85
Views
24
CrossRef citations to date
0
Altmetric
Review

DNA vaccines for the treatment of prostate cancer

&
Pages 731-745 | Published online: 09 Jan 2014

References

  • Coley WB. A preliminary note on the treatment of inoperable sarcoma by the toxic product of erysipelas. The Post-Graduate8, 278–286 (1893).
  • McNeel DG, Nguyen LD, Ellis WJ, Higano CS, Lange PH, Disis ML. Naturally occurring prostate cancer antigen-specific T cell responses of a Th1 phenotype can be detected in patients with prostate cancer. Prostate47(3), 222–229 (2001).
  • Houghton AN. Cancer antigens: immune recognition of self and altered self. J. Exp. Med.180(1), 1–4 (1994).
  • Johnson LE, Frye TP, Chinnasamy N, Chinnasamy D, McNeel DG. Plasmid DNA vaccine encoding prostatic acid phosphatase is effective in eliciting autologous antigen-specific CD8+ T cells. Cancer Immunol. Immunother.56(6), 885–895 (2007).
  • Takaoka A, Wang Z, Choi MK et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature448(7152), 501–505 (2007).
  • Klinman DM. Adjuvant activity of CpG oligodeoxynucleotides. Int. Rev. Immunol.25(3–4), 135–154 (2006).
  • Bergman PJ. Anticancer vaccines. Vet. Clin. North Am. Small Anim. Pract.37(6), 1111–1119; vi-ii (2007).
  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J. Clin.59(4), 225–249 (2009).
  • McNeel DG, Nguyen LD, Storer BE, Vessella R, Lange PH, Disis ML. Antibody immunity to prostate cancer associated antigens can be detected in the serum of patients with prostate cancer. J. Urol.164(5), 1825–1829 (2000).
  • Olson BM, McNeel DG. Antibody and T-cell responses specific for the androgen receptor in patients with prostate cancer. Prostate67(16), 1729–1739 (2007).
  • Small EJ, Schellhammer PF, Higano CS et al. Placebo-controlled Phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J. Clin. Oncol.24(19), 3089–3094 (2006).
  • Higano CS, Schellhammer PF, Small EJ et al. Integrated data from 2 randomized, double-blind, placebo-controlled, Phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer115(16), 3670–3679 (2009).
  • Catalona WJ, Smith DS, Ratliff TL et al. Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. N. Engl. J. Med.324(17), 1156–1161 (1991).
  • Kantoff PW, Schuetz TJ, Blumenstein BA et al. Overall survival analysis of a Phase II randomized controlled trial of a poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J. Clin. Oncol.28(7), 1099–1105 (2010).
  • Lubaroff DM, Konety BR, Link B et al. Phase I clinical trial of an adenovirus/prostate-specific antigen vaccine for prostate cancer: safety and immunologic results. Clin. Cancer Res.15(23), 7375–7380 (2009).
  • Madan RA, Arlen PM, Mohebtash M, Hodge JW, Gulley JL. Prostvac-VF: a vector-based vaccine targeting PSA in prostate cancer. Expert Opin. Investig. Drugs18(7), 1001–1011 (2009).
  • Kouiavskaia DV, Berard CA, Datena E et al. Vaccination with agonist peptide PSA: 154–163 (155L) derived from prostate specific antigen induced CD8 T-cell response to the native peptide PSA: 154–163 but failed to induce the reactivity against tumor targets expressing PSA: a Phase 2 study in patients with recurrent prostate cancer. J. Immunother.32(6), 655–666 (2009).
  • Thomas-Kaskel AK, Zeiser R, Jochim R et al. Vaccination of advanced prostate cancer patients with PSCA and PSA peptide-loaded dendritic cells induces DTH responses that correlate with superior overall survival. Int. J. Cancer119(10), 2428–2434 (2006).
  • Kim JJ, Trivedi NN, Wilson DM et al. Molecular and immunological analysis of genetic prostate specific antigen (PSA) vaccine. Oncogene17(24), 3125–3135 (1998).
