83
Views
11
CrossRef citations to date
0
Altmetric
Review

TLR9 and endogenous adjuvants of the whole blood-stage malaria vaccine

, , &
Pages 775-784 | Published online: 09 Jan 2014

References

  • Pierce SK, Miller LH. World Malaria Day 2009: what malaria knows about the immune system that immunologists still do not. J. Immunol.182(9), 5171–5177 (2009).
  • Good MF. The hope but challenge for developing a vaccine that might control malaria. Eur. J. Immunol.39(4), 939–943 (2009).
  • Doolan DL, Dobano C, Baird JK. Acquired immunity to malaria. Clin. Microbiol. Rev.22(1), 13–36 (2009).
  • Vanderberg JP. Reflections on early malaria vaccine studies, the first successful human malaria vaccination, and beyond. Vaccine27(1), 2–9 (2009).
  • Girard MP, Reed ZH, Friede M, Kieny MP. A review of human vaccine research and development: malaria. Vaccine25(9), 1567–1580 (2007).
  • Plebanski M, Locke E, Kazura JW, Coppel RL. Malaria vaccines: into a mirror, darkly? Trends Parasitol.24(12), 532–536 (2008).
  • Holder AA. Malaria vaccines: where next? PLoS Pathog.5(10), e1000638 (2009).
  • Haque A, Good MF. Malaria vaccine research: lessons from 2008/9. Future Microbiol.4, 649–654 (2009).
  • Cohen J, Nussenzweig V, Nussenzweig R, Vekemans J, Leach A. From the circumsporozoite protein to the RTS,S/AS candidate vaccine. Hum. Vaccin.6(1), 90–96 (2009).
  • Coppel RL. Vaccinating with the genome: a Sisyphean task? Trends Parasitol.25(5), 205–212 (2009).
  • Okech B, Mujuzi G, Ogwal A, Shirai H, Horii T, Egwang TG. High titers of IgG antibodies against Plasmodium falciparum serine repeat antigen 5 (SERA5) are associated with protection against severe malaria in Ugandan children. Am. J. Trop. Med. Hyg.74(2), 191–197 (2006).
  • McCoubrie JE, Miller SK, Sargeant T et al. Evidence for a common role for the serine-type Plasmodium falciparum serine repeat antigen proteases: implications for vaccine and drug design. Infect. Immun.75(12), 5565–5574 (2007).
  • Coler RN, Carter D, Friede M, Reed SG. Adjuvants for malaria vaccines. Parasite Immunol.31(9), 520–528 (2009).
  • Douradinha B, Mota MM, Luty AJ, Sauerwein RW. Cross-species immunity in malaria vaccine development: two, three, or even four for the price of one? Infect. Immun.76(3), 873–878 (2008).
  • Ishii KJ, Koyama S, Nakagawa A, Coban C, Akira S. Host innate immune receptors and beyond: making sense of microbial infections. Cell Host Microbe3(6), 352–363 (2008).
  • Marrack P, McKee AS, Munks MW. Towards an understanding of the adjuvant action of aluminium. Nat. Rev. Immunol.9(4), 287–293 (2009).
  • Harandi AM, Medaglini D, Shattock RJ. Vaccine adjuvants: a priority for vaccine research. Vaccine28(12), 2363–2366 (2010).
  • Ballou WR. The development of the RTS,S malaria vaccine candidate: challenges and lessons. Parasite Immunol.31(9), 492–500 (2009).
  • Ishii KJ, Akira S. Toll or toll-free adjuvant path toward the optimal vaccine development. J. Clin. Immunol.27(4), 363–371 (2007).
  • Pulendran B, Ahmed R. Translating innate immunity into immunological memory: implications for vaccine development. Cell124(4), 849–863 (2006).
  • Palm NW, Medzhitov R. Pattern recognition receptors and control of adaptive immunity. Immunol. Rev.227(1), 221–233 (2009).
  • Koyama S, Ishii KJ, Kumar H et al. Differential role of TLR- and RLR-signaling in the immune responses to influenza A virus infection and vaccination. J. Immunol.179(7), 4711–4720 (2007).
  • Ishii KJ, Kawagoe T, Koyama S et al. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature451(7179), 725–729 (2008).
