228
Views
29
CrossRef citations to date
0
Altmetric
Review

Peptidomimetics: modifying peptides in the pursuit of better vaccines

&
Pages 211-226 | Published online: 09 Jan 2014

References

  • Purcell AW, McCluskey J, Rossjohn J. More than one reason to rethink the use of peptides in vaccine design. Nat. Rev. Drug Discov.6(5), 404–414 (2007).
  • Petersen J, Purcell AW, Rossjohn J. Post-translationally modified T cell epitopes: immune recognition and immunotherapy. J. Mol. Med.87(11), 1045–1051 (2009).
  • Pietrzkowski Z, Wernicke D, Porcu P, Jameson BA, Baserga R. Inhibition of cellular proliferation by peptide analogues of insulin-like growth factor 1. Cancer Res.52(23), 6447–6451 (1992).
  • Lasdun A, Reznik S, Molineaux CJ, Orlowski M. Inhibition of endopeptidase 24.15 slows the in vivo degradation of luteinizing hormone-releasing hormone. J. Pharmacol. Exp. Ther.251(2), 439–447 (1989).
  • Widmann C, Maryanski JL, Romero P, Corradin G. Differential stability of antigenic MHC class I-restricted synthetic peptides. J. Immunol.147(11), 3745–3751 (1991).
  • Olsen CA. Peptoid–peptide hybrid backbone architectures. Chembiochem.11(2), 152–160 (2009).
  • Vagner J, Qu H, Hruby VJ. Peptidomimetics, a synthetic tool of drug discovery. Curr. Opin. Chem. Biol.12(3), 292–296 (2008).
  • Sette A, Fikes J. Epitope-based vaccines: an update on epitope identification, vaccine design and delivery. Curr. Opin. Immunol.15(4), 461–470 (2003).
  • Benkirane N, Friede M, Guichard G, Briand JP, Van Regenmortel MH, Muller S. Antigenicity and immunogenicity of modified synthetic peptides containing D-amino acid residues. Antibodies to a D-enantiomer do recognize the parent L-hexapeptide and reciprocally. J. Biol. Chem.268(35), 26279–26285 (1993).
  • Merrifield EL, Mitchell SA, Ubach J, Boman HG, Andreu D, Merrifield RB. D-enantiomers of 15-residue cecropin A-melittin hybrids. Int. J. Pept. Protein Res.46(3–4), 214–220 (1995).
  • Lamont AG, Powell MF, Colon SM, Miles C, Grey HM, Sette A. The use of peptide analogs with improved stability and MHC binding capacity to inhibit antigen presentation in vitro and in vivo. J. Immunol.144(7), 2493–2498 (1990).
  • Milton RC, Milton SC, Kent SB. Total chemical synthesis of a D-enzyme: the enantiomers of HIV-1 protease show reciprocal chiral substrate specificity [corrected]. Science256(5062), 1445–1448 (1992).
  • Gill TJ 3rd, Gould HJ, Doty P. Role of optical isomers in determining the antigenicity of synthetic polypeptides. Nature197, 746–747 (1963).
  • Borek F, Stupp Y, Fuchs S, Sela M. Relation between optical configuration and immunogenicity of synthetic polypeptides. Biochem. J.96(3), 577–582 (1965).
  • Maurer PH. Antigenicity of polypeptides (poly α amino acids). 13. immunological studies with synthetic polymers containing only D- or D- and L-α-amino acids. J. Exp. Med.121, 339–349 (1965).
  • Maurer PH. Antigenicity of polypeptides (poly α amino acids). X. Studies with polymers of D amino acids. Proc. Soc. Exp. Biol. Med.113, 553–557 (1963).
  • Ben-Efraim S, Fuchs S, Sela M. Differences in immune response to synthetic antigens in two inbred strains of guinea-pigs. Immunology12(5), 573–581 (1967).
  • Dintzis HM, Symer DE, Dintzis RZ, Zawadzke LE, Berg JM. A comparison of the immunogenicity of a pair of enantiomeric proteins. Proteins16(3), 306–308 (1993).
  • King TP, Wade D, Coscia MR, Mitchell S, Kochoumian L, Merrifield B. Structure-immunogenicity relationship of melittin, its transposed analogues, and D-melittin. J. Immunol.153(3), 1124–1131 (1994).
  • Maillere B, Cotton J, Mourier G, Leonetti M, Leroy S, Menez A. Role of thiols in the presentation of a snake toxin to murine T cells. J. Immunol.150(12), 5270–5280 (1993).
