70(3), 1143–1149 (2002).
  • Kende M, Yan C, Hewetson J, Frick MA, Rill WL, Tammariello R. Oral immunization of mice with ricin toxoid vaccine encapsulated in polymeric microspheres against aerosol challenge. Vaccine20(11–12), 1681–1691 (2002).
  • Marx PA, Compans RW, Gettie A et al. Protection against vaginal SIV transmission with microencapsulated vaccine. Science260(5112), 1323–1327 (1993).
  • Tseng J, Komisar JL, Trout RN et al. Humoral immunity to aerosolized staphylococcal enterotoxin B (SEB), a superantigen, in monkeys vaccinated with SEB toxoid-containing microspheres. Infect. Immun.63(8), 2880–2885 (1995).
  • Mathiowitz E, Jacob JS, Jong YS et al. Biologically erodable microspheres as potential oral drug delivery systems. Nature386(6623), 410–414 (1997).
  • Eyles JE, Spiers ID, Williamson ED, Alpar HO. Tissue distribution of radioactivity following intranasal administration of radioactive microspheres. J. Pharm. Pharmacol.53(5), 601–607 (2001).
  • Lambert JS, Keefer M, Mulligan MJ et al. A Phase I safety and immunogenicity trial of UBI microparticulate monovalent HIV-1 MN oral peptide immunogen with parenteral boost in HIV-1 seronegative human subjects. Vaccine19(23–24), 3033–3042 (2001).
  • Tacket CO, Sztein MB, Losonsky GA, Wasserman SS, Estes MK. Humoral, mucosal, and cellular immune responses to oral Norwalk virus-like particles in volunteers. Clin. Immunol.108(3), 241–247 (2003).
  • Brayden DJ. Oral vaccination in man using antigens in particles: current status. Eur. J. Pharm. Sci.14(3), 183–189 (2001).
  • Butts C, Murray N, Maksymiuk A et al. Randomized Phase IIB trial of BLP25 liposome vaccine in stage IIIB and IV non-small-cell lung cancer. J. Clin. Oncol.23(27), 6674–6681 (2005).
  • North S, Butts C. Vaccination with BLP25 liposome vaccine to treat non-small cell lung and prostate cancers. Expert Rev. Vaccines4(3), 249–257 (2005).
  • Sangha R, North S. L-BLP25: a MUC1-targeted peptide vaccine therapy in prostate cancer. Expert Opin. Biol. Ther.7(11), 1723–1730 (2007).
  • Allison AG, Gregoriadis G. Liposomes as immunological adjuvants. Nature252(5480), 252 (1974).
  • Gregoriadis G, Putman D, Louis L, Neerunjun D. Comparative effect and fate of non-entrapped and liposome-entrapped neuraminidase injected into rats. Biochem. J.140(2), 323–330 (1974).
  • Alving CR. Liposomes as carriers of antigens and adjuvants. J. Immunol. Methods140(1), 1–13 (1991).
  • Alving CR. Lipopolysaccharide, lipid A, and liposomes containing lipid A as immunologic adjuvants. Immunobiology187(3–5), 430–446 (1993).
  • van Rooijen N, van Nieuwmegen R. Liposomes in immunology: evidence that their adjuvant effect results from surface exposition of the antigens. Cell. Immunol.49(2), 402–407 (1980).
  • Gregoriadis G. Liposomes, a tale of drug targeting. J. Drug Target1(1), 3–6 (1993).
  • Reddy R, Zhou F, Huang L, Carbone F, Bevan M, Rouse BT. pH sensitive liposomes provide an efficient means of sensitizing target cells to class I restricted CTL recognition of a soluble protein. J. Immunol. Methods141(2), 157–163 (1991).
  • Hedlund G, Jansson B, Sjogren HO. Comparison of immune responses induced by rat RT-1 antigens presented as inserts into liposomes, as protein micelles and as intact cells. Immunology53(1), 69–78 (1984).
  • Gregoriadis G, Davis D, Davies A. Liposomes as immunological adjuvants: antigen incorporation studies. Vaccine5(2), 145–151 (1987).
