251
Views
95
CrossRef citations to date
0
Altmetric
Review

DNA vaccines for targeting bacterial infections

, , , &
Pages 747-763 | Published online: 09 Jan 2014

References

  • Stewart AJ, Devlin PM. The history of the smallpox vaccine. J. Infect.52(5), 329–334 (2006).
  • Ferrera F, La Cava A, Rizzi M, Hahn BH, Indiveri F, Filaci G. Gene vaccination for the induction of immune tolerance. Ann. NY Acad. Sci.1110, 99–111 (2007).
  • Romano M, Huygen K. DNA vaccines against mycobacterial diseases. Expert Rev. Vaccines8(9), 1237–1250 (2009).
  • Davidson AH, Traub-Dargatz JL, Rodeheaver RM et al. Immunologic responses to West Nile virus in vaccinated and clinically affected horses. J. Am. Vet. Med. Assoc.226(2), 240–245 (2005).
  • Garver KA, LaPatra SE, Kurath G. Efficacy of an infectious hematopoietic necrosis (IHN) virus DNA vaccine in Chinook Oncorhynchus tshawytscha and sockeye O. nerka salmon. Dis. Aquat. Organ.64(1), 13–22 (2005).
  • Bergman PJ, Camps-Palau MA, McKnight JA et al. Development of a xenogeneic DNA vaccine program for canine malignant melanoma at the Animal Medical Center. Vaccine24(21), 4582–4585 (2006).
  • Thacker EL, Holtkamp DJ, Khan AS, Brown PA, Draghia-Akli R. Plasmid-mediated growth hormone-releasing hormone efficacy in reducing disease associated with Mycoplasma hyopneumoniae and porcine reproductive and respiratory syndrome virus infection. J. Anim. Sci.84(3), 733–742 (2006).
  • Redding L, Weiner DB. DNA vaccines in veterinary use. Expert Rev. Vaccines8(9), 1251–1276 (2009).
  • Ito Y. A tumor-producing factor extracted by phenol from papillomatous tissue (Shope) of cottontail rabbits. Virology12, 596–601 (1960).
  • Atanasiu P, Orth G, Dragonas P. [Delayed specific antitumoral resistance in the hamster immunized shortly after birth with the polyoma virus.]. CR Hebd Seances Acad. Sci.254, 2250–2252 (1962).
  • Kitsis RN, Buttrick PM, McNally EM, Kaplan ML, Leinwand LA. Hormonal modulation of a gene injected into rat heart in vivo.Proc. Natl Acad. Sci. USA88(10), 4138–4142 (1991).
  • Wolff JA, Malone RW, Williams P et al. Direct gene transfer into mouse muscle in vivo.Science247(4949 Pt 1), 1465–1468 (1990).
  • Lin H, Parmacek MS, Morle G, Bolling S, Leiden JM. Expression of recombinant genes in myocardium in vivo after direct injection of DNA. Circulation82(6), 2217–2221 (1990).
  • Tang D-C, DeVit M, Johnston SA. Genetic immunization is a simple method for eliciting an immune response. Nature356(6365), 152–154 (1992).
  • Ulmer JB, Donnelly JJ, Parker SE et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science259(5102), 1745–1749 (1993).
  • Fynan EF, Webster RG, Fuller DH, Haynes JR, Santoro JC, Robinson HL. DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proc. Natl Acad. Sci. USA90(24), 11478–11482 (1993).
  • Wang B, Ugen KE, Srikantan V et al. Gene inoculation generates immune responses against human immunodeficiency virus type 1. Proc. Natl Acad. Sci. USA90(9), 4156–4160 (1993).
  • Xiang ZQ, Spitalnik S, Tran M, Wunner WH, Cheng J, Ertl HC. Vaccination with a plasmid vector carrying the rabies virus glycoprotein gene induces protective immunity against rabies virus. Virology199(1), 132–140 (1994).
  • Cox GJ, Zamb TJ, Babiuk LA. Bovine herpesvirus 1: immune responses in mice and cattle injected with plasmid DNA. J. Virol.67(9), 5664–5667 (1993).
  • Davis HL, Michel ML, Whalen RG. DNA-based immunization induces continuous secretion of hepatitis B surface antigen and high levels of circulating antibody. Hum. Mol. Genet.2(11), 1847–1851 (1993).
  • Kowalczyk DW, Ertl HC. Immune responses to DNA vaccines. Cell. Mol. Life Sci.55(5), 751–770 (1999).
  • Ritter T, Brandt C, Prosch S et al. Stimulatory and inhibitory action of cytokines on the regulation of hCMV-IE promoter activity in human endothelial cells. Cytokine12(8), 1163–1170 (2000).
  • Xiang ZQ, He Z, Wang Y, Ertl HC. The effect of interferon-γ on genetic immunization. Vaccine15(8), 896–898 (1997).
  • Vanniasinkam T, Reddy ST, Ertl HC. DNA immunization using a non-viral promoter. Virology344(2), 412–420 (2006).
  • Shepherd CT, Scott MP. Construction and evaluation of a maize chimeric promoter with activity in kernel endosperm and embryo. Biotechnol. Appl. Biochem.52, 233–243 (2009).
  • Seleem MN, Jain N, Alqublan H, Vemulapalli R, Boyle SM, Sriranganathan N. Activity of native vs. synthetic promoters in Brucella.FEMS Microbiol. Lett.288(2), 211–215 (2008).