  • Maillere B, Mourier G, Cotton J, Herve M, Leroy S, Menez A. Probing immunogenicity of a T cell epitope by L-alanine and D-amino acid scanning. Mol. Immunol.32(14–15), 1073–1080 (1995).
  • Aharoni R, Schlegel PG, Teitelbaum D et al. Studies on the mechanism and specificity of the effect of the synthetic random copolymer GLAT on graft-versus-host disease. Immunol. Lett.58(2), 79–87 (1997).
  • Guichard G, Benkirane N, Zeder-Lutz G, van Regenmortel MH, Briand JP, Muller S. Antigenic mimicry of natural L-peptides with retro-inverso-peptidomimetics. Proc. Natl Acad. Sci. USA91(21), 9765–9769 (1994).
  • Chorev M, Goodman M. Recent developments in retro peptides and proteins – an ongoing topochemical exploration. Trends Biotechnol.13(10), 438–445 (1995).
  • Briand JP, Guichard G, Dumortier H, Muller S. Retro-inverso peptidomimetics as new immunological probes. Validation and application to the detection of antibodies in rheumatic diseases. J. Biol. Chem.270(35), 20686–20691 (1995).
  • Fischer PM. The design, synthesis and application of stereochemical and directional peptide isomers: a critical review. Curr. Protein Pept. Sci.4(5), 339–356 (2003).
  • Jameson BA, McDonnell JM, Marini JC, Korngold R. A rationally designed CD4 analogue inhibits experimental allergic encephalomyelitis. Nature368(6473), 744–746 (1994).
  • Miller SM, Simon RJ, Ng S, Zuckerman RN, Kerr JM, Moos WH. Proteolytic studies of homologous peptide and N-substituted glycine peptoid oligomers Bioorg. Med. Chem. Lett.4(22), 2657–2662 (1994).
  • Shemyakin MM, Ovchinnikov YA, Ivanov VT. Topochemical investigations of peptide systems. Angew Chem. Int. Ed. Engl.8(7), 492–499 (1969).
  • Verdoliva A, Ruvo M, Cassani G, Fassina G. Topological mimicry of cross-reacting enantiomeric peptide antigens. J. Biol. Chem.270(51), 30422–30427 (1995).
  • Chorev M, Shavitz R, Goodman M, Minick S, Guillemin R. Partially modified retro-inverso-enkephalinamides: topochemical long-acting analogs in vitro and in vivo. Science204(4398), 1210–1212 (1979).
  • Benedetti E, Pedone EM, Kawahata NH, Goodman M. Conformational studies of retro-inverso peptides: the crystal and molecular structure of the hydantoin from H–Ala–g–Ala–mGly–OBzl. Biopolymers36(5), 659–667 (1995).
  • Nair DT, Kaur KJ, Singh K et al. Mimicry of native peptide antigens by the corresponding retro-inverso analogs is dependent on their intrinsic structure and interaction propensities. J. Immunol.170(3), 1362–1373 (2003).
  • Guptasarma P. Reversal of peptide backbone direction may result in the mirroring of protein structure. FEBS Lett.310(3), 205–210 (1992).
  • Benkirane N, Guichard G, Van Regenmortel MH, Briand JP, Muller S. Cross-reactivity of antibodies to retro-inverso peptidomimetics with the parent protein histone H3 and chromatin core particle. Specificity and kinetic rate-constant measurements. J. Biol. Chem.270(20), 11921–11926 (1995).
  • Briand JP, Benkirane N, Guichard G et al. A retro-inverso peptide corresponding to the GH loop of foot-and-mouth disease virus elicits high levels of long-lasting protective neutralizing antibodies. Proc. Natl Acad. Sci. USA94(23), 12545–12550 (1997).
  • Muller S, Guichard G, Benkirane N, Brown F, Van Regenmortel MH, Briand JP. Enhanced immunogenicity and cross-reactivity of retro-inverso peptidomimetics of the major antigenic site of foot-and-mouth disease virus. Pept. Res.8(3), 138–144 (1995).
  • Phan-Chan-Du A, Petit MC, Guichard G, Briand JP, Muller S, Cung MT. Structure of antibody-bound peptides and retro-inverso analogues. A transferred nuclear Overhauser effect spectroscopy and molecular dynamics approach. Biochemistry40(19), 5720–5727 (2001).
  • Benkirane N, Guichard G, Briand JP, Muller S, Brown F, Van Regenmortel MH. Mimicry of viral epitopes with retro-inverso peptides of increased stability. Dev. Biol. Stand.87, 283–291 (1996).
  • Van Regenmortel MH, Guichard G, Benkirane N, Briand JP, Muller S, Brown F. The potential of retro-inverso peptides as synthetic vaccines. Dev. Biol. Stand.92, 139–143 (1998).