  • Coban C, Koyama S, Takeshita F, Akira S, Ishii KJ. Molecular and cellular mechanisms of DNA vaccines. Hum. Vaccin.4(6), 453–456 (2008).
  • Ishikawa H, Ma Z, Barber GN. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature461(7265), 788–792 (2009).
  • Vaughan AM, Wang R, Kappe SH. Genetically engineered, attenuated whole-cell vaccine approaches for malaria. Hum. Vaccin.6(1), 107–113 (2010).
  • Hoffman SL, Billingsley PF, James E et al. Development of a metabolically active, non-replicating sporozoite vaccine to prevent Plasmodium falciparum malaria. Hum. Vaccin.6(1), 97–106 (2010).
  • Hoffman SL, Goh LM, Luke TC et al. Protection of humans against malaria by immunization with radiation-attenuated Plasmodium falciparum sporozoites. J. Infect. Dis.185(8), 1155–1164 (2002).
  • Doolan DL, Martinez-Alier N. Immune response to pre-erythrocytic stages of malaria parasites. Curr. Mol. Med.6(2), 169–185 (2006).
  • Mueller AK, Labaied M, Kappe SH, Matuschewski K. Genetically modified Plasmodium parasites as a protective experimental malaria vaccine. Nature433(7022), 164–167 (2005).
  • Purcell LA, Wong KA, Yanow SK, Lee M, Spithill TW, Rodriguez A. Chemically attenuated Plasmodium sporozoites induce specific immune responses, sterile immunity and cross-protection against heterologous challenge. Vaccine26(38), 4880–4884 (2008).
  • Belnoue E, Costa FTM, Frankenberg T et al. Protective T cell immunity against malaria liver stage after vaccination with live sporozoites under chloroquine treatment. J. Immunol.172(4), 2487–2495 (2004).
  • Roestenberg M, McCall M, Hopman J et al. Protection against a malaria challenge by sporozoite inoculation. N. Engl. J. Med.361(5), 468–477 (2009).
  • Belnoue E, Voza T, Costa FT et al. Vaccination with live Plasmodium yoelii blood stage parasites under chloroquine cover induces cross-stage immunity against malaria liver stage. J. Immunol.181(12), 8552–8558 (2008).
  • Renia L, Gruner AC, Mauduit M, Snounou G. Vaccination against malaria with live parasites. Expert Rev. Vaccines5(4), 473–481 (2006).
  • Freund J, Sommer HE, Walter AW. Immunization against malaria: vaccination of ducks with killed parasites incorporated with adjuvants. Science102(2643), 200–202 (1945).
  • Freund J, Thomson KJ, Sommer HE, Walter AW, Schenkein EL. Immunization of rhesus monkeys against malarial infection (P. knowlesi) with killed parasites and adjuvants. Science102(2643), 202–204 (1945).
  • McCarthy JS, Good MF. Whole parasite blood stage malaria vaccines: a convergence of evidence. Hum. Vaccin.6(1), 114–123 (2010).
  • Su Z, Tam MF, Jankovic D, Stevenson MM. Vaccination with novel immunostimulatory adjuvants against blood-stage malaria in mice. Infect. Immun.71(9), 5178–5187 (2003).
  • Ting LM, Gissot M, Coppi A, Sinnis P, Kim K. Attenuated Plasmodium yoelii lacking purine nucleoside phosphorylase confer protective immunity. Nat. Med.14(9), 954–958 (2008).
  • Aly AS, Downie MJ, Mamoun CB, Kappe SH. Subpatent infection with nucleoside transporter 1-deficient Plasmodium blood stage parasites confers sterile protection against lethal malaria in mice. Cell. Microbiol. DOI: 10.1111/j.1462-5822. 2010.01441.x (2010) (Epub ahead of print).
  • Sauerwein RW. Malaria transmission-blocking vaccines: the bonus of effective malaria control. Microbes Infect.9(6), 792–795 (2007).
  • Pombo DJ, Lawrence G, Hirunpetcharat C et al. Immunity to malaria after administration of ultra-low doses of red cells infected with Plasmodium falciparum. Lancet360(9333), 610–617 (2002).
