191
Views
79
CrossRef citations to date
0
Altmetric
Review

Electroporation for DNA immunization: clinical application

&
Pages 503-517 | Published online: 09 Jan 2014

References

  • Hirata K, Nishikawa M, Kobayashi N, Takahashi Y, Takakura Y. Design of PCR-amplified DNA fragments for in vivo gene delivery: size-dependency on stability and transgene expression. J. Pharm. Sci.96(9), 2251–2261 (2007).
  • Boretti FS, Leutenegger CM, Mislin C et al. Protection against FIV challenge infection by genetic vaccination using minimalistic DNA constructs for FIV env gene and feline IL-12 expression. AIDS14(12), 1749–1757 (2000).
  • Cardoso AI, Blixenkrone-Moller M, Fayolle J, Liu M, Buckland R, Wild TF. Immunization with plasmid DNA encoding for the measles virus hemagglutinin and nucleoprotein leads to humoral and cell-mediated immunity. Virology225(2), 293–299 (1996).
  • Raz E. Introduction: gene vaccination, current concepts and future directions. Springer Semin. Immunopathol.19(2), 131–137 (1997).
  • Davis HL, Mancini M, Michel ML, Whalen RG. DNA-mediated immunization to hepatitis B surface antigen: longevity of primary response and effect of boost. Vaccine14(9), 910–915 (1996).
  • Hassett DE, Zhang J, Slifka M, Whitton JL. Immune responses following neonatal DNA vaccination are long-lived, abundant, and qualitatively similar to those induced by conventional immunization. J. Virol.74(6), 2620–2627 (2000).
  • Van Drunen Littel-van den Hurk S, Braun RP, Lewis PJ, Karvonen BC, Babiuk LA, Griebel PJ. Immunization of neonates with DNA encoding a bovine herpesvirus glycoprotein is effective in the presence of maternal antibodies. Viral Immunol.12(1), 67–77 (1999).
  • Kim JJ, Yang JS, Nottingham LK et al. Induction of immune responses and safety profiles in rhesus macaques immunized with a DNA vaccine expressing human prostate-specific antigen. Oncogene20(33), 4497–4506 (2001).
  • Le TP, Coonan KM, Hedstrom RC et al. Safety, tolerability and humoral immune responses after intramuscular administration of a malaria DNA vaccine to healthy adult volunteers. Vaccine18(18), 1893–1901 (2000).
  • MacGregor RR, Boyer JD, Ugen KE et al. First human trial of a DNA-based vaccine for treatment of human immunodeficiency virus type 1 infection: safety and host response. J. Infect. Dis.178(1), 92–100 (1998).
  • Pontarollo RA, Babiuk LA, Hecker R, Van Drunen Littel-Van Den Hurk S. Augmentation of cellular immune responses to bovine herpesvirus-1 glycoprotein D by vaccination with CpG-enhanced plasmid vectors. J. Gen. Virol.83(Pt 12), 2973–2981 (2002).
  • Spies B, Hochrein H, Vabulas M et al. Vaccination with plasmid DNA activates dendritic cells via Toll-like receptor 9 (TLR9) but functions in TLR9-deficient mice. J. Immunol.171(11), 5908–5912 (2003).
  • Uwiera RR, Gerdts V, Pontarollo RA, Babiuk LA, Middleton DM, Griebel PJ. Plasmid DNA induces increased lymphocyte trafficking: a specific role for CpG motifs. Cell. Immunol.214(2), 155–164 (2001).
  • Ishii KJ, Kawagoe T, Koyama S et al. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature451(7179), 725–729 (2008).
  • Corr M, von Damm A, Lee DJ, Tighe H. In vivo priming by DNA injection occurs predominantly by antigen transfer. J. Immunol.163(9), 4721–4727 (1999).
  • Corr M, Lee DJ, Carson DA, Tighe H. Gene vaccination with naked plasmid DNA: mechanism of CTL priming. J. Exp. Med.184(4), 1555–1560 (1996).
  • Takashima A, Morita A. Dendritic cells in genetic immunization. J. Leukoc. Biol.66(2), 350–356 (1999).
  • Banchereau J, Briere F, Caux C et al. Immunobiology of dendritic cells. Annu. Rev. Immunol.18, 767–811 (2000).