  • Carver JA, Esposito G, Viglino P et al. Structural comparison between retro-inverso and parent peptides: molecular basis for the biological activity of a retro-inverso analogue of the immunodominant fragment of VP1 coat protein from foot-and-mouth disease virus. Biopolymers41(5), 569–590 (1997).
  • Petit MC, Benkirane N, Guichard G et al. Solution structure of a retro-inverso peptide analogue mimicking the foot-and-mouth disease virus major antigenic site. Structural basis for its antigenic cross-reactivity with the parent peptide. J. Biol. Chem.274(6), 3686–3692 (1999).
  • Nargi F, Kramer E, Mezencio J et al. Protection of swine from foot-and-mouth disease with one dose of an all-d retro peptide. Vaccine17(22), 2888–2893 (1999).
  • Fischer P, Comis A, Tyler M, Howden M. Oral and parenteral immunization with synthetic retro-inverso peptides induce antibodies that cross-react with native peptides and parent antigens. Indian J. Biochem. Biophys.44(3), 140–144 (2007).
  • Fromme B, Eftekhari P, Van Regenmortel M, Hoebeke J, Katz A, Millar R. A novel retro-inverso gonadotropin-releasing hormone (GnRH) immunogen elicits antibodies that neutralize the activity of native GnRH. Endocrinology144(7), 3262–3269 (2003).
  • Zamaratskaia G, Andersson HK, Chen G, Andersson K, Madej A, Lundstrom K. Effect of a gonadotropin-releasing hormone vaccine (Improvac) on steroid hormones, boar taint compounds and performance in entire male pigs. Reprod. Domest. Anim.43(3), 351–359 (2008).
  • Casper RF. Clinical uses of gonadotropin-releasing hormone analogues. CMAJ144(2), 153–158 (1991).
  • Miller LA, Johns BE, Killian GJ. Immunocontraception of white-tailed deer with GnRH vaccine. Am. J. Reprod. Immunol.44(5), 266–274 (2000).
  • Guichard G, Connan F, Graff R et al. Partially modified retro-inverso pseudopeptides as non-natural ligands for the human class I histocompatibility molecule HLA-A2. J. Med. Chem.39(10), 2030–2039 (1996).
  • Dürr H, Goodman M, Jung G. Retro-inverso amide bonds between trifunctional amino acids. Angew. Chem. Int. Ed. Engl.31(6), 785–787 (1992).
  • Madden DR, Garboczi DN, Wiley DC. The antigenic identity of peptide–MHC complexes: a comparison of the conformations of five viral peptides presented by HLA-A2. Cell75(4), 693–708 (1993).
  • Ostankovitch M, Guichard G, Connan F et al. A partially modified retro-inverso pseudopeptide modulates the cytokine profile of CTL specific for an influenza virus epitope. J. Immunol.161(1), 200–208 (1998).
  • Bartnes K, Hannestad K, Guichard G, Briand JP. A retro-inverso analog mimics the cognate peptide epitope of a CD4+ T cell clone. Eur. J. Immunol.27(6), 1387–1391 (1997).
  • Meziere C, Viguier M, Dumortier H et al.In vivo T helper cell response to retro-inverso peptidomimetics. J. Immunol.159(7), 3230–3237 (1997).
  • Pal-Bhowmick I, Pandey RP, Jarori GK, Kar S, Sahal D. Structural and functional studies on Ribonuclease S, retro S and retro-inverso S peptides. Biochem. Biophys. Res. Commun.364(3), 608–613 (2007).
  • Li C, Pazgier M, Li J et al. Limitations of peptide retro-inverso isomerization in molecular mimicry. J. Biol. Chem.285(25), 19572–19581 (2010).
  • Lamb JR, Feldmann M, Green N, Lerner RA. Influence of antigen structure on the activation and induction of unresponsiveness in cloned human T lymphocytes. Immunology57(3), 331–335 (1986).
  • Hervé M, Maillere B, Mourier G, Texier C, Leroy S, Menez A. On the immunogenic properties of retro-inverso peptides. Total retro-inversion of T-cell epitopes causes a loss of binding to MHC II molecules. Mol. Immunol.34(2), 157–163 (1997).
  • Hill CM, Liu A, Marshall KW et al. Exploration of requirements for peptide binding to HLA DRB1*0101 and DRB1*0401. J. Immunol.152(6), 2890–2898 (1994).
  • Iwai LK, Duranti MA, Abel LC et al. Retro-inverso peptide analogues of Trypanosoma cruzi B13 protein epitopes fail to be recognized by human sera and peripheral blood mononuclear cells. Peptides22(6), 853–860 (2001).