  • Kim JJ, Yang JS, Dang K, Manson KH, Weiner DB. Engineering enhancement of immune responses to DNA-based vaccines in a prostate cancer model in rhesus macaques through the use of cytokine gene adjuvants. Clin. Cancer Res.7(3 Suppl.), 882s–889s (2001).
  • Kim JJ, Yang JS, Nottingham LK et al. Induction of immune responses and safety profiles in rhesus macaques immunized with a DNA vaccine expressing human prostate specific antigen. Oncogene20(33), 4497–4506 (2001).
  • Roos AK, Pavlenko M, Charo J, Egevad L, Pisa P. Induction of PSA-specific CTLs and anti-tumor immunity by a genetic prostate cancer vaccine. Prostate62(3), 217–223 (2005).
  • Pavlenko M, Roos AK, Lundqvist A et al. A Phase I trial of DNA vaccination with a plasmid expressing prostate-specific antigen in patients with hormone-refractory prostate cancer. Br. J. Cancer91(4), 688–694 (2004).
  • Miller AM, Ozenci V, Kiessling R, Pisa P. Immune monitoring in a Phase 1 trial of a PSA DNA vaccine in patients with hormone-refractory prostate cancer. J. Immunother.28(4), 389–395 (2005).
  • Slovin SF. Targeting novel antigens for prostate cancer treatment: focus on prostate-specific membrane antigen. Expert Opin. Ther. Targets9(3), 561–570 (2005).
  • Hinkle GH, Burgers JK, Neal CE et al. Multicenter radioimmunoscintigraphic evaluation of patients with prostate carcinoma using indium-111 capromab pendetide. Cancer83(4), 739–747 (1998).
  • Bander NH, Trabulsi EJ, Kostakoglu L et al. Targeting metastatic prostate cancer with radiolabeled monoclonal antibody J591 to the extracellular domain of prostate specific membrane antigen. J. Urol.170(5), 1717–1721 (2003).
  • Wolf P, Gierschner D, Buhler P, Wetterauer U, Elsasser-Beile U. A recombinant PSMA-specific single-chain immunotoxin has potent and selective toxicity against prostate cancer cells. Cancer Immunol. Immunother.55(11), 1367–1373 (2006).
  • Murphy G, Tjoa B, Ragde H, Kenny G, Boynton A. Phase I clinical trial: T-cell therapy for prostate cancer using autologous dendritic cells pulsed with HLA-A0201-specific peptides from prostate-specific membrane antigen. Prostate29(6), 371–380 (1996).
  • Salgaller ML, Lodge PA, McLean JG et al. Report of immune monitoring of prostate cancer patients undergoing T-cell therapy using dendritic cells pulsed with HLA-A2-specific peptides from prostate-specific membrane antigen (PSMA). Prostate35(2), 144–151 (1998).
  • Tjoa BA, Simmons SJ, Bowes VA et al. Evaluation of Phase I/II clinical trials in prostate cancer with dendritic cells and PSMA peptides. Prostate36(1), 39–44 (1998).
  • Murphy GP, Tjoa BA, Simmons SJ et al. Phase II prostate cancer vaccine trial: report of a study involving 37 patients with disease recurrence following primary treatment. Prostate39(1), 54–59 (1999).
  • Mincheff M, Tchakarov S, Zoubak S et al. Naked DNA and adenoviral immunizations for immunotherapy of prostate cancer: a Phase I/II clinical trial. Eur. Urol.38(2), 208–217 (2000).
  • Mincheff M, Altankova I, Zoubak S et al.In vivo transfection and/or cross-priming of dendritic cells following DNA and adenoviral immunizations for immunotherapy of cancer – changes in peripheral mononuclear subsets and intracellular IL-4 and IFN-γ lymphokine profile. Crit. Rev. Oncol. Hematol.39(1–2), 125–132 (2001).
  • Gregor PD, Wolchok JD, Turaga V et al. Induction of autoantibodies to syngeneic prostate-specific membrane antigen by xenogeneic vaccination. Int. J. Cancer116(3), 415–421 (2005).