  • Tang CK, Pietersz GA. Intracellular detection and immune signaling pathways of DNA vaccines. Expert Rev. Vaccines8(9), 1161–1170 (2009).
  • Capone S, Zampaglione I, Vitelli A et al. Modulation of the immune response induced by gene electrotransfer of a hepatitis C virus DNA vaccine in nonhuman primates. J. Immunol.177(10), 7462–7471 (2006).
  • Lutz CS. Alternative polyadenylation: a twist on mRNA 3´ end formation. ACS Chem. Biol.3(10), 609–617 (2008).
  • Xu ZL, Mizuguchi H, Ishii-Watabe A, Uchida E, Mayumi T, Hayakawa T. Strength evaluation of transcriptional regulatory elements for transgene expression by adenovirus vector. J. Control. Release81(1–2), 155–163 (2002).
  • Ada G. Overview of vaccines and vaccination. Mol. Biotechnol.29(3), 255–272 (2005).
  • Apostolopoulos V, Weiner DB. Development of more efficient and effective DNA vaccines. Expert Rev. Vaccines8(9), 1133–1134 (2009).
  • Tonheim TC, Bogwald J, Dalmo RA. What happens to the DNA vaccine in fish? A review of current knowledge. Fish Shellfish Immunol.25(1–2), 1–18 (2008).
  • Kutzler MA, Weiner DB. DNA vaccines: ready for prime time? Nat. Rev. Genet.9(10), 776–788 (2008).
  • Reyes-Sandoval A, Ertl HC. DNA vaccines. Curr. Mol. Med.1(2), 217–243 (2001).
  • Nathanson N, Langmuir AD. The Cutter Incident. Poliomyelitis following formaldehyde-inactivated poliovirus vaccination in the United States during the spring of 1955. ii. Relationship of poliomyelitis to cutter vaccine. Am. J. Hyg.78, 29–60 (1963).
  • Bellet JS, Prose NS. Skin complications of Bacillus Calmette-Guerin immunization. Curr. Opin. Infect. Dis.18(2), 97–100 (2005).
  • Cattamanchi A, Posavad CM, Wald A et al. Phase I study of a herpes simplex virus type 2 (HSV-2) DNA vaccine administered to healthy, HSV-2-seronegative adults by a needle-free injection system. Clin. Vaccine Immunol.15(11), 1638–1643 (2008).
  • Delavallee L, Assier E, Denys A et al. Vaccination with cytokines in autoimmune diseases. Ann. Med.40(5), 343–351 (2008).
  • Coban C, Koyama S, Takeshita F, Akira S, Ishii KJ. Molecular and cellular mechanisms of DNA vaccines. Hum. Vaccin.4(6), 453–456 (2008).
  • Tokuoka M, Tanaka M, Ono K, Takagi S, Shintani T, Gomi K. Codon optimization increases steady-state mRNA levels in Aspergillus oryzae heterologous gene expression. Appl. Environ. Microbiol.74(21), 6538–6546 (2008).
  • Li KB, Zhang XG, Ma J et al. Codon optimization of the H5N1 influenza virus HA gene gets high expression in mammalian cells. Bing Du Xue Bao24(2), 101–105 (2008).
  • Kim MS, Sin JI. Both antigen optimization and lysosomal targeting are required for enhanced anti-tumour protective immunity in a human papillomavirus E7-expressing animal tumour model. Immunology116(2), 255–266 (2005).
  • Muthumani K, Lankaraman KM, Laddy DJ et al. Immunogenicity of novel consensus-based DNA vaccines against Chikungunya virus. Vaccine26(40), 5128–5134 (2008).
  • Besse F, Ephrussi A. Translational control of localized mRNAs: restricting protein synthesis in space and time. Nat. Rev. Mol. Cell. Biol.9(12), 971–980 (2008).
  • Graf M, Deml L, Wagner R. Codon-optimized genes that enable increased heterologous expression in mammalian cells and elicit efficient immune responses in mice after vaccination of naked DNA. Methods Mol. Med.94, 197–210 (2004).
  • Kalwy S, Rance J, Young R. Toward more efficient protein expression: keep the message simple. Mol. Biotechnol.34(2), 151–156 (2006).
  • Olafsdottir G, Svansson V, Ingvarsson S, Marti E, Torsteinsdottir S. In vitro analysis of expression vectors for DNA vaccination of horses: the effect of a Kozak sequence. Acta Vet. Scand.50, 44 (2008).
  • Kumagai Y, Takeuchi O, Akira S. TLR9 as a key receptor for the recognition of DNA. Adv. Drug Deliv. Rev.60(7), 795–804 (2008).
  • Li JM, Zhu DY. Therapeutic DNA vaccines against tuberculosis: a promising but arduous task. Chin. Med. J. (Engl.)119(13), 1103–1107 (2006).
  • Klinman DM, Klaschik S, Sato T, Tross D. CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases. Adv. Drug Deliv. Rev.61(3), 248–255 (2009).
  • Klinman DM, Klaschik S, Tomaru K, Shirota H, Tross D, Ikeuchi H. Immunostimulatory CpG oligonucleotides: Effect on gene expression and utility as vaccine adjuvants. Vaccine28(8), 1919–1923 (2010).
  • Angel JB, Cooper CL, Clinch J et al. CpG increases vaccine antigen-specific cell-mediated immunity when administered with hepatitis B vaccine in HIV infection. J. Immune Based Ther. Vaccines6, 4 (2008).