  • Saito NG, Paterson Y. Contribution of peptide backbone atoms to binding of an antigenic peptide to class I major histocompatibility complex molecule. Mol. Immunol.34(16–17), 1133–1145 (1997).
  • Matsumura M, Saito Y, Jackson MR, Song ES, Peterson PA. In vitro peptide binding to soluble empty class I major histocompatibility complex molecules isolated from transfected Drosophila melanogaster cells. J. Biol. Chem.267(33), 23589–23595 (1992).
  • Shibata K, Imarai M, van Bleek GM, Joyce S, Nathenson SG. Vesicular stomatitis virus antigenic octapeptide N52–59 is anchored into the groove of the H-2Kb molecule by the side chains of three amino acids and the main-chain atoms of the amino terminus. Proc. Natl Acad. Sci. USA89(7), 3135–3139 (1992).
  • Ben-Yedidia T, Beignon AS, Partidos CD, Muller S, Arnon R. A retro-inverso peptide analogue of influenza virus hemagglutinin B-cell epitope 91–108 induces a strong mucosal and systemic immune response and confers protection in mice after intranasal immunization. Mol. Immunol.39(5–6), 323–331 (2002).
  • Partidos CD, Beignon AS, Semetey V, Briand JP, Muller S. The bare skin and the nose as non-invasive routes for administering peptide vaccines. Vaccine19(17–19), 2708–2715 (2001).
  • Marino M, Ippolito A, Fassina G. Inhibition of experimental autoimmune encephalomyelitis in SJL mice by oral administration of retro-inverso derivative of encephalitogenic epitope P87–99. Eur. J. Immunol.29(8), 2560–2566 (1999).
  • Okamoto S, Watanabe M, Yamazaki M et al. A synthetic mimetic of CD4 is able to suppress disease in a rodent model of immune colitis. Eur. J. Immunol.29(1), 355–366 (1999).
  • Sasaki Y, Coy DH. Solid phase synthesis of peptides containing the CH2NH peptide bond isostere. Peptides8(1), 119–121 (1987).
  • Romero P, Corradin G, Luescher IF, Maryanski JL. H-2Kd-restricted antigenic peptides share a simple binding motif. J. Exp. Med.174(3), 603–612 (1991).
  • Guichard G, Calbo S, Muller S, Kourilsky P, Briand JP, Abastado JP. Efficient binding of reduced peptide bond pseudopeptides to major histocompatibility complex class I molecule. J. Biol. Chem.270(44), 26057–26059 (1995).
  • Grand V, Aubry A, Dupont V, Vicherat A, Marraud M. Folded structures in protonated reduced dipeptides. J. Pept. Sci.2(6), 381–391 (1996).
  • Ettouati L, Salvi JP, Trescol-Biemont MC et al. Substitution of peptide bond 53–54 of HEL(52–61) with an ethylene bond rather than reduced peptide bond is tolerated by an MHC-II restricted T cell. Pept. Res.9(5), 248–253 (1996).
  • Guichard G, Benkirane N, Graff R, Muller S, Briand JP. Synthesis and antigenic properties of reduced peptide bond pseudopeptide analogues of a histone H3 hexapeptide. Pept. Res.7(6), 308–321 (1994).
  • Benkirane N, Guichard G, Briand JP, Muller S. Exploration of requirements for peptidomimetic immune recognition. Antigenic and immunogenic properties of reduced peptide bond pseudopeptide analogues of a histone hexapeptide. J. Biol. Chem.271(52), 33218–33224 (1996).
  • Cotton J, Herve M, Pouvelle S, Maillere B, Menez A. Pseudopeptide ligands for MHC II-restricted T cells. Int. Immunol.10(2), 159–166 (1998).
  • Maillere B, Mourier G, Herve M, Menez A. Fine chemical modifications at N- and C-termini enhance peptide presentation to T cells by increasing the lifespan of both free and MHC-complexed peptides. Mol. Immunol.32(17–18), 1377–1385 (1995).
  • Calbo S, Guichard G, Bousso P et al. Role of peptide backbone in T cell recognition. J. Immunol.162(8), 4657–4662 (1999).
  • Kawakami Y, Eliyahu S, Sakaguchi K et al. Identification of the immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2-restricted tumor infiltrating lymphocytes. J. Exp. Med.180(1), 347–352 (1994).
  • Quesnel A, Zerbib A, Connan F, Guillet JG, Briand JP, Choppin J. Synthesis and antigenic properties of reduced peptide bond analogues of an immunodominant epitope of the melanoma MART-1 protein. J. Pept. Sci.7(3), 157–165 (2001).