  • Pichyangkul S, Yongvanitchit K, Kum-arb U et al. Malaria blood stage parasites activate human plasmacytoid dendritic cells and murine dendritic cells through a Toll-like receptor 9-dependent pathway. J. Immunol.172(8), 4926–4933 (2004).
  • Krishnegowda G, Hajjar AM, Zhu J et al. Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum: cell signaling receptors, glycosylphosphatidylinositol (GPI) structural requirement, and regulation of GPI activity. J. Biol. Chem.280(9), 8606–8616 (2005).
  • Coban C, Ishii KJ, Kawai T et al. Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. J. Exp. Med.201(1), 19–25 (2005).
  • Parroche P, Lauw FN, Goutagny N et al. Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proc. Natl Acad. Sci. USA104(6), 1919–1924 (2007).
  • Seixas E, Moura Nunes JF, Matos I, Coutinho A. The interaction between DC and Plasmodium berghei/chabaudi-infected erythrocytes in mice involves direct cell-to-cell contact, internalization and TLR. Eur. J. Immunol.39(7), 1850–1863 (2009).
  • Coban C, Igari Y, Yagi M et al. Immunogenicity of whole-parasite vaccines against Plasmodium falciparum involves malarial hemozoin and host TLR9. Cell Host Microbe7(1), 50–61 (2010).
  • Schofield L, Hewitt MC, Evans K, Siomos MA, Seeberger PH. Synthetic GPI as a candidate anti-toxic vaccine in a model of malaria. Nature418(6899), 785–789 (2002).
  • Gilson PR, Nebl T, Vukcevic D et al. Identification and stoichiometry of glycosylphosphatidylinositol-anchored membrane proteins of the human malaria parasite Plasmodium falciparum. Mol. Cell Proteomics5(7), 1286–1299 (2006).
  • Culleton R, Ndounga M, Zeyrek FY et al. Evidence for the transmission of Plasmodium vivax in the Republic of the Congo, West Central Africa. J. Infect. Dis.200(9), 1465–1469 (2009).
  • Coban C, Yagi M, Ohata K et al. The malarial metabolite hemozoin and its potential use as a vaccine adjuvant. Allergol. Int.59(2), 115–124 (2010).
  • Coban C, Ishii KJ, Horii T, Akira S. Manipulation of host innate immune responses by the malaria parasite. Trends Microbiol.15(6), 271–278 (2007).
  • Adachi K, Tsutsui H, Kashiwamura S et al.Plasmodium berghei infection in mice induces liver injury by an IL-12- and Toll-like receptor/myeloid differentiation factor 88-dependent mechanism. J. Immunol.167(10), 5928–5934 (2001).
  • Coban C, Ishii KJ, Uematsu S et al. Pathological role of Toll-like receptor signaling in cerebral malaria. Int. Immunol.19(1), 67–79 (2007).
  • Griffith JW, O’Connor C, Bernard K, Town T, Goldstein DR, Bucala R. Toll-like receptor modulation of murine cerebral malaria is dependent on the genetic background of the host. J. Infect. Dis.196(10), 1553–1564 (2007).
  • Togbe D, Schofield L, Grau GE et al. Murine cerebral malaria development is independent of Toll-like receptor signaling. Am. J. Pathol.170(5), 1640–1648 (2007).
  • Lepenies B, Cramer JP, Burchard GD, Wagner H, Kirschning CJ, Jacobs T. Induction of experimental cerebral malaria is independent of TLR2/4/9. Med. Microbiol. Immunol.197(1), 39–44 (2008).
  • Ivanov II, Atarashi K, Manel N et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell139(3), 485–498 (2009).
  • Voisine C, Mastelic B, Sponaas AM, Langhorne J. Classical CD11c+ dendritic cells, not plasmacytoid dendritic cells, induce T cell responses to Plasmodium chabaudi malaria. Int. J. Parasitol.40(6), 711–719 (2009).
  • Franklin BS, Rodrigues SO, Antonelli LR et al. MyD88-dependent activation of dendritic cells and CD4+ T lymphocytes mediates symptoms, but is not required for the immunological control of parasites during rodent malaria. Microbes Infect.9(7), 881–890 (2007).
  • Franklin BS, Parroche P, Ataide MA et al. Malaria primes the innate immune response due to interferon-g induced enhancement of Toll-like receptor expression and function. Proc. Natl Acad. Sci. USA106(14), 5789–5794 (2009).