  • Kindrachuk J, Potter J, Wilson HL, Griebel P, Babiuk LA, Napper S. Activation and regulation of Toll-like receptor 9: CpGs and beyond. Mini Rev. Med. Chem.8(6), 590–600 (2008).
  • Shedlock DJ, Weiner DB. DNA vaccination: antigen presentation and the induction of immunity. J. Leukoc. Biol.68(6), 793–806 (2000).
  • Verstrepen BE, Bins AD, Rollier CS et al. Improved HIV-1 specific T-cell responses by short-interval DNA tattooing as compared to intramuscular immunization in non-human primates. Vaccine26(26), 3346–3351 (2008).
  • Lori F, Calarota SA, Lisziewicz J. Nanochemistry-based immunotherapy for HIV-1. Curr. Med. Chem.14(18), 1911–1919 (2007).
  • Watabe S, Xin K-Q, Ihata A et al. Protection against influenza virus challenge by topical application of influenza DNA vaccine. Vaccine19(31), 4434–4444 (2001).
  • Xu J, Ding Y, Yang Y. Enhancement of mucosal and cellular immune response in mice by vaccination with respiratory syncytial virus DNA encapsulated with transfersome. Viral Immunol.21(4), 483–489 (2008).
  • Fuller DH, Loudon P, Schmaljohn C. Preclinical and clinical progress of particle-mediated DNA vaccines for infectious diseases. Methods40(1), 86–97 (2006).
  • Kanazawa T, Takashima Y, Hirayama S, Okada H. Effects of menstrual cycle on gene transfection through mouse vagina for DNA vaccine. Int. J. Pharm.360(1–2), 164–170 (2008).
  • Brave A, Hallengard D, Schroder U, Blomberg P, Wahren B, Hinkula J. Intranasal immunization of young mice with a multigene HIV-1 vaccine in combination with the N3 adjuvant induces mucosal and systemic immune responses. Vaccine26(40), 5075–5078 (2008).
  • Guimaraes V, Innocentin S, Chatel JM et al. A new plasmid vector for DNA delivery using lactococci. Genet. Vaccines Ther.7(1), 4 (2009).
  • Zaharoff DA, Barr RC, Li CY, Yuan F. Electromobility of plasmid DNA in tumor tissues during electric field-mediated gene delivery. Gene Ther.9(19), 1286–1290 (2002).
  • Chiarella P, Massi E, De Robertis M et al. Electroporation of skeletal muscle induces danger signal release and antigen-presenting cell recruitment independently of DNA vaccine administration. Expert Opin. Biol. Ther.8(11), 1645–1657 (2008).
  • Escoffre JM, Portet T, Wasungu L, Teissie J, Dean D, Rols MP. What is (still not) known of the mechanism by which electroporation mediates gene transfer and expression in cells and tissues. Mol. Biotechnol.41(3), 286–295 (2009).
  • Rabussay D. Applicator and electrode design for in vivo DNA delivery by electroporation. Methods Mol. Biol.423, 35–59 (2008).
  • Draghia-Akli R, Khan AS, Brown PA et al. Parameters for DNA vaccination using adaptive constant-current electroporation in mouse and pig models. Vaccine26(40), 5230–5237 (2008).
  • Hu H, Huang X, Tao L, Huang Y, Cui BA, Wang H. Comparative analysis of the immunogenicity of SARS-CoV nucleocapsid DNA vaccine administrated with different routes in mouse model. Vaccine27(11), 1758–1763 (2009).
  • Lang KA, Yan J, Draghia-Akli R, Khan A, Weiner DB. Strong HCV NS3- and NS4A-specific cellular immune responses induced in mice and Rhesus macaques by a novel HCV genotype 1a/1b consensus DNA vaccine. Vaccine26(49), 6225–6231 (2008).
  • Rosati M, Valentin A, Jalah R et al. Increased immune responses in rhesus macaques by DNA vaccination combined with electroporation. Vaccine26(40), 5223–5229 (2008).
  • Hirao LA, Wu L, Khan AS et al. Combined effects of IL-12 and electroporation enhances the potency of DNA vaccination in macaques. Vaccine26(25), 3112–3120 (2008).
  • Foldvari M, Babiuk S, Badea I. DNA delivery for vaccination and therapeutics through the skin. Curr. Drug Deliv.3(1), 17–28 (2006).
  • Prausnitz MR, Langer R. Transdermal drug delivery. Nat. Biotechnol.26(11), 1261–1268 (2008).
  • Vandermeulen G, Staes E, Vanderhaeghen ML, Bureau MF, Scherman D, Preat V. Optimisation of intradermal DNA electrotransfer for immunisation. J. Control Release124(1–2), 81–87 (2007).
  • Ogura M, Paliwal S, Mitragotri S. Low-frequency sonophoresis: current status and future prospects. Adv. Drug Deliv. Rev.60(10), 1218–1223 (2008).
  • Whitehead K, Mitragotri S. Mechanistic analysis of chemical permeation enhancers for oral drug delivery. Pharm. Res.25(6), 1412–1419 (2008).
  • Van Damme P, Oosterhuis-Kafeja F, Van der Wielen M, Almagor Y, Sharon O, Levin Y. Safety and efficacy of a novel microneedle device for dose sparing intradermal influenza vaccination in healthy adults. Vaccine27(3), 454–459 (2009).