  • Wolchok JD, Gregor PD, Nordquist LT, Slovin SF, Scher HI. DNA vaccines: an active immunization strategy for prostate cancer. Semin. Oncol.30(5), 659–666 (2003).
  • Makarov DV, Carter HB. The discovery of prostate specific antigen as a biomarker for the early detection of adenocarcinoma of the prostate. J. Urol.176(6 Pt 1), 2383–2385 (2006).
  • Fong L, Brockstedt D, Benike C et al. Dendritic cell-based xenoantigen vaccination for prostate cancer immunotherapy. J. Immunol.167(12), 7150–7156 (2001).
  • Laus R, Yang DM, Ruegg CL et al. Dendritic cell immunotherapy of prostate cancer: preclinical models and early clinical experience. Canc. Res. Ther. Control11, 1–10 (2001).
  • Johnson LE, Frye TP, Arnot AR et al. Safety and immunological efficacy of a prostate cancer plasmid DNA vaccine encoding prostatic acid phosphatase (PAP). Vaccine24(3), 293–303 (2006).
  • Cha E, Fong L. Therapeutic vaccines for prostate cancer. Curr. Opin. Mol. Ther.12(1), 77–85 (2010).
  • McNeel DG, Dunphy EJ, Davies JG et al. Safety and immunological efficacy of a DNA vaccine encoding prostatic acid phosphatase in patients with stage D0 prostate cancer. J. Clin. Oncol.27(25), 4047–4054 (2009).
  • Becker JT, Olson BM, Johnson LE, Davies JG, Dunphy EJ, McNeel DG. DNA vaccine encoding prostatic acid phosphatase (PAP) elicits long-term T-cell responses in patients with recurrent prostate cancer. J. Immunother. (In Press) (2010).
  • Rodeberg DA, Nuss RA, Elsawa SF, Celis E. Recognition of six-transmembrane epithelial antigen of the prostate-expressing tumor cells by peptide antigen-induced cytotoxic T lymphocytes. Clin. Cancer Res.11(12), 4545–4552 (2005).
  • Alves PM, Faure O, Graff-Dubois S et al. STEAP, a prostate tumor antigen, is a target of human CD8+ T cells. Cancer Immunol. Immunother.55(12), 1515–1523 (2006).
  • Garcia-Hernandez Mde L, Gray A, Hubby B, Kast WM. In vivo effects of vaccination with six-transmembrane epithelial antigen of the prostate: a candidate antigen for treating prostate cancer. Cancer Res.67(3), 1344–1351 (2007).
  • Reiter RE, Gu Z, Watabe T et al. Prostate stem cell antigen: a cell surface marker overexpressed in prostate cancer. Proc. Natl Acad. Sci. USA95(4), 1735–1740 (1998).
  • Treister A, Sagi-Assif O, Meer M et al. Expression of Ly-6, a marker for highly malignant murine tumor cells, is regulated by growth conditions and stress. Int. J. Cancer77(2), 306–313 (1998).
  • Eshel R, Zanin A, Sagi-Assif O et al. The GPI-linked Ly-6 antigen E48 regulates expression levels of the FX enzyme and of E-selectin ligands on head and neck squamous carcinoma cells. J. Biol. Chem.275(17), 12833–12840 (2000).
  • Moore ML, Teitell MA, Kim Y et al. Deletion of PSCA increases metastasis of TRAMP-induced prostate tumors without altering primary tumor formation. Prostate68(2), 139–151 (2008).
  • Garcia-Hernandez Mde L, Gray A, Hubby B, Klinger OJ, Kast WM. Prostate stem cell antigen vaccination induces a long-term protective immune response against prostate cancer in the absence of autoimmunity. Cancer Res.68(3), 861–869 (2008).
  • Wolff JA, Malone RW, Williams P et al. Direct gene transfer into mouse muscle in vivo. Science247(4949 Pt 1), 1465–1468 (1990).
  • Jiao S, Williams P, Berg RK et al. Direct gene transfer into nonhuman primate myofibers in vivo. Hum. Gene Ther.3(1), 21–33 (1992).
  • Danko I, Wolff JA. Direct gene transfer into muscle. Vaccine12(16), 1499–1502 (1994).