  • Gregoriadis G. Liposomes as a drug delivery system: optimization studies. Adv. Exp. Med. Biol.238, 151–159 (1988).
  • Davis D, Davies A, Gregoriadis G. Liposomes as adjuvants with immunopurified tetanus toxoid: the immune response. Immunol. Lett.14(4), 341–348 (1987).
  • Antimisiaris SG, Jayasekera P, Gregoriadis G. Liposomes as vaccine carriers. Incorporation of soluble and particulate antigens in giant vesicles. J. Immunol. Methods166(2), 271–280 (1993).
  • Altin JG, Parish CR. Liposomal vaccines – targeting the delivery of antigen. Methods40(1), 39–52 (2006).
  • Felnerova D, Viret JF, Gluck R et al. Liposomes and virosomes as delivery systems for antigens, nucleic acids and drugs. Curr. Opin. Biotechnol.15, 518–529 (2004).
  • Sato Y, Murase K, Kato J et al. Resolution of rat liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen specific chaperon. Nat. Biotechnol.26, 431–442 (2008).
  • Gluck R, Mischler R, Brantschen S, Just M, Althaus B, Cryz SJ Jr. Immunopotentiating reconstituted influenza virus virosome vaccine delivery system for immunization against hepatitis A. J. Clin. Invest.90(6), 2491–2495 (1992).
  • Gluck R, Metcalfe IC. New technology platforms in the development of vaccines for the future. Vaccine20(Suppl. 5), B10–B16 (2002).
  • Gluck R. Adjuvant activity of immunopotentiating reconstituted influenza virosomes (IRIVs). Vaccine17(13–14), 1782–1787 (1999).
  • Mischler R, Metcalfe IC. Inflexal V a trivalent virosome subunit influenza vaccine: production. Vaccine20(Suppl. 5), B17–B23 (2002).
  • Alving CR. Liposomal vaccines: clinical status and immunological presentation for humoral and cellular immunity. Ann NY Acad. Sci.754, 143–152 (1995).
  • Gluck R, Metcalfe IC. Novel approaches in the development of immunopotentiating reconstituted influenza virosomes as efficient antigen carrier systems. Vaccine21(7–8), 611–615 (2003).
  • Wiley DC, Skehel JJ. The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu. Rev. Biochem.56, 365–394 (1987).
  • Jackson DC, Crabb BS, Poumbourios P, Tulip WR, Laver WG. Three antibody molecules can bind simultaneously to each monomer of the tetramer of influenza virus neuraminidase and the trimer of influenza virus hemagglutinin. Arch. Virol.116(1–4), 45–56 (1991).
  • Lowell GH, Smith LF, Seid RC, Zollinger WD. Peptides bound to proteosomes via hydrophobic feet become highly immunogenic without adjuvants. J. Exp. Med.167(2), 658–663 (1988).
  • O’Hagan DT, Palin KJ, Davis SS. Poly(butyl-2-cyanoacrylate) particles as adjuvants for oral immunization. Vaccine7(3), 213–216 (1989).
  • Freund J. The mode of action of immunologic adjuvants. Bibl. Tuberc.10, 130–148 (1956).
  • Gluck R, Burri KG, Metcalfe I. Adjuvant and antigen delivery properties of virosomes. Curr. Drug Deliv.2(4), 395–400 (2005).
  • Gluck R, Moser C, Metcalfe IC. Influenza virosomes as an efficient system for adjuvanted vaccine delivery. Expert Opin. Biol. Ther.4(7), 1139–1145 (2004).
  • Grgacic EV, Anderson DA. Virus-like particles: passport to immune recognition. Methods40(1), 60–65 (2006).
  • Huckriede A, Bungener L, Stegmann T et al. The virosome concept for influenza vaccines. Vaccine23(Suppl. 1), S26–S38 (2005).
  • Shouval D, Ilan Y, Adler R et al. Improved immunogenicity in mice of a mammalian cell-derived recombinant hepatitis B vaccine containing pre-S1 and pre-S2 antigens as compared with conventional yeast-derived vaccines. Vaccine12(15), 1453–1459 (1994).