  • Villemejane J, Mir LM. Physical methods of nucleic acid transfer: general concepts and applications. Br. J. Pharmacol.157(2), 207–219 (2009).
  • Donnelly J, Berry K, Ulmer JB. Technical and regulatory hurdles for DNA vaccines. Int. J. Parasitol.33(5–6), 457–467 (2003).
  • Rai K, Gupta Y, Jain A, Jain SK. Transfersomes: self-optimizing carriers for bioactives. PDA J. Pharm. Sci. Technol.62(5), 362–379 (2008).
  • Osorio M, Wu Y, Singh S et al. Anthrax protective antigen delivered by Salmonella enterica serovar Typhi Ty21a protects mice from a lethal anthrax spore challenge. Infect. Immun.77(4), 1475–1482 (2009).
  • Liu D. Listeria -based anti-infective vaccine strategies. Recent Pat. Antiinfect. Drug Discov.1(3), 281–290 (2006).
  • Schoen C, Loeffler DI, Frentzen A, Pilgrim S, Goebel W, Stritzker J. Listeria monocytogenes as novel carrier system for the development of live vaccines. Int. J. Med. Microbiol.298(1–2), 45–58 (2008).
  • Kaminski RW, Turbyfill KR, Chao C, Ching WM, Oaks EV. Mucosal adjuvanticity of Shigella Invaplex with DNA-based vaccines. Clin. Vaccine Immunol.16(4), 574–586 (2009).
  • Autenrieth SE, Autenrieth IB. Yersinia enterocolitica : subversion of adaptive immunity and implications for vaccine development. Int. J. Med. Microbiol.298(1–2), 69–77 (2008).
  • Brun P, Zumbo A, Castagliuolo I et al. Intranasal delivery of DNA encoding antigens of Mycobacterium tuberculosis by non-pathogenic invasive Escherichia coli.Vaccine26(16), 1934–1941 (2008).
  • Peek LJ, Middaugh CR, Berkland C. Nanotechnology in vaccine delivery. Adv. Drug Deliv. Rev.60(8), 915–928 (2008).
  • Barouch DH, McKay PF, Sumida SM et al. Plasmid chemokines and colony-stimulating factors enhance the immunogenicity of DNA priming–viral vector boosting human immunodeficiency virus type 1 vaccines. J. Virol.77(16), 8729–8735 (2003).
  • Melkebeek V, Van den Broeck W, Verdonck F, Goddeeris BM, Cox E. Effect of plasmid DNA encoding the porcine granulocyte-macrophage colony-stimulating factor on antigen-presenting cells in pigs. Vet. Immunol. Immunopathol.125(3–4), 354–360 (2008).
  • Laddy DJ, Weiner DB. From plasmids to protection: a review of DNA vaccines against infectious diseases. Int. Rev. Immunol.25(3–4), 99–123 (2006).
  • Perales MA, Yuan J, Powel S et al. Phase I/II study of GM-CSF DNA as an adjuvant for a multipeptide cancer vaccine in patients with advanced melanoma. Mol. Ther.16(12), 2022–2029 (2008).
  • Xu R, Megati S, Roopchand V et al. Comparative ability of various plasmid-based cytokines and chemokines to adjuvant the activity of HIV plasmid DNA vaccines. Vaccine26(37), 4819–4829 (2008).
  • Wang LM, Bai YL, Shi CH et al. Immunogenicity and protective efficacy of a DNA vaccine encoding the fusion protein of mycobacterium heat shock protein 65 (Hsp65) with human interleukin-2 against Mycobacterium tuberculosis in BALB/c mice. APMIS116(12), 1071–1081 (2008).
  • Changhong S, Hai Z, Limei W et al. Therapeutic efficacy of a tuberculosis DNA vaccine encoding heat shock protein 65 of Mycobacterium tuberculosis and the human interleukin 2 fusion gene. Tuberculosis (Edinb.)89(1), 54–61 (2009).
  • Tang M, Wang H, Zhou S, Tian G. Enhancement of the immunogenicity of an infectious bronchitis virus DNA vaccine by a bicistronic plasmid encoding nucleocapsid protein and interleukin-2. J. Virol. Methods149(1), 42–48 (2008).
  • Lin CT, Tsai YC, He L et al. DNA vaccines encoding IL-2 linked to HPV-16 E7 antigen generate enhanced E7-specific CTL responses and antitumor activity. Immunol. Lett.114(2), 86–93 (2007).
  • Barouch DH, Santra S, Steenbeke TD et al. Augmentation and suppression of immune responses to an HIV-1 DNA vaccine by plasmid cytokine/Ig administration. J. Immunol.161(4), 1875–1882 (1998).
  • Barouch DH, Truitt DM, Letvin NL. Expression kinetics of the interleukin-2/immunoglobulin (IL-2/Ig) plasmid cytokine adjuvant. Vaccine22(23–24), 3092–3097 (2004).
  • Chong SY, Egan MA, Kutzler MA et al. Comparative ability of plasmid IL-12 and IL-15 to enhance cellular and humoral immune responses elicited by a SIVgag plasmid DNA vaccine and alter disease progression following SHIV(89.6P) challenge in rhesus macaques. Vaccine25(26), 4967–4982 (2007).
  • Wei F, Liu Q, Gao S et al. Enhancement by IL-18 of the protective effect of a Schistosoma japonicum 26kDa GST plasmid DNA vaccine in mice. Vaccine26(33), 4145–4149 (2008).