  • Wolff JA, Williams P, Acsadi G, Jiao S, Jani A, Chong W. Conditions affecting direct gene transfer into rodent muscle in vivo. Biotechniques11(4), 474–485 (1991).
  • Danko I, Fritz JD, Jiao S, Hogan K, Latendresse JS, Wolff JA. Pharmacological enhancement of in vivo foreign gene expression in muscle. Gene Ther.1(2), 114–121 (1994).
  • Budker V, Gurevich V, Hagstrom JE, Bortzov F, Wolff JA. pH-sensitive, cationic liposomes: a new synthetic virus-like vector. Nat. Biotechnol.14(6), 760–764 (1996).
  • Budker V, Zhang G, Knechtle S, Wolff JA. Naked DNA delivered intraportally expresses efficiently in hepatocytes. Gene Ther.3(7), 593–598 (1996).
  • Zhang G, Budker V, Wolff JA. High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum. Gene Ther.10(10), 1735–1737 (1999).
  • Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J.1(7), 841–845 (1982).
  • Roos AK, Moreno S, Leder C, Pavlenko M, King A, Pisa P. Enhancement of cellular immune response to a prostate cancer DNA vaccine by intradermal electroporation. Mol. Ther.13(2), 320–327 (2006).
  • Roos AK, Eriksson F, Timmons JA et al. Skin electroporation: effects on transgene expression, DNA persistence and local tissue environment. PLoS One4(9), e7226 (2009).
  • Low L, Mander A, McCann K et al. DNA vaccination with electroporation induces increased antibody responses in patients with prostate cancer. Hum. Gene Ther.20(11), 1269–1278 (2009).
  • Lladser A, Ljungberg K, Tufvesson H et al. Intradermal DNA electroporation induces survivin-specific CTLs, suppresses angiogenesis and confers protection against mouse melanoma. Cancer Immunol. Immunother.59(1), 81–92 (2010).
  • Brave A, Hallengard D, Gudmundsdotter L et al. Late administration of plasmid DNA by intradermal electroporation efficiently boosts DNA-primed T and B cell responses to carcinoembryonic antigen. Vaccine27(28), 3692–3696 (2009).
  • Williams RS, Johnston SA, Riedy M, DeVit MJ, McElligott SG, Sanford JC. Introduction of foreign genes into tissues of living mice by DNA-coated microprojectiles. Proc. Natl Acad. Sci. USA88(7), 2726–2730 (1991).
  • Hengge UR, Walker PS, Vogel JC. Expression of naked DNA in human, pig, and mouse skin. J. Clin. Invest.97(12), 2911–2916 (1996).
  • Eisenbraun MD, Fuller DH, Haynes JR. Examination of parameters affecting the elicitation of humoral immune responses by particle bombardment-mediated genetic immunization. DNA Cell Biol.12(9), 791–797 (1993).
  • Pertmer TM, Eisenbraun MD, McCabe D, Prayaga SK, Fuller DH, Haynes JR. Gene gun-based nucleic acid immunization: elicitation of humoral and cytotoxic T lymphocyte responses following epidermal delivery of nanogram quantities of DNA. Vaccine13(15), 1427–1430 (1995).
  • Ito K, Shinohara N, Kato S. DNA immunization via intramuscular and intradermal routes using a gene gun provides different magnitudes and durations on immune response. Mol. Immunol.39(14), 847–854 (2003).
  • Cheung YK, Cheng SC, Ke Y, Xie Y. Two novel HLA-A*0201 T-cell epitopes in avian H5N1 viral nucleoprotein induced specific immune responses in HHD mice. Vet. Res.41(2), 24 (2009).
  • Huang HN, Li TL, Chan YL, Chen CL, Wu CJ. Transdermal immunization with low-pressure-gene-gun mediated chitosan-based DNA vaccines against Japanese encephalitis virus. Biomaterials30(30), 6017–6025 (2009).
  • Lin CT, Yen CF, Shaw SW et al. Gene gun administration of therapeutic HPV DNA vaccination restores the efficacy of prolonged defrosted viral based vaccine. Vaccine27(52), 7352–7358 (2009).