  • Kutzler MA, Weiner DB. DNA vaccines: ready for prime time? Nat. Rev. Genet.9(10), 776–788 (2008).
  • Hall RA, Khromykh AA. West Nile virus vaccines. Expert Opin. Biol. Ther.4(8), 1295–1305 (2004).
  • Luxembourg A, Evans CF, Hannaman D. Electroporation based DNA immunization: translation to the clinic. Expert Opin. Biol. Ther.7(11), 1647–1664. (2007).
  • Mitragotri S. Current status and future prospects of needle-free liquid jet injectors. Nat. Rev. Drug Discov.5(7), 543–548 (2006).
  • Belakova J, Horynova M, Krupka M, Weigl E, Raska M. DNA vaccines: are they still just a powerful tool for the future? Arch. Immunol. Ther. Exp. (Warsz.)55(6), 387–398 (2007).
  • Gerdts V, Babiuk LA, van Drunen Littel-van den H, Griebel PJ. Fetal immunization by a DNA vaccine delivered into the oral cavity. Nat. Med.6(8), 929–932 (2000).
  • Inoue T, Inoue Y, Hayashi K et al. Topical administration of HSV gD-IL-2 DNA is highly protective against murine herpetic stromal keratitis. Cornea21(1), 106–110 (2002).
  • Loehr BI, Rankin R, Pontarollo R et al. Suppository-mediated DNA immunization induces mucosal immunity against bovine herpesvirus-1 in cattle. Virology289(2), 327–333 (2001).
  • Loehr BI, Willson P, Babiuk LA, van Drunen Littel-van den Hurk S. Gene gun-mediated DNA immunization primes development of mucosal immunity against bovine herpesvirus 1 in cattle. J. Virol.74(13), 6077–6086 (2000).
  • Svanholm C, Bandholtz L, Castanos-Velez E, Wigzell H, Rottenberg ME. Protective DNA immunization against Chlamydia pneumoniae. Scand. J. Immunol.51(4), 345–353 (2000).
  • Tagawa ST, Lee P, Snively J et al. Phase I study of intranodal delivery of a plasmid DNA vaccine for patients with Stage IV melanoma. Cancer98(1), 144–154 (2003).
  • Sale AJ, Hamilton WA. Effects of high electric fields on micro-organisms. 3. Lysis of erythrocytes and protoplasts. Biochim. Biophys. Acta.163(1), 37–43 (1968).
  • Crowley JM. Electrical breakdown of bimolecular lipid membranes as an electromechanical instability. Biophys. J.13(7), 711–724 (1973).
  • Zimmermann U, Pilwat G, Holzapfel C, Rosenheck K. Electrical hemolysis of human and bovine red blood cells. J. Membr. Biol.30(2), 135–152 (1976).
  • Kinosita K Jr, Tsong TT. Hemolysis of human erythrocytes by transient electric field. Proc. Natl Acad. Sci. USA74(5), 1923–1927 (1977).
  • Kinosita K Jr, Tsong TY. Formation and resealing of pores of controlled sizes in human erythrocyte membrane. Nature268(5619), 438–441 (1977).
  • Zimmermann U, Riemann F, Pilwat G. Enzyme loading of electrically homogeneous human red blood cell ghosts prepared by dielelctric breakdown. Biochim. Biophys. Acta436(2), 460–474 (1976).
  • Zimmermann U, Pilwat G, Vienken J. Erythrocytes and lymphocytes as drug carrier systems: techniques for entrapment of drugs in living cells. Recent Results Cancer Res.75, 252–259 (1980).
  • Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J.1(7), 841–845 (1982).
  • Wong TK, Neumann E. Electric field mediated gene transfer. Biochem. Biophys. Res. Commun.107(2), 584–587 (1982).
  • Escoffre JM, Portet T, Wasungu L, Teissie J, Dean D, Rols MP. What is (still not) known of the mechanism by which electroporation mediates gene transfer and expression in cells and tissues. Mol. Biotechnol.41(3), 286–295 (2009).
  • Andreason GL, Evans GA. Introduction and expression of DNA molecules in eukaryotic cells by electroporation. Biotechniques6(7), 650–660 (1988).