  • Sin J, Kim JJ, Pachuk C, Satishchandran C, Weiner DB. DNA vaccines encoding interleukin-8 and RANTES enhance antigen-specific Th1-type CD4+ T-cell-mediated protective immunity against herpes simplex virus type 2 in vivo.J. Virol.74(23), 11173–11180 (2000).
  • Asif M, Jenkins KA, Hilton LS, Kimpton WG, Bean AG, Lowenthal JW. Cytokines as adjuvants for avian vaccines. Immunol. Cell. Biol.82(6), 638–643 (2004).
  • Sumida SM, McKay PF, Truitt DM et al. Recruitment and expansion of dendritic cells in vivo potentiate the immunogenicity of plasmid DNA vaccines. J. Clin. Invest.114(9), 1334–1342 (2004).
  • Kim JJ, Nottingham LK, Sin JI et al. CD8 positive T cells influence antigen-specific immune responses through the expression of chemokines. J. Clin. Invest.102(6), 1112–1124 (1998).
  • McKay PF, Barouch DH, Santra S et al. Recruitment of different subsets of antigen-presenting cells selectively modulates DNA vaccine-elicited CD4+ and CD8+ T lymphocyte responses. Eur. J. Immunol.34(4), 1011–1020 (2004).
  • Dobano C, Rogers WO, Gowda K, Doolan DL. Targeting antigen to MHC class I and class II antigen presentation pathways for malaria DNA vaccines. Immunol. Lett.111(2), 92–102 (2007).
  • Kreiter S, Selmi A, Diken M et al. Increased antigen presentation efficiency by coupling antigens to MHC class I trafficking signals. J. Immunol.180(1), 309–318 (2008).
  • Drew DR, Boyle JS, Lew AM, Lightowlers MW, Chaplin PJ, Strugnell RA. The comparative efficacy of CTLA-4 and L-selectin targeted DNA vaccines in mice and sheep. Vaccine19(31), 4417–4428 (2001).
  • Ishikawa H, Ma Z, Barber GN. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature461(7265), 788–792 (2009).
  • Plotkin SA. Vaccines, vaccination, and vaccinology. J. Infect. Dis.187(9), 1349–1359 (2003).
  • Aravindaram K, Kuo TY, Lan CW et al. Protective immunity against porcine circovirus 2 in mice induced by a gene-based combination vaccination. J. Gene Med.11(4), 288–301 (2009).
  • Steensels M, Bublot M, Van Borm S et al. Prime–boost vaccination with a fowlpox vector and an inactivated avian influenza vaccine is highly immunogenic in Pekin ducks challenged with Asian H5N1 HPAI. Vaccine27(5), 646–654 (2009).
  • Li P, Cao RB, Zheng QS et al. Enhancement of humoral and cellular immunity in mice against Japanese encephalitis virus using a DNA prime–protein boost vaccine strategy. Vet. J.183(2), 210–216 (2008).
  • Lo CY, Wu Z, Misplon JA et al. Comparison of vaccines for induction of heterosubtypic immunity to influenza A virus: cold-adapted vaccine versus DNA prime–adenovirus boost strategies. Vaccine26(17), 2062–2072 (2008).
  • Chege GK, Shephard EG, Meyers A et al. HIV-1 subtype C Pr55gag virus-like particle vaccine efficiently boosts baboons primed with a matched DNA vaccine. J. Gen. Virol.89(Pt 9), 2214–2227 (2008).
  • Patterson LJ, Robert-Guroff M. Replicating adenovirus vector prime/protein boost strategies for HIV vaccine development. Expert Opin. Biol. Ther.8(9), 1347–1363 (2008).
  • Burgers WA, Shephard E, Monroe JE et al. Construction, characterization, and immunogenicity of a multigene modified vaccinia Ankara (MVA) vaccine based on HIV type 1 subtype C. AIDS Res. Hum. Retroviruses24(2), 195–206 (2008).
  • Kent S, De Rose R, Rollman E. Drug evaluation: DNA/MVA prime–boost HIV vaccine. Curr. Opin. Investig. Drugs8(2), 159–167 (2007).
  • Dale CJ, Thomson S, De Rose R et al. Prime–boost strategies in DNA vaccines. Methods Mol. Med.127, 171–197 (2006).
  • Pan Z, Zhang X, Geng S et al. Priming with a DNA vaccine delivered by attenuated Salmonella typhimurium and boosting with a killed vaccine confers protection of chickens against infection with the H9 subtype of avian influenza virus. Vaccine27(7), 1018–1023 (2009).
  • Heppner DG, Schwenk RJ, Arnot D, Sauerwein RW, Luty AJ. The dog that did not bark: malaria vaccines without antibodies. Trends Parasitol.23(7), 293–296 (2007).
  • Moore AC, Hill AV. Progress in DNA-based heterologous prime–boost immunization strategies for malaria. Immunol. Rev.199, 126–143 (2004).
  • Baillie LW, Rodriguez AL, Moore S et al. Towards a human oral vaccine for anthrax: the utility of a Salmonella Typhi Ty21a-based prime–boost immunization strategy. Vaccine26(48), 6083–6091 (2008).
  • Xing Z, Charters TJ. Heterologous boost vaccines for bacillus Calmette-Guerin prime immunization against tuberculosis. Expert Rev. Vaccines6(4), 539–546 (2007).