  • Traversari C, van der Bruggen P, Luescher IF et al. A nonapeptide encoded by human gene MAGE-1 is recognized on HLA-A1 by cytolytic T lymphocytes directed against tumor antigen MZ2-E. J. Exp. Med.176(5), 1453–1457 (1992).
  • DiBrino M, Parker KC, Shiloach J et al. Endogenous peptides with distinct amino acid anchor residue motifs bind to HLA-A1 and HLA-B8. J. Immunol.152(2), 620–631 (1994).
  • Romero P, Pannetier C, Herman J, Jongeneel CV, Cerottini JC, Coulie PG. Multiple specificities in the repertoire of a melanoma patient’s cytolytic T lymphocytes directed against tumor antigen MAGE-1.A1. J. Exp. Med.182(4), 1019–1028 (1995).
  • Ayyoub M, Mazarguil H, Monsarrat B, Van den Eynde B, Gairin JE. A structure-based approach to designing non-natural peptides that can activate anti-melanoma cytotoxic T cells. J. Biol. Chem.274(15), 10227–10234 (1999).
  • Calbo S, Guichard G, Muller S, Kourilsky P, Briand JP, Abastado JP. Antitumor vaccination using a major histocompatibility complex (MHC) class I-restricted pseudopeptide with reduced peptide bond. J. Immunother.23(1), 125–130 (2000).
  • Pircher H, Moskophidis D, Rohrer U, Burki K, Hengartner H, Zinkernagel RM. Viral escape by selection of cytotoxic T cell-resistant virus variants in vivo. Nature346(6285), 629–633 (1990).
  • Stemmer C, Quesnel A, Prevost-Blondel A et al. Protection against lymphocytic choriomeningitis virus infection induced by a reduced peptide bond analogue of the H-2Db-restricted CD8(+) T cell epitope GP33. J. Biol. Chem.274(9), 5550–5556 (1999).
  • Lozano JM, Alba MP, Vanegas M, Silva Y, Torres-Castellanos JL, Patarroyo ME. MSP-1 malaria pseudopeptide analogs: biological and immunological significance and three-dimensional structure. Biol. Chem.384(1), 71–82 (2003).
  • Lozano JM, Espejo F, Diaz D et al. Reduced amide pseudopeptide analogues of a malaria peptide possess secondary structural elements responsible for induction of functional antibodies which react with native proteins expressed in Plasmodium falciparum erythrocyte stages. J. Pept. Res.52(6), 457–469 (1998).
  • Bastian M, Lozano JM, Patarroyo ME, Pluschke G, Daubenberger CA. Characterization of a reduced peptide bond analogue of a promiscuous CD4 T cell epitope derived from the Plasmodium falciparum malaria vaccine candidate merozoite surface protein 1. Mol. Immunol.41(8), 775–784 (2004).
  • Kashala O, Amador R, Valero MV et al. Safety, tolerability and immunogenicity of new formulations of the Plasmodium falciparum malaria peptide vaccine SPf66 combined with the immunological adjuvant QS-21. Vaccine20(17–18), 2263–2277 (2002).
  • Daubenberger CA, Nickel B, Ciatto C et al. Amino acid dimorphism and parasite immune evasion: cellular immune responses to a promiscuous epitope of Plasmodium falciparum merozoite surface protein 1 displaying dimorphic amino acid polymorphism are highly constrained. Eur. J. Immunol.32(12), 3667–3677 (2002).
  • Graves P, Gelband H. Vaccines for preventing malaria (SPf66). Cochrane Database Syst. Rev. (2), CD005966 (2006).
  • Bianco A, Zabel C, Walden P, Jung G. N-hydroxy-amide analogues of MHC-class I peptide ligands with nanomolar binding affinities. J. Pept. Sci.4(8), 471–478 (1998).
  • Sloan-Lancaster J, Evavold BD, Allen PM. Induction of T-cell anergy by altered T-cell-receptor ligand on live antigen-presenting cells. Nature363(6425), 156–159 (1993).
  • Hin S, Zabel C, Bianco A, Jung G, Walden P. Cutting edge: N-hydroxy peptides: a new class of TCR antagonists. J. Immunol.163(5), 2363–2367 (1999).
  • Fremont DH, Stura EA, Matsumura M, Peterson PA, Wilson IA. Crystal structure of an H-2Kb-ovalbumin peptide complex reveals the interplay of primary and secondary anchor positions in the major histocompatibility complex binding groove. Proc. Natl Acad. Sci. USA92(7), 2479–2483 (1995).