  • Andreason GL, Evans GA. Optimization of electroporation for transfection of mammalian cell lines. Anal. Biochem.180(2), 269–275 (1989).
  • Neumann E, Kakorin S, Toensing K. Fundamentals of electroporative delivery of drugs and genes. Bioelectrochem. Bioenerg.48(1), 3–16 (1999).
  • Bureau MF, Gehl J, Deleuze V, Mir LM, Scherman D. Importance of association between permeabilization and electrophoretic forces for intramuscular DNA electrotransfer. Biochim. Biophys. Acta1474(3), 353–359 (2000).
  • Satkauskas S, Andre F, Bureau MF, Scherman D, Miklavcic D, Mir LM. Electrophoretic component of electric pulses determines the efficacy of in vivo DNA electrotransfer. Hum. Gene Ther.16(10), 1194–1201 (2005).
  • Satkauskas S, Bureau MF, Puc M et al. Mechanisms of in vivo DNA electrotransfer: respective contributions of cell electropermeabilization and DNA electrophoresis. Mol. Ther.5(2), 132–140 (2002).
  • Potter H. Electroporation in biology: methods, applications, and instrumentation. Anal. Biochem.174(2), 361–373 (1988).
  • Tsong TY. Electroporation of cell membranes. Biophys. J.60(2), 297–306 (1991).
  • Okino M, Mohri H. Effects of a high-voltage electrical impulse and an anticancer drug on in vivo growing tumors. Jpn J. Cancer Res.78(12), 1319–1321 (1987).
  • Belehradek J Jr, Orlowski S, Poddevin B, Paoletti C, Mir LM. Electrochemotherapy of spontaneous mammary tumours in mice. Eur. J. Cancer27(1), 73–76 (1991).
  • Mir LM, Glass LF, Sersa G et al. Effective treatment of cutaneous and subcutaneous malignant tumours by electrochemotherapy. Br. J. Cancer77(12), 2336–2342 (1998).
  • Okino M, Tomie H, Kanesada H, Marumoto M, Esato K, Suzuki H. Optimal electric conditions in electrical impulse chemotherapy. Jpn J. Cancer Res.83(10), 1095–1101 (1992).
  • Kanesada H. [Anticancer effect of high voltage pulses combined with concentration dependent anticancer drugs on Lewis lung carcinoma, in vivo]. Nippon Gan Chiryo Gakkai Shi25(11), 2640–2648 (1990).
  • Orlowski S, Belehradek J Jr, Paoletti C, Mir LM. Transient electropermeabilization of cells in culture. Increase of the cytotoxicity of anticancer drugs. Biochem. Pharmacol.37(24), 4727–4733 (1988).
  • Belehradek M, Domenge C, Luboinski B, Orlowski S, Belehradek J Jr, Mir LM. Electrochemotherapy, a new antitumor treatment. First clinical Phase I–II trial. Cancer72(12), 3694–3700 (1993).
  • Domenge C, Orlowski S, Luboinski B et al. Antitumor electrochemotherapy: new advances in the clinical protocol. Cancer77(5), 956–963 (1996).
  • Glass LF, Fenske NA, Jaroszeski M et al. Bleomycin-mediated electrochemotherapy of basal cell carcinoma. J. Am. Acad. Dermatol.34(1), 82–86 (1996).
  • Glass LF, Pepine ML, Fenske NA, Jaroszeski M, Reintgen DS, Heller R. Bleomycin-mediated electrochemotherapy of metastatic melanoma. Arch. Dermatol.132(11), 1353–1357 (1996).
  • Titomirov AV, Sukharev S, Kistanova E. In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA. Biochim. Biophys. Acta1088(1), 131–134 (1991).
  • Nishi T, Yoshizato K, Yamashiro S et al. High-efficiency in vivo gene transfer using intraarterial plasmid DNA injection following in vivo electroporation. Cancer Res.56(5), 1050–1055 (1996).
  • Nomura M, Nakata Y, Inoue T et al.In vivo induction of cytotoxic T lymphocytes specific for a single epitope introduced into an unrelated molecule. J. Immunol. Methods193(1), 41–49 (1996).
  • Heller R, Jaroszeski M, Atkin A et al.In vivo gene electroinjection and expression in rat liver. FEBS Lett.389(3), 225–228 (1996).