  • Cross AS, Chen WH, Levine MM. A case for immunization against nosocomial infections. J. Leukoc. Biol.83(3), 483–488 (2008).
  • Harthug S, Akselsen PE. Fighting antibiotic resistance. Tidsskr Nor Laegeforen128(20), 2343–2346 (2008).
  • Yang H, Chen J, Yang G, Zhang XH, Liu R, Xue X. Protection of Japanese flounder (Paralichthys olivaceus ) against Vibrio anguillarum with a DNA vaccine containing the mutated zinc-metalloprotease gene. Vaccine27(15), 2150–2155 (2009).
  • Jiao XD, Zhang M, Hu YH, Sun L. Construction and evaluation of DNA vaccines encoding Edwardsiella tarda antigens. Vaccine27(38), 5195–5202 (2009).
  • Prinz DM, Smithson SL, Kieber-Emmons T, Westerink MA. Induction of a protective capsular polysaccharide antibody response to a multiepitope DNA vaccine encoding a peptide mimic of meningococcal serogroup C capsular polysaccharide. Immunology110(2), 242–249 (2003).
  • Park IH, Youn JH, Choi IH, Nahm MH, Kim SJ, Shin JS. Anti-idiotypic antibody as a potential candidate vaccine for Neisseria meningitidis serogroup B. Infect. Immun.73(10), 6399–6406 (2005).
  • Weintraub A. Immunology of bacterial polysaccharide antigens. Carbohydr. Res.338(23), 2539–2547 (2003).
  • Lesinski GB, Westerink MA. Vaccines against polysaccharide antigens. Curr. Drug Targets Infect. Disord.1(3), 325–334 (2001).
  • Kieber-Emmons T, Monzavi-Karbassi B, Wang B, Luo P, Weiner DB. Cutting edge: DNA immunization with minigenes of carbohydrate mimotopes induce functional anti-carbohydrate antibody response. J. Immunol.165(2), 623–627 (2000).
  • Bona CA. Idiotype vaccines: forgotten but not gone. Nat. Med.4(6), 668–669 (1998).
  • Agarwal K, Agarwal S. Helicobacter pylori vaccine: from past to future. Mayo Clin. Proc.83(2), 169–175 (2008).
  • Kim JM, Kim JS, Kim N et al. Gene mutations of 23S rRNA associated with clarithromycin resistance in Helicobacter pylori strains isolated from Korean patients. J. Microbiol. Biotechnol.18(9), 1584–1589 (2008).
  • Sun B, Li ZS, Tu ZX, Xu GM, Du YQ. Construction of an oral recombinant DNA vaccine from H. pylori neutrophil activating protein and its immunogenicity. World J. Gastroenterol.12(43), 7042–7046 (2006).
  • Xu C, Li ZS, Du YQ et al. Construction of recombinant attenuated Salmonella typhimurium DNA vaccine expressing H. pylori ureB and IL-2. World J. Gastroenterol.13(6), 939–944 (2007).
  • Kabir S. The current status of Helicobacter pylori vaccines: a review. Helicobacter12(2), 89–102 (2007).
  • Todoroki I, Joh T, Watanabe K et al. Suppressive effects of DNA vaccines encoding heat shock protein on Helicobacter pylori -induced gastritis in mice. Biochem. Biophys. Res. Commun.277(1), 159–163 (2000).
  • Little SF. Anthrax vaccines: a development update. BioDrugs19(4), 233–245 (2005).
  • Manthorpe M, Hobart P, Hermanson G et al. Plasmid vaccines and therapeutics: from design to applications. Adv. Biochem. Eng. Biotechnol.99, 41–92 (2005).
  • Gu ML, Leppla SH, Klinman DM. Protection against anthrax toxin by vaccination with a DNA plasmid encoding anthrax protective antigen. Vaccine17(4), 340–344 (1999).
  • Luxembourg A, Hannaman D, Nolan E et al. Potentiation of an anthrax DNA vaccine with electroporation. Vaccine26(40), 5216–5222 (2008).
  • Lozes E, Huygen K, Content J et al. Immunogenicity and efficacy of a tuberculosis DNA vaccine encoding the components of the secreted antigen 85 complex. Vaccine15(8), 830–833 (1997).
  • Reed SG, Coler RN, Dalemans W et al. Defined tuberculosis vaccine, Mtb72F/AS02A, evidence of protection in cynomolgus monkeys. Proc. Natl Acad. Sci. USA106(7), 2301–2306 (2009).
  • Mollenkopf HJ, Grode L, Mattow J et al. Application of mycobacterial proteomics to vaccine design: improved protection by Mycobacterium bovis BCG prime–Rv3407 DNA boost vaccination against tuberculosis. Infect. Immun.72(11), 6471–6479 (2004).
  • Okada M, Kita Y, Nakajima T et al. Novel prophylactic and therapeutic vaccine against tuberculosis. Vaccine27(25–26), 3267–3270 (2009).
  • Fan X, Gao Q, Fu R. Differential immunogenicity and protective efficacy of DNA vaccines expressing proteins of Mycobacterium tuberculosis in a mouse model. Microbiol. Res.164(4), 374–382 (2007).
  • Cai H, Yu DH, Hu XD, Li SX, Zhu YX. A combined DNA vaccine-prime, BCG-boost strategy results in better protection against Mycobacterium bovis challenge. DNA Cell Biol.25(8), 438–447 (2006).