  • Dupont V, Lecoq A, Mangeot JP, Aubry A, Boussard G, Marraud M. Conformational perturbations induced by N-amination and N-hydroxylation of peptided. J. Am. Chem. Soc.115, 8898–8906 (1993).
  • Bianco A, Brock C, Zabel C, Walk T, Walden P, Jung G. New synthetic non-peptide ligands for classical major histocompatibility complex class I molecules. J. Biol. Chem.273(44), 28759–28765 (1998).
  • Hin S, Bianco A, Zabel C, Jung G, Walden P. Mimetics of a T cell epitope based on poly-N-acylated amine backbone structures induce T cells in vitro and in vivo. J. Biol. Chem.276(52), 48790–48796 (2001).
  • Kersh GJ, Allen PM. Structural basis for T cell recognition of altered peptide ligands: a single T cell receptor can productively recognize a large continuum of related ligands. J. Exp. Med.184(4), 1259–1268 (1996).
  • Jones MA, Notta JK, Cobbold M et al. Synthesis and ex vivo profiling of chemically modified cytomegalovirus CMVpp65 epitopes. J. Pept. Sci.14(3), 313–320 (2008).
  • Webb AI, Dunstone MA, Chen W et al. Functional and structural characteristics of NY-ESO-1-related HLA A2-restricted epitopes and the design of a novel immunogenic analogue. J. Biol. Chem.279(22), 23438–23446 (2004).
  • Falcioni F, Ito K, Vidovic D et al. Peptidomimetic compounds that inhibit antigen presentation by autoimmune disease-associated class II major histocompatibility molecules. Nat. Biotechnol.17(6), 562–567 (1999).
  • Reveille JD, Maganti RM. Subtypes of HLA-B27: history and implications in the pathogenesis of ankylosing spondylitis. Adv. Exp. Med. Biol.649, 159–176 (2009).
  • Krebs S, Folkers G, Rognan D. Binding of rationally designed non-natural peptides to the human leukocyte antigen HLA-B*2705. J. Pept. Sci.4(6), 378–388 (1998).
  • de Haan EC, Moret EE, Wagenaar-Hilbers JP, Liskamp RM, Wauben MH. Possibilities and limitations in the rational design of modified peptides for T cell mediated immunotherapy. Mol. Immunol.42(3), 365–373 (2005).
  • de Haan EC, Wagenaar-Hilbers JP, Liskamp RM, Moret EE, Wauben MH. Limited plasticity in T cell recognition of modified T cell receptor contact residues in MHC class II bound peptides. Mol. Immunol.42(3), 355–364 (2005).
  • de Haan EC, Wauben MH, Grosfeld-Stulemeyer MC, Moret EE. Structure-based design and evaluation of MHC class II binding peptides. Biologicals29(3–4), 289–292 (2001).
  • de Haan EC, Wauben MH, Wagenaar-Hilbers JP et al. Stabilization of peptide guinea pig myelin basic protein 72–85 by N-terminal acetylation-implications for immunological studies. Mol. Immunol.40(13), 943–948 (2004).
  • de Haan EC, Wauben MH, Grosfeld-Stulemeyer MC, Kruijtzer JA, Liskamp RM, Moret EE. Major histocompatibility complex class II binding characteristics of peptoid–peptide hybrids. Bioorg. Med. Chem.10(6), 1939–1945 (2002).
  • Simon RJ, Kania RS, Zuckermann RN et al. Peptoids: a modular approach to drug discovery. Proc. Natl Acad. Sci. USA89(20), 9367–9371 (1992).
  • Steer DL, Lew RA, Perlmutter P, Smith AI, Aguilar MI. β-amino acids: versatile peptidomimetics. Curr. Med. Chem.9(8), 811–822 (2002).
  • Webb AI, Dunstone MA, Williamson NA et al. T cell determinants incorporating β-amino acid residues are protease resistant and remain immunogenic in vivo. J. Immunol.175(6), 3810–3818 (2005).
  • Reinelt S, Marti M, Dedier S et al. β-amino acid scan of a class I major histocompatibility complex-restricted alloreactive T-cell epitope. J. Biol. Chem.276(27), 24525–24530 (2001).
  • Frackenpohl J, Arvidsson PI, Schreiber JV, Seebach D. The outstanding biological stability of β- and γ-peptides toward proteolytic enzymes: an in vitro investigation with fifteen peptidases. Chembiochem.2(6), 445–455 (2001).
  • Hook DF, Bindschadler P, Mahajan YR, Sebesta R, Kast P, Seebach D. The proteolytic stability of ‘designed’ β-peptides containing α-peptide-bond mimics and of mixed α, β-peptides: application to the construction of MHC-binding peptides. Chem. Biodivers.2(5), 591–632 (2005).