  • Babiuk S, Baca-Estrada ME, Foldvari M et al. Needle-free topical electroporation improves gene expression from plasmids administered in porcine skin. Mol. Ther.8(6), 992–998 (2003).
  • Babiuk S, Baca-Estrada ME, Foldvari M et al. Electroporation improves the efficacy of DNA vaccines in large animals. Vaccine20(27–28), 3399–3408 (2002).
  • Babiuk S, Tsang C, van Drunen Littel-van den Hurk S, Babiuk LA, Griebel PJ. A single HBsAg DNA vaccination in combination with electroporation elicits long-term antibody responses in sheep. Bioelectrochemistry70(2), 269–274 (2007).
  • van Drunen Littel-van den Hurk S, Babiuk SL, Babiuk LA. Strategies for improved formulation and delivery of DNA vaccines to veterinary target species. Immunol. Rev.199, 113–125 (2004).
  • Laddy DJ, Yan J, Kutzler M et al. Heterosubtypic protection against pathogenic human and avian influenza viruses via in vivo electroporation of synthetic consensus DNA antigens. PloS One3(6), e2517 (2008).
  • Otten G, Schaefer M, Doe B et al. Enhancement of DNA vaccine potency in rhesus macaques by electroporation. Vaccine22(19), 2489–2493 (2004).
  • Mir LM, Moller PH, Andre F, Gehl J. Electric pulse-mediated gene delivery to various animal tissues. Adv. Genet.54, 83–114 (2005).
  • Somiari S, Glasspool-Malone J, Drabick JJ et al. Theory and in vivo application of electroporative gene delivery. Mol. Ther.2(3), 178–187 (2000).
  • Aihara H, Miyazaki J. Gene transfer into muscle by electroporation in vivo. Nat. Biotechnol.16(9), 867–870 (1998).
  • Mir LM, Bureau MF, Rangara R, Schwartz B, Scherman D. Long-term, high level in vivo gene expression after electric pulse-mediated gene transfer into skeletal muscle. C. R. Acad. Sci. III Sci. Vie321(11), 893–899 (1998).
  • Mathiesen I. Electropermeabilization of skeletal muscle enhances gene transfer in vivo. Gene Ther.6(4), 508–514 (1999).
  • Glasspool-Malone J, Somiari S, Drabick JJ, Malone RW. Efficient nonviral cutaneous transfection. Mol. Ther.2(2), 140–146 (2000).
  • Drabick JJ, Glasspool-Malone J, King A, Malone RW. Cutaneous transfection and immune responses to intradermal nucleic acid vaccination are significantly enhanced by in vivo electropermeabilization. Mol. Ther.3(2), 249–255 (2001).
  • Donnelly J, Berry K, Ulmer JB. Technical and regulatory hurdles for DNA vaccines. Int. J. Parasitol.33(5–6), 457–467 (2003).
  • Ulmer JB, Wahren B, Liu MA. Gene-based vaccines: recent technical and clinical advances. Trends Mol. Med.12(5), 216–222 (2006).
  • Babiuk S, Baca-Estrada ME, Foldvari M et al. Increased gene expression and inflammatory cell infiltration caused by electroporation are both important for improving the efficacy of DNA vaccines. J. Biotechnol.110(1), 1–10 (2004).
  • Hartikka J, Sukhu L, Buchner C et al. Electroporation-facilitated delivery of plasmid DNA in skeletal muscle: plasmid dependence of muscle damage and effect of poloxamer 188. Mol. Ther.4(5), 407–415 (2001).
  • Liu J, Kjeken R, Mathiesen I, Barouch DH. Recruitment of antigen-presenting cells to the site of inoculation and augmentation of human immunodeficiency virus type 1 DNA vaccine immunogenicity by in vivo electroporation. J. Virol.82(11), 5643–5649 (2008).
  • Peng B, Zhao Y, Xu L, Xu Y. Electric pulses applied prior to intramuscular DNA vaccination greatly improve the vaccine immunogenicity. Vaccine25(11), 2064–2073 (2007).
  • Chiarella P, Massi E, De Robertis M et al. Electroporation of skeletal muscle induces danger signal release and antigen-presenting cell recruitment independently of DNA vaccine administration. Expert Opin. Biol. Ther.8(11), 1645–1657 (2008).