  • Derrick SC, Repique C, Snoy P, Yang AL, Morris S. Immunization with a DNA vaccine cocktail protects mice lacking CD4 cells against an aerogenic infection with Mycobacterium tuberculosis.Infect. Immun.72(3), 1685–1692 (2004).
  • D’Souza S, Rosseels V, Denis O et al. Improved tuberculosis DNA vaccines by formulation in cationic lipids. Infect. Immun.70(7), 3681–3688 (2002).
  • Rosada RS, de la Torre LG, Frantz FG et al. Protection against tuberculosis by a single intranasal administration of DNA–hsp65 vaccine complexed with cationic liposomes. BMC Immunol.9, 38 (2008).
  • Orme IM. Preclinical testing of new vaccines for tuberculosis: a comprehensive review. Vaccine24(1), 2–19 (2006).
  • Walsh GP, Tan EV, dela Cruz EC et al. The Philippine cynomolgus monkey (Macaca fasicularis ) provides a new nonhuman primate model of tuberculosis that resembles human disease. Nat. Med.2(4), 430–436 (1996).
  • Okada M. [Novel vaccines against M. tuberculosis.] Kekkaku81(12), 745–751 (2006).
  • Yager EJ, Dean HJ, Fuller DH. Prospects for developing an effective particle-mediated DNA vaccine against influenza. Expert Rev. Vaccines8(9), 1205–1220 (2009).
  • Kaufmann SH. Envisioning future strategies for vaccination against tuberculosis. Nat. Rev. Immunol.6(9), 699–704 (2006).
  • McShane H. Vaccine strategies against tuberculosis. Swiss Med. Wkly139(11–12), 156–160 (2009).
  • Gentschev I, Spreng S, Sieber H et al. Vivotif – a ‘magic shield’ for protection against typhoid fever and delivery of heterologous antigens. Chemotherapy53(3), 177–180 (2007).
  • Sabitha P, Prabha Adhikari MR, Chowdary A et al. Comparison of the immunogenicity and safety of two different brands of Salmonella typhi Vi capsular polysaccharide vaccine. Indian J. Med. Sci.58(4), 141–149 (2004).
  • Katare YK, Panda AK. Immunogenicity and lower dose requirement of polymer entrapped tetanus toxoid co-administered with alum. Vaccine24(17), 3599–3608 (2006).
  • Gorse GJ, Keitel W, Keyserling H et al. Immunogenicity and tolerance of ascending doses of a recombinant protective antigen (rPA102) anthrax vaccine: a randomized, double-blinded, controlled, multicenter trial. Vaccine24(33–34), 5950–5959 (2006).
  • Godfroid F, Denoël P, de Grave D, Schuerman L, Poolman J. Diphtheria-tetanus-pertussis (DTP) combination vaccines and evaluation of pertussis immune responses. Int. J. Med. Microbiol.294(5), 269–276 (2004).
  • Curran MP, Goa KL. DTPa-HBV-IPV/Hib vaccine (Infanrix hexa). Drugs63(7), 673–682; discussion 683–684 (2003).
  • Woodard JL, Berman DM. Prevention of meningococcal disease. Fetal Pediatr. Pathol.25(6), 311–319 (2006).
  • Arvas A, Gur E, Bahar H et al.Haemophilus influenzae type b antibodies in vaccinated and non-vaccinated children. Pediatr. Int.50(4), 469–473 (2008).
  • Hare ND, Smith BJ, Ballas ZK. Antibody response to pneumococcal vaccination as a function of preimmunization titer. J. Allergy Clin. Immunol.123(1), 195–200 (2009).
  • Ferreira DM, Darrieux M, Oliveira ML, Leite LC, Miyaji EN. Optimized immune response elicited by a DNA vaccine expressing pneumococcal surface protein a is characterized by a balanced immunoglobulin G1 (IgG1)/IgG2a ratio and proinflammatory cytokine production. Clin. Vaccine Immunol.15(3), 499–505 (2008).
  • Kunitomo E, Terao Y, Okamoto S, Rikimaru T, Hamada S, Kawabata S. Molecular and biological characterization of histidine triad protein in group A streptococci. Microbes Infect.10(4), 414–423 (2008).
  • Turnes CG, Aleixo JA, Monteiro AV, Dellagostin OA. DNA inoculation with a plasmid vector carrying the faeG adhesin gene of Escherichia coli K88ab induced immune responses in mice and pigs. Vaccine17(15–16), 2089–2095 (1999).
  • Stratford R, Douce G, Zhang-Barber L, Fairweather N, Eskola J, Dougan G. Influence of codon usage on the immunogenicity of a DNA vaccine against tetanus. Vaccine19(7–8), 810–815 (2000).
  • Yu YZ, Zhang SM, Sun ZW, Wang S, Yu WY. Enhanced immune responses using plasmid DNA replicon vaccine encoding the Hc domain of Clostridium botulinum neurotoxin serotype A. Vaccine25(52), 8843–8850 (2007).
  • López-Macías C, López-Hernández MA, González CR, Isibasi A, Ortiz-Navarrete V. Induction of antibodies against Salmonella typhi OmpC porin by naked DNA immunization. Ann. NY Acad. Sci.772, 285–288 (1995).