  • Leitner WW, Baker MC, Berenberg TL, Lu MC, Yannie PJ, Udey MC. Enhancement of DNA tumor vaccine efficacy by gene gun-mediated codelivery of threshold amounts of plasmid-encoded helper antigen. Blood113(1), 37–45 (2009).
  • Kim D, Hoory T, Monie A, Ting JP, Hung CF, Wu TC. Enhancement of DNA vaccine potency through coadministration of CIITA DNA with DNA vaccines via gene gun. J. Immunol.180(10), 7019–7027 (2008).
  • Kamimura K, Zhang G, Liu D. Image-guided, intravascular hydrodynamic gene delivery to skeletal muscle in pigs. Mol. Ther.18(1), 93–100 (2010).
  • Chang H, Hanawa H, Liu H et al. Hydrodynamic-based delivery of an interleukin-22–Ig fusion gene ameliorates experimental autoimmune myocarditis in rats. J. Immunol.177(6), 3635–3643 (2006).
  • Plank C, Rosenecker J. Magnetofection: the use of magnetic nanoparticles for nucleic acid delivery. Cold Spring Harb. Protoc.2009(6), pdb.prot5230 (2009).
  • Dittmar KM, Xie J, Hunter F et al. Pulsed high-intensity focused ultrasound enhances systemic administration of naked DNA in squamous cell carcinoma model: initial experience. Radiology235(2), 541–546 (2005).
  • Rahim AA, Taylor SL, Bush NL, ter Haar GR, Bamber JC, Porter CD. Spatial and acoustic pressure dependence of microbubble-mediated gene delivery targeted using focused ultrasound. J. Gene Med.8(11), 1347–1357 (2006).
  • Xing Y, Pua EC, Lu X, Zhong P. Low-amplitude ultrasound enhances hydrodynamic-based gene delivery to rat kidney. Biochem. Biophys. Res. Commun.386(1), 217–222 (2009).
  • Duvshani-Eshet M, Benny O, Morgenstern A, Machluf M. Therapeutic ultrasound facilitates antiangiogenic gene delivery and inhibits prostate tumor growth. Mol. Cancer Ther.6(8), 2371–2382 (2007).
  • Wang Z, Troilo PJ, Wang X et al. Detection of integration of plasmid DNA into host genomic DNA following intramuscular injection and electroporation. Gene Ther.11(8), 711–721 (2004).
  • Kurts C, Kosaka H, Carbone FR, Miller JF, Heath WR. Class I-restricted cross-presentation of exogenous self-antigens leads to deletion of autoreactive CD8+ T cells. J. Exp. Med.186(2), 239–245 (1997).
  • Rice J, Ottensmeier CH, Stevenson FK. DNA vaccines: precision tools for activating effective immunity against cancer. Nat. Rev. Cancer8(2), 108–120 (2008).
  • Biragyn A, Tani K, Grimm MC, Weeks S, Kwak LW. Genetic fusion of chemokines to a self tumor antigen induces protective, T-cell dependent antitumor immunity. Nat. Biotechnol.17(3), 253–258 (1999).
  • Biragyn A, Surenhu M, Yang D et al. Mediators of innate immunity that target immature, but not mature, dendritic cells induce antitumor immunity when genetically fused with nonimmunogenic tumor antigens. J. Immunol.167(11), 6644–6653 (2001).
  • Dranoff G, Jaffee E, Lazenby A et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc. Natl Acad. Sci. USA90(8), 3539–3543 (1993).
  • Gomez-Cambronero J, Horn J, Paul CC, Baumann MA. Granulocyte-macrophage colony-stimulating factor is a chemoattractant cytokine for human neutrophils: involvement of the ribosomal p70 S6 kinase signaling pathway. J. Immunol.171(12), 6846–6855 (2003).
  • Eksioglu EA, Mahmood SS, Chang M, Reddy V. GM-CSF promotes differentiation of human dendritic cells and T lymphocytes toward a predominantly type 1 proinflammatory response. Exp. Hematol.35(8), 1163–1171 (2007).