  • Yap I, Guan R, Chan SH. Recombinant DNA hepatitis B vaccine containing pre-S components of the coat protein – a preliminary study on immunogenicity. Vaccine10(7), 439–442 (1992).
  • Ball JM, Hardy ME, Atmar RL, Conner ME, Estes MK. Oral immunization with recombinant Norwalk virus-like particles induces a systemic and mucosal immune response in mice. J. Virol.72(2), 1345–1353 (1998).
  • Nardin EH, Oliveira GA, Calvo-Calle JM et al. Phase I testing of a malaria vaccine composed of hepatitis B virus core particles expressing Plasmodium falciparum circumsporozoite epitopes. Infect. Immun.72(11), 6519–6527 (2004).
  • Oliveira GA, Wetzel K, Calvo-Calle JM et al. Safety and enhanced immunogenicity of a hepatitis B core particle Plasmodium falciparum malaria vaccine formulated in adjuvant Montanide ISA 720 in a Phase I trial. Infect. Immun.73(6), 3587–3597 (2005).
  • Gupta RK, Rost BE, Relyveld E, Siber GR. Adjuvant properties of aluminum and calcium compounds. Pharm. Biotechnol.6, 229–248 (1995).
  • Volkin D, Middaugh C. Stability of Protein Pharmaceuticals Part A – Chemical and Physical Pathways of Protein Degradation. Plenum Press, NY, USA (1992).
  • Arakawa T, Timasheff SN. The stabilization of proteins by osmolytes. Biophys. J.47(3), 411–414 (1985).
  • Middaugh CR. Advances in the delivery of pharmaceuticals. J. Pharm. Sci.87(11), 1265–1266 (1998).
  • Middaugh CR, Edwards KL. Recent advances in our understanding of protein conformational stability from a pharmaceutical perspective. Expert Opin. Investig. Drugs7(9), 1493–1500 (1998).
  • Klencke B, Matijevic M, Urban RG et al. Encapsulated plasmid DNA treatment for human papillomavirus 16-associated anal dysplasia: a Phase I study of ZYC101. Clin. Cancer Res.8(5), 1028–1037 (2002).
  • Toda S, Ishii N, Okada E et al. HIV-1-specific cell-mediated immune responses induced by DNA vaccination were enhanced by mannan-coated liposomes and inhibited by anti-interferon-γ antibody. Immunology92(1), 111–117 (1997).
  • Giannasca PJ, Boden JA, Monath TP. Targeted delivery of antigen to hamster nasal lymphoid tissue with M-cell-directed lectins. Infect. Immun.65(10), 4288–4298 (1997).
  • Foster N, Clark MA, Jepson MA, Hirst BH. Ulex europaeus 1 lectin targets microspheres to mouse Peyer’s patch M-cells in vivo. Vaccine16(5), 536–541 (1998).
  • Hussain N, Jani PU, Florence AT. Enhanced oral uptake of tomato lectin-conjugated nanoparticles in the rat. Pharm. Res.14(5), 613–618 (1997).
  • Bernstein DI, Schleiss MR, Berencsi K et al. Effect of previous or simultaneous immunization with canarypox expressing cytomegalovirus (CMV) glycoprotein B (gB) on response to subunit gB vaccine plus MF59 in healthy CMV-seronegative adults. J. Infect. Dis.185(5), 686–690 (2002).
  • Agren L, Sverremark E, Ekman L et al. The ADP-ribosylating CTA1-DD adjuvant enhances T cell-dependent and independent responses by direct action on B cells involving anti-apoptotic Bcl-2- and germinal center-promoting effects. J. Immunol.164(12), 6276–6286 (2000).
  • Agren LC, Ekman L, Lowenadler B, Lycke NY. Genetically engineered nontoxic vaccine adjuvant that combines B cell targeting with immunomodulation by cholera toxin A1 subunit. J. Immunol.158(8), 3936–3946 (1997).
  • Agren LC, Ekman L, Lowenadler B, Nedrud JG, Lycke NY. Adjuvanticity of the cholera toxin A1-based gene fusion protein, CTA1-DD, is critically dependent on the ADP-ribosyltransferase and Ig-binding activity. J. Immunol.162(4), 2432–2440 (1999).