  • Zhu D, Williams JN, Rice J, Stevenson FK, Heckels JE, Christodoulides M. A DNA fusion vaccine induces bactericidal antibodies to a peptide epitope from the PorA porin of Neisseria meningitidis.Infect. Immun.76(1), 334–338 (2008).
  • Sardiñas G, Yero D, Climent Y, Caballero E, Cobas K, Niebla O. Neisseria meningitidis antigen NMB0088: sequence variability, protein topology and vaccine potential. J. Med. Microbiol.58(Pt 2), 196–208 (2009).
  • Beninati C, Arseni S, Mancuso G et al. Protective immunization against group B meningococci using anti-idiotypic mimics of the capsular polysaccharide. J. Immunol.172(4), 2461–2468 (2004).
  • Fensterle J, Grode L, Hess J, Kaufmann SH. Effective DNA vaccination against listeriosis by prime/boost inoculation with the gene gun. J. Immunol.163(8), 4510–4518 (1999).
  • Barry RA, Archie Bouwer HG, Clark TR, Cornell KA, Hinrichs DJ. Protection of interferon-γ knockout mice against Listeria monocytogenes challenge following intramuscular immunization with DNA vaccines encoding listeriolysin O. Vaccine21(17–18), 2122–2132 (2003).
  • Miyashita M, Joh T, Watanabe K et al. Immune responses in mice to intranasal and intracutaneous administration of a DNA vaccine encoding Helicobacter pylori -catalase. Vaccine20(17–18), 2336–2342 (2002).
  • Seepersaud R, Hanniffy SB, Mayne P, Sizer P, Le Page R, Wells JM. Characterization of a novel leucine-rich repeat protein antigen from group B streptococci that elicits protective immunity. Infect. Immun.73(3), 1671–1683 (2005).
  • Roth DM, Senna JP, Machado DC. Evaluation of the humoral immune response in BALB/c mice immunized with a naked DNA vaccine anti-methicillin-resistant Staphylococcus aureus.Genet. Mol. Res.5(3), 503–512 (2006).
  • Gaudreau MC, Lacasse P, Talbot BG. Protective immune responses to a multi-gene DNA vaccine against Staphylococcus aureus.Vaccine25(5), 814–824 (2007).
  • Bouzari S, Dashti A, Jafari A, Oloomi M. Immune response against adhesins of enteroaggregative Escherichia coli immunized by three different vaccination strategies (DNA/DNA, protein/protein, and DNA/protein) in mice. Comp. Immunol. Microbiol. Infect. Dis.33(3), 215–225 (2010).
  • Li Z, Wang S, Wu Y, Zhong G, Chen D. Immunization with chlamydial plasmid protein pORF5 DNA vaccine induces protective immunity against genital chlamydial infection in mice. Sci. China C Life Sci.51(11), 973–980 (2008).
  • Penttilä T, Tammiruusu A, Liljeström P et al. DNA immunization followed by a viral vector booster in a Chlamydia pneumoniae mouse model. Vaccine22(25–26), 3386–3394 (2004).
  • Lai WC, Bennett M, Johnston SA, Barry MA, Pakes SP. Protection against Mycoplasma pulmonis infection by genetic vaccination. DNA Cell Biol.14(7), 643–651 (1995).
  • Lai WC, Pakes SP, Ren K, Lu YS, Bennett M. Therapeutic effect of DNA immunization of genetically susceptible mice infected with virulent Mycoplasma pulmonis.J. Immunol.158(6), 2513–2516 (1997).
  • Chessa B, Pittau M, Puricelli M et al. Genetic immunization with the immunodominant antigen P48 of Mycoplasma agalactiae stimulates a mixed adaptive immune response in BALBc mice. Res. Vet. Sci.86(3), 414–420 (2008).
  • Luke CJ, Carner K, Liang X, Barbour AG. An OspA-based DNA vaccine protects mice against infection with Borrelia burgdorferi.J. Infect. Dis.175(1), 91–97 (1997).
  • Scheiblhofer S, Weiss R, Dürnberger H et al. A DNA vaccine encoding the outer surface protein C from Borrelia burgdorferi is able to induce protective immune responses. Microbes Infect.5(11), 939–946 (2003).
  • Singha H, Mallick AI, Jana C et al. Escheriosomes entrapped DNA vaccine co-expressing Cu-Zn superoxide dismutase and IL-18 confers protection against Brucella abortus.Microbes Infect.10(10–11), 1089–1096 (2008).
  • Hornef MW, Noll A, Schirmbeck R, Reimann J, Autenrieth IB. DNA vaccination using coexpression of cytokine genes with a bacterial gene encoding a 60-kDa heat shock protein. Med. Microbiol. Immunol.189(2), 97–104 (2000).
  • Worgall S, Krause A, Rivara M et al. Protection against P. aeruginosa with an adenovirus vector containing an OprF epitope in the capsid. J. Clin. Invest.115(5), 1281–1289 (2005).
  • Saha S, Takeshita F, Matsuda T et al. Blocking of the TLR5 activation domain hampers protective potential of flagellin DNA vaccine. J. Immunol.179(2), 1147–1154 (2007).
  • Bentancor LV, Bilen M, Fernández Brando RJ et al. DNA vaccine encoding the enterohemorragic Escherichia coli (EHEC) Shiga-like toxin 2 (Stx2) A2 and B subunits confers protective immunity to Stx challenge in the murine model. Clin. Vaccine Immunol. DOI: 10.1128/CVI.00328-08 (2009) (Epub ahead of print).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.