  • Cramer JP, Lepenies B, Kamena F et al. MyD88/IL-18-dependent pathways rather than TLRs control early parasitaemia in non-lethal Plasmodium yoelii infection. Microbes Infect.10(12–13), 1259–1265 (2008).
  • Hisaeda H, Tetsutani K, Imai T et al. Malaria parasites require TLR9 signaling for immune evasion by activating regulatory T cells. J. Immunol.180(4), 2496–2503 (2008).
  • Scholzen A, Minigo G, Plebanski M. Heroes or villains? T regulatory cells in malaria infection. Trends Parasitol.26(1), 16–25 (2010).
  • Beeson JG, Osier FH, Engwerda CR. Recent insights into humoral and cellular immune responses against malaria. Trends Parasitol.24(12), 578–584 (2008).
  • Struik SS, Riley EM. Does malaria suffer from lack of memory? Immunol. Rev.201, 268–290 (2004).
  • Wipasa J, Suphavilai C, Okell LC et al. Long-lived antibody and B cell memory responses to the human malaria parasites, Plasmodium falciparum and Plasmodium vivax. PLoS Pathog.6(2), e1000770 (2010).
  • Pierce SK. Understanding B cell activation: from single molecule tracking, through Tolls, to stalking memory in malaria. Immunol. Res.43(1–3), 85–97 (2009).
  • Crompton PD, Mircetic M, Weiss G et al. The TLR9 ligand CpG promotes the acquisition of Plasmodium falciparum-specific memory B cells in malaria-naive individuals. J. Immunol.182(5), 3318–3326 (2009).
  • Traore B, Kone Y, Doumbo S et al. The TLR9 agonist CpG fails to enhance the acquisition of Plasmodium falciparum -specific memory B cells in semi-immune adults in Mali. Vaccine27(52), 7299–7303 (2009).
  • Loharungsikul S, Troye-Blomberg M, Amoudruz P et al. Expression of Toll-like receptors on antigen-presenting cells in patients with falciparum malaria. Acta Trop.105(1), 10–15 (2008).
  • Jangpatarapongsa K, Chootong P, Sattabongkot J et al.Plasmodium vivax parasites alter the balance of myeloid and plasmacytoid dendritic cells and the induction of regulatory T cells. Eur. J. Immunol.38(10), 2697–2705 (2008).
  • McCall MB, Netea MG, Hermsen CC et al.Plasmodium falciparum infection causes proinflammatory priming of human TLR responses. J. Immunol.179(1), 162–171 (2007).
  • Mockenhaupt FP, Hamann L, von Gaertner C et al. Common polymorphisms of Toll-like receptors 4 and 9 are associated with the clinical manifestation of malaria during pregnancy. J. Infect. Dis.194(2), 184–188 (2006).
  • Greene JA, Moormann AM, Vulule J, Bockarie MJ, Zimmerman PA, Kazura JW. Toll-like receptor polymorphisms in malaria-endemic populations. Malar. J.8, 50 (2009).
  • Campino S, Forton J, Auburn S et al. TLR9 polymorphisms in African populations: no association with severe malaria, but evidence of cis-variants acting on gene expression. Malar. J.8, 44 (2009).
  • Leoratti FM, Farias L, Alves FP et al. Variants in the Toll-like receptor signaling pathway and clinical outcomes of malaria. J. Infect. Dis.198(5), 772–780 (2008).
  • Torcia MG, Santarlasci V, Cosmi L et al. Functional deficit of T regulatory cells in Fulani, an ethnic group with low susceptibility to Plasmodium falciparum malaria. Proc. Natl Acad. Sci. USA105(2), 646–651 (2008).
  • Yoshida S, Araki H, Yokomine T. Baculovirus-based nasal drop vaccine confers complete protection against malaria by natural boosting of vaccine-induced antibodies in mice. Infect. Immun.78(2), 595–602 (2010).
  • Cadman ET, Abdallah AY, Voisine C et al. Alterations of splenic architecture in malaria are induced independently of Toll-like receptors 2, 4, and 9 or MyD88 and may affect antibody affinity. Infect. Immun.76(9), 3924–3931 (2008).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.