  • Poenaru S, Lamas JR, Folkers G, Lopez de Castro JA, Seebach D, Rognan D. Nonapeptide analogues containing (R)-3-hydroxybutanoate and β-homoalanine oligomers: synthesis and binding affinity to a class I major histocompatibility complex protein. J. Med. Chem.42(13), 2318–2331 (1999).
  • Paradela A, Garcia-Peydro M, Vazquez J, Rognan D, Lopez de Castro JA. The same natural ligand is involved in allorecognition of multiple HLA-B27 subtypes by a single T cell clone: role of peptide and the MHC molecule in alloreactivity. J. Immunol.161(10), 5481–5490 (1998).
  • Guichard G, Zerbib A, Le Gal FA et al. Melanoma peptide MART-1(27–35) analogues with enhanced binding capacity to the human class I histocompatibility molecule HLA-A2 by introduction of a β-amino acid residue: implications for recognition by tumor-infiltrating lymphocytes. J. Med. Chem.43(20), 3803–3808 (2000).
  • Blanchet JS, Valmori D, Dufau I et al. A new generation of Melan-A/MART-1 peptides that fulfill both increased immunogenicity and high resistance to biodegradation: implication for molecular anti-melanoma immunotherapy. J. Immunol.167(10), 5852–5861 (2001).
  • Men Y, Miconnet I, Valmori D, Rimoldi D, Cerottini JC, Romero P. Assessment of immunogenicity of human Melan-A peptide analogues in HLA-A*0201/Kb transgenic mice. J. Immunol.162(6), 3566–3573 (1999).
  • Valmori D, Fonteneau JF, Lizana CM et al. Enhanced generation of specific tumor-reactive CTL in vitro by selected Melan-A/MART-1 immunodominant peptide analogues. J. Immunol.160(4), 1750–1758 (1998).
  • Brinckerhoff LH, Kalashnikov VV, Thompson LW et al. Terminal modifications inhibit proteolytic degradation of an immunogenic MART-1(27–35) peptide: implications for peptide vaccines. Int. J. Cancer83(3), 326–334 (1999).
  • Marschutz MK, Zauner W, Mattner F, Otava A, Buschle M, Bernkop-Schnurch A. Improvement of the enzymatic stability of a cytotoxic T-lymphocyte-epitope model peptide for its oral administration. Peptides23(10), 1727–1733 (2002).
  • Bouvier M, Wiley DC. Antigenic peptides containing large PEG loops designed to extend out of the HLA-A2 binding site form stable complexes with class I major histocompatibility complex molecules. Proc. Natl Acad. Sci. USA93(10), 4583–4588 (1996).
  • Valero ML, Camarero JA, Haack T et al. Native-like cyclic peptide models of a viral antigenic site: finding a balance between rigidity and flexibility. J. Mol. Recognit.13(1), 5–13 (2000).
  • Tselios T, Daliani I, Deraos S et al. Treatment of experimental allergic encephalomyelitis (EAE) by a rationally designed cyclic analogue of myelin basic protein (MBP) epitope 72–85. Bioorg. Med. Chem. Lett.10(24), 2713–2717 (2000).
  • Tselios T, Apostolopoulos V, Daliani I et al. Antagonistic effects of human cyclic MBP(87–99) altered peptide ligands in experimental allergic encephalomyelitis and human T-cell proliferation. J. Med. Chem.45(2), 275–283 (2002).
  • Matsoukas J, Apostolopoulos V, Kalbacher H et al. Design and synthesis of a novel potent myelin basic protein epitope 87–99 cyclic analogue: enhanced stability and biological properties of mimics render them a potentially new class of immunomodulators. J. Med. Chem.48(5), 1470–1480 (2005).
  • Mueller MS, Renard A, Boato F et al. Induction of parasite growth-inhibitory antibodies by a virosomal formulation of a peptidomimetic of loop I from domain III of Plasmodium falciparum apical membrane antigen 1. Infect. Immun.71(8), 4749–4758 (2003).
  • Lioy E, Suarez J, Guzman F, Siegrist S, Pluschke G, Patarroyo ME. Synthesis, biological, and immunological properties of cyclic peptides from plasmodium falciparum merozoite surface protein-1 This work was supported by a long-term fellowship of the Human Frontier Science Program Organization (HFSPO-LT 25/97) and by a Research Grant from the Roche Research Foundation. Angew. Chem. Int. Ed. Engl.40(14), 2631–2635 (2001).