  • Roos AK, Moreno S, Leder C, Pavlenko M, King A, Pisa P. Enhancement of cellular immune response to a prostate cancer DNA vaccine by intradermal electroporation. Mol. Ther.13(2), 320–327 (2006).
  • Roos AK, Eriksson F, Timmons JA et al. Skin electroporation: effects on transgene expression, DNA persistence and local tissue environment. PloS One4(9), e7226 (2009).
  • Roos AK, Eriksson F, Walters DC, Pisa P, King AD. Optimization of skin electroporation in mice to increase tolerability of DNA vaccine delivery to patients. Mol. Ther.17(9), 1637–1642 (2009).
  • Martinon F, Kaldma K, Sikut R et al. Persistent immune responses induced by a human immunodeficiency virus DNA vaccine delivered in association with electroporation in the skin of nonhuman primates. Hum. Gene Ther.20(11), 1291–1307 (2009).
  • Luxembourg A, Hannaman D, Ellefsen B, Nakamura G, Bernard R. Enhancement of immune responses to an HBV DNA vaccine by electroporation. Vaccine24(21), 4490–4493 (2006).
  • Luxembourg A, Hannaman D, Wills K et al. Immunogenicity in mice and rabbits of DNA vaccines expressing woodchuck hepatitis antigens. Vaccine26(32), 4025–4033 (2008).
  • Wang S, Zhang C, Zhang L, Li J, Huang Z, Lu S. The relative immunogenicity of DNA vaccines delivered by the intramuscular needle injection, electroporation and gene gun methods. Vaccine26(17), 2100–2110 (2008).
  • Simon AJ, Casimiro DR, Finnefrock AC et al. Enhanced in vivo transgene expression and immunogenicity from plasmid vectors following electrostimulation in rodents and primates. Vaccine26(40), 5202–5209 (2008).
  • Tjelle TE, Salte R, Mathiesen I, Kjeken R. A novel electroporation device for gene delivery in large animals and humans. Vaccine24(21), 4667–4670 (2006).
  • Luckay A, Sidhu MK, Kjeken R et al. Effect of plasmid DNA vaccine design and in vivo electroporation on the resulting vaccine-specific immune responses in rhesus macaques. J. Virol.81(10), 5257–5269 (2007).
  • Rosati M, Valentin A, Jalah R et al. Increased immune responses in rhesus macaques by DNA vaccination combined with electroporation. Vaccine26(40), 5223–5229 (2008).
  • Hirao LA, Wu L, Khan AS et al. Combined effects of IL-12 and electroporation enhances the potency of DNA vaccination in macaques. Vaccine26(25), 3112–3120 (2008).
  • Rosati M, Bergamaschi C, Valentin A et al. DNA vaccination in rhesus macaques induces potent immune responses and decreases acute and chronic viremia after SIVmac251 challenge. Proc. Natl Acad. Sci. USA106(37), 15831–15836 (2009).
  • Yin J, Dai A, Laddy DJ et al. High dose of plasmid IL-15 inhibits immune responses in an influenza non-human primates immunogenicity model. Virology393(1), 49–55 (2009).
  • Capone S, Zampaglione I, Vitelli A et al. Modulation of the immune response induced by gene electrotransfer of a hepatitis C virus DNA vaccine in nonhuman primates. J. Immunol.177(10), 7462–7471 (2006).
  • Livingston BD, Little SF, Luxembourg A, Ellefsen B, Hannaman D. Comparative performance of a licensed anthrax vaccine versus electroporation based delivery of a PA encoding DNA vaccine in rhesus macaques. Vaccine28(4), 1056–1061 (2009).
  • Draghia-Akli R, Khan AS, Brown PA et al. Parameters for DNA vaccination using adaptive constant-current electroporation in mouse and pig models. Vaccine26(40), 5230–5237 (2008).
  • Scheerlinck JP, Karlis J, Tjelle TE, Presidente PJ, Mathiesen I, Newton SE. In vivo electroporation improves immune responses to DNA vaccination in sheep. Vaccine22(13–14), 1820–1825 (2004).