  • Disis ML, Shiota FM, McNeel DG, Knutson KL. Soluble cytokines can act as effective adjuvants in plasmid DNA vaccines targeting self tumor antigens. Immunobiology207(3), 179–186 (2003).
  • Marshall DJ, Rudnick KA, McCarthy SG et al. Interleukin-18 enhances Th1 immunity and tumor protection of a DNA vaccine. Vaccine24(3), 244–253 (2006).
  • Thomsen LL, Topley P, Daly MG, Brett SJ, Tite JP. Imiquimod and resiquimod in a mouse model: adjuvants for DNA vaccination by particle-mediated immunotherapeutic delivery. Vaccine22(13–14), 1799–1809 (2004).
  • Krieg AM. Development of TLR9 agonists for cancer therapy. J. Clin. Invest.117(5), 1184–1194 (2007).
  • Speiser DE, Lienard D, Rufer N et al. Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J. Clin. Invest.115(3), 739–746 (2005).
  • Link BK, Ballas ZK, Weisdorf D et al. Oligodeoxynucleotide CpG 7909 delivered as intravenous infusion demonstrates immunologic modulation in patients with previously treated non-Hodgkin lymphoma. J. Immunother.29(5), 558–568 (2006).
  • Engelhorn ME, Guevara-Patino JA, Merghoub T et al. Mechanisms of immunization against cancer using chimeric antigens. Mol. Ther.16(4), 773–781 (2008).
  • Ferrone CR, Perales MA, Goldberg SM et al. Adjuvanticity of plasmid DNA encoding cytokines fused to immunoglobulin Fc domains. Clin. Cancer Res.12(18), 5511–5519 (2006).
  • Regnault A, Lankar D, Lacabanne V et al. Fcγ receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. J. Exp. Med.189(2), 371–380 (1999).
  • You Z, Huang X, Hester J, Toh HC, Chen SY. Targeting dendritic cells to enhance DNA vaccine potency. Cancer Res.61(9), 3704–3711 (2001).
  • Park YS, Lee JH, Hung CF, Wu TC, Kim TW. Enhancement of antibody responses to Bacillus anthracis protective antigen domain IV by use of calreticulin as a chimeric molecular adjuvant. Infect. Immun.76(5), 1952–1959 (2008).
  • Delogu G, Howard A, Collins FM, Morris SL. DNA vaccination against tuberculosis: expression of a ubiquitin-conjugated tuberculosis protein enhances antimycobacterial immunity. Infect. Immun.68(6), 3097–3102 (2000).
  • Velders MP, Weijzen S, Eiben GL et al. Defined flanking spacers and enhanced proteolysis is essential for eradication of established tumors by an epitope string DNA vaccine. J. Immunol.166(9), 5366–5373 (2001).
  • Binder RJ. Heat-shock protein-based vaccines for cancer and infectious disease. Expert Rev. Vaccines7(3), 383–393 (2008).
  • Suzue K, Zhou X, Eisen HN, Young RA. Heat shock fusion proteins as vehicles for antigen delivery into the major histocompatibility complex class I presentation pathway. Proc. Natl Acad. Sci. USA94(24), 13146–13151 (1997).
  • Chu NR, Wu HB, Wu T, Boux LJ, Siegel MI, Mizzen LA. Immunotherapy of a human papillomavirus (HPV) type 16 E7-expressing tumour by administration of fusion protein comprising Mycobacterium bovis bacille Calmette-Guerin (BCG) hsp65 and HPV16 E7. Clin. Exp. Immunol.121(2), 216–225 (2000).
  • Wallin RP, Lundqvist A, More SH, von Bonin A, Kiessling R, Ljunggren HG. Heat-shock proteins as activators of the innate immune system. Trends Immunol.23(3), 130–135 (2002).
  • Gallucci S, Matzinger P. Danger signals: SOS to the immune system. Curr. Opin. Immunol.13(1), 114–119 (2001).
  • Chen CH, Wang TL, Hung CF et al. Enhancement of DNA vaccine potency by linkage of antigen gene to an HSP70 gene. Cancer Res.60(4), 1035–1042 (2000).