  • Goletz TJ, Klimpel KR, Arora N, Leppla SH, Keith JM, Berzofsky JA. Targeting HIV proteins to the major histocompatibility complex class I processing pathway with a novel gp120-anthrax toxin fusion protein. Proc. Natl Acad. Sci. USA94(22), 12059–12064 (1997).
  • Davis MM, Butchart AT, Coleman MS et al. The expanding vaccine development pipeline, 1995–2008. Vaccine28(5), 1353–1356 (2010).
  • Voss G, Manson K, Montefiori D et al. Prevention of disease induced by a partially heterologous AIDS virus in rhesus monkeys by using an adjuvanted multicomponent protein vaccine. J. Virol.77(2), 1049–1058 (2003).
  • Casimiro DR, Chen L, Fu TM et al. Comparative immunogenicity in rhesus monkeys of DNA plasmid, recombinant vaccinia virus, and replication-defective adenovirus vectors expressing a human immunodeficiency virus type 1 gag gene. J. Virol.77(11), 6305–6313 (2003).
  • Vajdy M SM, Medina-Selby A, Coit D et al. Hepatitis C virus polyprotein vaccine formulations capable of inducing broad antibody and cellular immune responses. J. Gen. Virol.87, 2253–2262 (2006).
  • Barnett SW, Rajasekar S, Legg H et al. Vaccination with HIV-1 gp120 DNA induces immune responses that are boosted by a recombinant gp120 protein subunit. Vaccine15(8), 869–873 (1997).
  • Traquina P, Morandi M, Contorni M, Van Nest G. MF59 adjuvant enhances the antibody response to recombinant hepatitis B surface antigen vaccine in primates. J. Infect. Dis.174(6), 1168–1175 (1996).
  • Peng B, Voltan R, Cristillo AD et al. Replicating Ad-recombinants encoding non-myristoylated rather than wild-type HIV Nef elicit enhanced cellular immunity. AIDS20(17), 2149–2157 (2006).
  • Del Giudice G, Hilbert AK, Bugarini R et al. An MF59-adjuvanted inactivated influenza vaccine containing A/Panama/1999 (H3N2) induced broader serological protection against heterovariant influenza virus strain A/Fujian/2002 than a subunit and a split influenza vaccine. Vaccine24(16), 3063–3065 (2006).
  • Baldo V, Baldovin T, Floreani A, Carraro AM, Trivello R. MF59-adjuvanted influenza vaccine confers superior immunogenicity in adult subjects (18–60 years of age) with chronic diseases who are at risk of post-influenza complications. Vaccine25(20), 3955–3961 (2007).
  • Nitayaphan S, Khamboonruang C, Sirisophana N et al. A Phase I/II trial of HIV SF2 gp120/MF59 vaccine in seronegative Thais. Vaccine18(15), 1448–1455 (2000).
  • Keeney RT, Edelman R. Survey of human-use adjuvants. Expert Rev. Vaccines2, 167–188 (2003).
  • Podda A, Del Giudice G. MF59-adjuvanted vaccines: increased immunogenicity with an optimal safety profile. Expert Rev. Vaccines2, 197–203 (2003).
  • Mengiardi B, Berger R, Just M et al. Virosomes as carriers for combined vaccines. Vaccines13, 1306–1315 (1995).
  • Poltl-Frank F, Zubriggen R, Helg A et al. Use of reonstituted influenza virus virosomes as an immunopotentiating delivery system for a peptide based vaccine. Clin. Exp. Immunol.117, 496–503 (1999).
  • Hunziker IP, Zubriggen R, Gluck R et al. Perspectives: towards a peptide-based vaccine against hepatitis C virus. Mol. Immunol.38, 475–484 (2001).
  • Cusi MG, Zubriggen R, Correale P et al. Influenza virosomes are an efficient delivery system for respiratory syncytial virus–F antigen inducing humoral and cell-mediated immunity. Vaccine20, 3436–3442 (2002).
  • Cusi MG, Zubriggen R, Valassina M et al. Intranasal immunization with Mumps virus DNA vaccine delivered by influenza virosomes elicits mucosal and systemic immunity. Virology277, 111–118 (2000).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.