  • Yen HH, Scheerlinck JP. Co-delivery of plasmid-encoded cytokines modulates the immune response to a DNA vaccine delivered by in vivo electroporation. Vaccine25(14), 2575–2582 (2007).
  • Tsang C, Babiuk S, van Drunen Littel-van den Hurk S, Babiuk LA, Griebel P. A single DNA immunization in combination with electroporation prolongs the primary immune response and the duration of immune memory. Vaccine25, 5485–5494 (2007).
  • Babiuk S, Babiuk LA, van Drunen Littel-van den Hurk S. DNA vaccination: a simple concept with challenges regarding implementation. Int. Rev. Immunol.25(3–4), 51–81 (2006).
  • Tollefsen S, Vordermeier M, Olsen I et al. DNA injection in combination with electroporation: a novel method for vaccination of farmed ruminants. Scand. J. Immunol.57(3), 229–238 (2003).
  • Brown PA, Davis WC, Draghia-Akli R. Immune-enhancing effects of growth hormone-releasing hormone delivered by plasmid injection and electroporation. Mol. Ther.10(4), 644–651 (2004).
  • van Drunen Littel-van den Hurk S, Luxembourg A, Ellefsen B et al. Electroporation-based DNA transfer enhances gene expression and immune responses to DNA vaccines in cattle. Vaccine26(43), 5503–5509 (2008).
  • Draghia-Akli R, Cummings KK, Khan AS, Brown PA, Carpenter RH. Effects of plasmid-mediated growth hormone releasing hormone supplementation in young, healthy Beagle dogs. J. Anim. Sci.81(9), 2301–2310 (2003).
  • Fewell JG, MacLaughlin F, Mehta V et al. Gene therapy for the treatment of hemophilia B using PINC-formulated plasmid delivered to muscle with electroporation. Mol. Ther.3(4), 574–583 (2001).
  • Pavlin D, Tozon N, Sersa G, Pogacnik A, Cemazar M. Efficient electrotransfection into canine muscle. Technol. Cancer Res. Treat.7(1), 45–54 (2008).
  • Brown PA, Bodles-Brakhop AM, Pope MA, Draghia-Akli R. Gene therapy by electroporation for the treatment of chronic renal failure in companion animals. BMC Biotechnol.9, 4 (2009).
  • Belshe RB, Newman FK, Wilkins K et al. Comparative immunogenicity of trivalent influenza vaccine administered by intradermal or intramuscular route in healthy adults. Vaccine25(37–38), 6755–6763 (2007).
  • Hirao LA, Wu L, Khan AS, Satishchandran A, Draghia-Akli R, Weiner DB. Intradermal/subcutaneous immunization by electroporation improves plasmid vaccine delivery and potency in pigs and rhesus macaques. Vaccine26(3), 440–448 (2008).
  • Laddy DJ, Yan J, Khan AS et al. Electroporation of synthetic DNA antigens offers protection in nonhuman primates challenged with highly pathogenic avian influenza virus. J. Virol.83(9), 4624–4630 (2009).
  • Schalk JA, Mooi FR, Berbers GA, van Aerts LA, Ovelgonne H, Kimman TG. Preclinical and clinical safety studies on DNA vaccines. Hum. Vaccin.2(2), 45–53 (2006).
  • Rizzuto G, Cappelletti M, Maione D et al. Efficient and regulated erythropoietin production by naked DNA injection and muscle electroporation. Proc. Natl Acad. Sci. USA96(11), 6417–6422 (1999).
  • Long YC, Jaichandran S, Ho LP, Tien SL, Tan SY, Kon OL. FVIII gene delivery by muscle electroporation corrects murine hemophilia A. J. Gene Med.7(4), 494–505 (2005).
  • Schertzer JD, Plant DR, Lynch GS. Optimizing plasmid-based gene transfer for investigating skeletal muscle structure and function. Mol. Ther.13(4), 795–803 (2006).
  • Medi BM, Singh J. Skin targeted DNA vaccine delivery using electroporation in rabbits II. Safety. Int. J. Pharm.308(1–2), 61–68 (2006).
  • Wallace M, Evans B, Woods S et al. Tolerability of two sequential electroporation treatments using MedPulser DNA delivery system (DDS) in healthy adults. Mol. Ther.17(5), 922–928 (2009).