  • Moreno R, Jiang L, Moehle K et al. Exploiting conformationally constrained peptidomimetics and an efficient human-compatible delivery system in synthetic vaccine design. Chembiochem.2(11), 838–843 (2001).
  • Tamborrini M, Mueller MS, Stoffel SA et al. Design and pre-clinical profiling of a Plasmodium falciparum MSP-3 derived component for a multi-valent virosomal malaria vaccine. Malaria J.8(1), 314 (2009).
  • Xia J, Bergseng E, Fleckenstein B et al. Cyclic and dimeric gluten peptide analogues inhibiting DQ2-mediated antigen presentation in celiac disease. Bioorg. Med. Chem.15(20), 6565–6573 (2007).
  • Hart M, Beeson C. Utility of azapeptides as major histocompatibility complex class II protein ligands for T-cell activation. J. Med. Chem.44(22), 3700–3709 (2001).
  • Gomez-Nunez M, Haro KJ, Dao T et al. Non-natural and photo-reactive amino acids as biochemical probes of immune function. PLoS One3(12), e3938 (2008).
  • Krebs S, Lamas JR, Poenaru S et al. Substituting nonpeptidic spacers for the T cell receptor-binding part of class I major histocompatibility complex-binding peptides. J. Biol. Chem.273(30), 19072–19079 (1998).
  • Rognan D, Scapozza L, Folkers G, Daser A. Rational design of nonnatural peptides as high-affinity ligands for the HLA-B*2705 human leukocyte antigen. Proc. Natl Acad. Sci. USA92(3), 753–757 (1995).
  • Weiss GA, Collins EJ, Garboczi DN, Wiley DC, Schreiber SL. A tricyclic ring system replaces the variable regions of peptides presented by three alleles of human MHC class I molecules. Chem. Biol.2(6), 401–407 (1995).
  • Chen W, Ede NJ, Jackson DC, McCluskey J, Purcell AW. CTL recognition of an altered peptide associated with asparagine bond rearrangement. Implications for immunity and vaccine design. J. Immunol.157(3), 1000–1005 (1996).
  • Ede NJ, Chen W, McCluskey J, Jackson DC, Purcell AW. Identification and synthesis of altered peptides modulating T cell recognition of a synthetic peptide antigen. Biomed. Pept. Proteins Nucleic Acids1(4), 231–234 (1995).
  • Deen WM, Lazzara MJ, Myers BD. Structural determinants of glomerular permeability. Am. J. Physiol. Renal Physiol.281(4), F579–F596 (2001).
  • Venturoli D, Rippe B. Ficoll and dextran vs. globular proteins as probes for testing glomerular permselectivity: effects of molecular size, shape, charge, and deformability. Am. J. Physiol. Renal Physiol.288(4), F605–F613 (2005).
  • Rosloniec EF, Brandstetter T, Leyer S, Schwaiger FW, Nagy ZA. Second-generation peptidomimetic inhibitors of antigen presentation effectively treat autoimmune diseases in HLA-DR-transgenic mouse models. J. Autoimmun.27(3), 182–195 (2006).
  • Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics50(3–4), 213–219 (1999).
  • Robinson J, Waller MJ, Fail SC et al. The IMGT/HLA database. Nucleic Acids Res.37(Database issue), D1013–D1017 (2009).
  • Goldstein B, Faeder JR, Hlavacek WS. Mathematical and computational models of immune-receptor signalling. Nat. Rev. Immunol.4(6), 445–456 (2004).
  • Douat-Casassus C, Marchand-Geneste N, Diez E, Gervois N, Jotereau F, Quideau S. Synthetic anticancer vaccine candidates: rational design of antigenic peptide mimetics that activate tumor-specific T-cells. J. Med. Chem.50(7), 1598–1609 (2007).
  • Douat-Casassus C, Borbulevych O, Tarbe M et al. Crystal structures of HLA-A*0201 complexed with melan-A/MART-1(26(27L)-35) peptidomimetics reveal conformational heterogeneity and highlight degeneracy of T cell recognition. J. Med. Chem.53(19), 7061–7066 (2010).
  • Corse E, Gottschalk RA, Krogsgaard M, Allison JP. Attenuated T-cell responses to a high-potency ligand in vivo. PLoS Biol.8(9), e1000481 (2010).
  • Li LP, Lampert JC, Chen X et al. Transgenic mice with a diverse human T cell antigen receptor repertoire. Nat. Med.16(9), 1029–1034 (2010).
  • Muraoka D, Kato T, Wang L et al. Peptide vaccine induces enhanced tumor growth associated with apoptosis induction in CD8+ T cells. J. Immunol.185(6), 3768–3776 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.