  • Mincheff M, Zoubak S, Altankova I et al. Human dendritic cells genetically engineered to express cytosolically retained fragment of prostate-specific membrane antigen prime cytotoxic T-cell responses to multiple epitopes. Cancer Gene Ther.10(12), 907–917 (2003).
  • Nchinda G, Kuroiwa J, Oks M et al. The efficacy of DNA vaccination is enhanced in mice by targeting the encoded protein to dendritic cells. J. Clin. Invest.118(4), 1427–1436 (2008).
  • Cheung YK, Cheng SC, Sin FW, Xie Y. Plasmid encoding papillomavirus type 16 (HPV16) DNA constructed with codon optimization improved the immunogenicity against HPV infection. Vaccine23(5), 629–638 (2004).
  • Kim MS, Sin JI. Both antigen optimization and lysosomal targeting are required for enhanced anti-tumour protective immunity in a human papillomavirus E7-expressing animal tumour model. Immunology116(2), 255–266 (2005).
  • Weber LW, Bowne WB, Wolchok JD et al. Tumor immunity and autoimmunity induced by immunization with homologous DNA. J. Clin. Invest.102(6), 1258–1264 (1998).
  • Mincheff M, Zoubak S, Makogonenko Y. Immune responses against PSMA after gene-based vaccination for immunotherapy-A: results from immunizations in animals. Cancer Gene Ther.13(4), 436–444 (2006).
  • Hartmann G, Weeratna RD, Ballas ZK et al. Delineation of a CpG phosphorothioate oligodeoxynucleotide for activating primate immune responses in vitro and in vivo. J. Immunol.164(3), 1617–1624 (2000).
  • Sato Y, Roman M, Tighe H et al. Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Science273(5273), 352–354 (1996).
  • Schneeberger A, Wagner C, Zemann A et al. CpG motifs are efficient adjuvants for DNA cancer vaccines. J. Invest. Dermatol.123(2), 371–379 (2004).
  • Pound CR, Partin AW, Eisenberger MA, Chan DW, Pearson JD, Walsh PC. Natural history of progression after PSA elevation following radical prostatectomy. JAMA281(17), 1591–1597 (1999).
  • Pannellini T, Spadaro M, Di Carlo E et al. Timely DNA vaccine combined with systemic IL-12 prevents parotid carcinomas before a dominant-negative p53 makes their growth independent of HER-2/neu expression. J. Immunol.176(12), 7695–7703 (2006).
  • Drake CG. Immunotherapy for prostate cancer: walk, don’t run. J. Clin. Oncol.27(25), 4035–4037 (2009).
  • Cheever MA, Allison JP, Ferris AS et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin. Cancer Res.15(17), 5323–5337 (2009).
  • Cunha AC, Weigle B, Kiessling A, Bachmann M, Rieber EP. Tissue-specificity of prostate specific antigens: comparative analysis of transcript levels in prostate and non-prostatic tissues. Cancer Lett.236(2), 229–238 (2006).
  • Bergman PJ, McKnight J, Novosad A et al. Long-term survival of dogs with advanced malignant melanoma after DNA vaccination with xenogeneic human tyrosinase: a Phase I trial. Clin. Cancer Res.9(4), 1284–1290 (2003).
  • Morse MA, Hobeika AC, Osada T et al. Depletion of human regulatory T cells specifically enhances antigen-specific immune responses to cancer vaccines. Blood112(3), 610–618 (2008).
  • Gil-Guerrero L, Dotor J, Huibregtse IL et al.In vitro and in vivo down-regulation of regulatory T cell activity with a peptide inhibitor of TGF-β1. J. Immunol.181(1), 126–135 (2008).
  • Terabe M, Ambrosino E, Takaku S et al. Synergistic enhancement of CD8+ T cell-mediated tumor vaccine efficacy by an anti-transforming growth factor-β monoclonal antibody. Clin. Cancer Res.15(21), 6560–6569 (2009).
  • Wolchok JD, Hoos A, O’Day S et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin. Cancer Res.15(23), 7412–7420 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.