  • Ahlen G, Soderholm J, Tjelle T et al.In vivo electroporation enhances the immunogenicity of hepatitis C virus nonstructural 3/4A DNA by increased local DNA uptake, protein expression, inflammation, and infiltration of CD3+ T cells. J. Immunol.179(7), 4741–4753 (2007).
  • Ledwith BJ, Manam S, Troilo PJ et al. Plasmid DNA vaccines: investigation of integration into host cellular DNA following intramuscular injection in mice. Intervirology43(4–6), 258–272 (2000).
  • Martin T, Parker SE, Hedstrom R et al. Plasmid DNA malaria vaccine: the potential for genomic integration after intramuscular injection. Hum. Gene Ther.10(5), 759–768 (1999).
  • Nichols WW, Ledwith BJ, Manam SV, Troilo PJ. Potential DNA vaccine integration into host cell genome. Ann. NY Acad. Sci.772, 30–39 (1995).
  • Sheets RL, Stein J, Manetz TS et al. Biodistribution of DNA plasmid vaccines against HIV-1, Ebola, Severe Acute Respiratory Syndrome, or West Nile virus is similar, without integration, despite differing plasmid backbones or gene inserts. Toxicol. Sci.91(2), 610–619 (2006).
  • Cole J, Skopek TR. International Commission for Protection Against Environmental Mutagens and Carcinogens. Working paper no. 3. Somatic mutant frequency, mutation rates and mutational spectra in the human population in vivo. Mutat. Res.304(1), 33–105 (1994).
  • Wang Z, Troilo PJ, Wang X et al. Detection of integration of plasmid DNA into host genomic DNA following intramuscular injection and electroporation. Gene Ther.11(8), 711–721 (2004).
  • Low L, Mander A, McCann K et al. DNA vaccination with electroporation induces increased antibody responses in patients with prostate cancer. Hum Gene Ther.20(11), 1269–1278 (2009).
  • Sallberg M, Frelin L, Weiland O. DNA vaccine therapy for chronic hepatitis C virus (HCV) infection: immune control of a moving target. Expert Opin. Biol. Ther.9(7), 805–815 (2009).
  • Ottensmeier CH Low L, Mander A, Williams T et al. DNA fusion gene vaccination, delivered with or without in vivo electroporation: a potent and safe strategy for inducing anti-tumor immune responses in prostate cancer. Presented at: 11th Annual American Society of Gene Therapy Meeting. Boston, MA, USA, 28 May–1 June 2008.
  • Ottensmeier C. DNA fusion vaccination for prostate cancer. Presented at: Cancer Vaccines/Adjuvants/Delivery for the Next Decade. Dublin, Ireland, 11–13 November 2009.
  • Sallberg M Dow H, Jung MC et al. Antiviral effects of therapeutic vaccination with naked DNA delivered by in vivo electroporation in patients with chronic hepatitis C. Hepatology48(Suppl.), 1022A–1023A (2008).
  • Sallberg M, Frelin L, Diepolder M et al. Activation of T cell responses and reductions in the viral load following therapeutic vaccination using naked DNA delivered by in vivo electroporation in patients with chronic hepatitis C. Presented at: 12th Annual Meeting of the American Society of Gene Therapy. San Diego, CA, USA, 27–30 May 2009.
  • Bodles-Brakhop AM, Heller R, Draghia-Akli R. Electroporation for the delivery of DNA-based vaccines and immunotherapeutics: current clinical developments. Mol. Ther.17(4), 585–592 (2009).
  • Sardesai NY. DNA vaccines and immune therapy for cervical cancer. Presented at: Cancer Vaccines/Adjuvants/Delivery for the Next Decade. Dublin, Ireland, 11–13 November 2009.
  • Vasan S, Hurley A, Schlesinger SJ, Hannaman D et al.In vivo electroporation enhances the immunogenicity of ADVAX, a DNA-based HIV-1 vaccine candidate, in healthy volunteers. Presented at: AIDS Vaccine 2009. Paris, France, 19–22 October 2009.
  • Jones S, Evans K, McElwaine-Johnn H et al. DNA vaccination protects against an influenza challenge in a double-blind randomised placebo-controlled Phase 1b clinical trial. Vaccine27(18), 2506–2512 (2009).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.