10,803
Views
46
CrossRef citations to date
0
Altmetric
Review

MHC–peptide tetramers for the analysis of antigen-specific T cells

, &
Pages 765-774 | Published online: 09 Jan 2014

References

  • Altman JD, Moss PA, Goulder PJ et al. Phenotypic analysis of antigen-specific T lymphocytes. Science274(5284), 94–96 (1996).
  • Valitutti S, Muller S, Cella M, Padovan E, Lanzavecchia A. Serial triggering of many T-cell receptors by a few peptide–MHC complexes. Nature375(6527), 148–151 (1995).
  • Laugel B, Boulter JM, Lissin N et al. Design of soluble recombinant T cell receptors for antigen targeting and T cell inhibition. J. Biol. Chem.280(3), 1882–1892 (2005).
  • Whelan JA, Dunbar PR, Price DA et al. Specificity of CTL interactions with peptide–MHC class I tetrameric complexes is temperature dependent. J. Immunol.163(8), 4342–4348 (1999).
  • Cameron TO, Norris PJ, Patel A et al. Labeling antigen-specific CD4+ T cells with class II MHC oligomers. J. Immunol. Methods268(1), 51–69 (2002).
  • Kuroda MJ, Schmitz JE, Lekutis C et al. Human immunodeficiency virus type 1 envelope epitope-specific CD4+ T lymphocytes in simian/human immunodeficiency virus-infected and vaccinated rhesus monkeys detected using a peptide–major histocompatibility complex class II tetramer. J. Virol.74(18), 8751–8756 (2000).
  • Mallet-Designe VI, Stratmann T, Homann D, Carbone F, Oldstone MB, Teyton L. Detection of low-avidity CD4+ T cells using recombinant artificial APC: following the antiovalbumin immune response. J. Immunol.170(1), 123–131 (2003).
  • Stratmann T, Martin-Orozco N, Mallet-Designe V et al. Susceptible MHC alleles, not background genes, select an autoimmune T cell reactivity. J. Clin. Invest.112(6), 902–914 (2003).
  • Liu G, Wang Q, Tong T et al. Construction and functional test of a chicken MHC-I (BF2*15)/peptide tetramer. Vet. Immunol. Immunopathol.122(1–2), 1–7 (2008).
  • Mealey RH, Sharif A, Ellis SA, Littke MH, Leib SR, McGuire TC. Early detection of dominant Env-specific and subdominant Gag-specific CD8+ lymphocytes in equine infectious anemia virus-infected horses using major histocompatibility complex class I/peptide tetrameric complexes. Virology339(1), 110–126 (2005).
  • Oleksiewicz MB, Kristensen B, Ladekjaer-Mikkelsen AS, Nielsen J. Development of a rapid in vitro protein refolding assay which discriminates between peptide-bound and peptide-free forms of recombinant porcine major histocompatibility class I complex (SLA-I). Vet. Immunol. Immunopathol.86(1–2), 55–77 (2002).
  • Donahoe SM, Moretto WJ, Samuel RV et al. Direct measurement of CD8+ T cell responses in macaques infected with simian immunodeficiency virus. Virology272(2), 347–356 (2000).
  • Dunbar PR, Ogg GS, Chen J, Rust N, van der Bruggen P, Cerundolo V. Direct isolation, phenotyping and cloning of low-frequency antigen-specific cytotoxic T lymphocytes from peripheral blood. Curr. Biol.8(7), 413–416 (1998).
  • Rout N, Else JG, Yue S, Connole M, Exley MA, Kaur A. Paucity of CD4+ natural killer T (NKT) lymphocytes in sooty mangabeys is associated with lack of NKT cell depletion after SIV infection. PLoS One5(3), e9787 (2010).
  • Niemiec PK, Read LR, Sharif S. Synthesis of chicken major histocompatibility complex class II oligomers using a baculovirus expression system. Protein Expr. Purif.46(2), 390–400 (2006).
  • Garboczi DN, Hung DT, Wiley DC. HLA-A2–peptide complexes: refolding and crystallization of molecules expressed in Escherichia coli and complexed with single antigenic peptides. Proc. Natl Acad. Sci. USA89(8), 3429–3433 (1992).
  • Leisner C, Loeth N, Lamberth K et al. One-pot, mix-and-read peptide–MHC tetramers. PLoS One3(2), e1678 (2008).
  • Batard P, Peterson DA, Devêvre E et al. Dextramers: new generation of fluorescent MHC class I/peptide multimers for visualization of antigen-specific CD8+ T cells. J. Immunol. Methods310(1–2), 136–148 (2006).
  • Christmas SE, Halliday D, Lawton N et al. Cytomegalovirus-specific CD8+ T cells do not develop in all renal transplant patients at risk of virus infection. Transplant Immunol.22(1–2), 99–104 (2009).
  • Bakker AH, Hoppes R, Linnemann C et al. Conditional MHC class I ligands and peptide exchange technology for the human MHC gene products HLA-A1, -A3, -A11, and -B7. Proc. Natl Acad. Sci. USA105(10), 3825–3830 (2008).
  • Soen Y, Chen DS, Kraft DL, Davis MM, Brown PO. Detection and characterization of cellular immune responses using peptide–MHC microarrays. PLoS Biol.1(3), E65 (2003).
  • Crawford F, Kozono H, White J, Marrack P, Kappler J. Detection of antigen-specific T cells with multivalent soluble class II MHC covalent peptide complexes. Immunity8(6), 675–682 (1998).
  • Yang J, Jaramillo A, Shi R, Kwok WW, Mohanakumar T. In vivo biotinylation of the major histocompatibility complex (MHC) class II/peptide complex by coexpression of BirA enzyme for the generation of MHC class II/tetramers. Hum. Immunol.65(7), 692–699 (2004).
  • Kozono H, White J, Clements J, Marrack P, Kappler J. Production of soluble MHC class II proteins with covalently bound single peptides. Nature369(6476), 151–154 (1994).
  • Malherbe L, Filippi C, Julia V et al. Selective activation and expansion of high-affinity CD4+ T cells in resistant mice upon infection with Leishmania major.Immunity13(6), 771–782 (2000).
  • Novak EJ, Liu AW, Nepom GT, Kwok WW. MHC class II tetramers identify peptide-specific human CD4+ T cells proliferating in response to influenza A antigen. J. Clin. Invest.104(12), R63–R67 (1999).
  • Moro M, Cecconi V, Martinoli C et al. Generation of functional HLA-DR*1101 tetramers receptive for loading with pathogen- or tumour-derived synthetic peptides. BMC Immunol.6, 24 (2005).
  • Lebowitz MS, O’Herrin SM, Hamad AR et al. Soluble, high-affinity dimers of T-cell receptors and class II major histocompatibility complexes: biochemical probes for analysis and modulation of immune responses. Cell. Immunol.192(2), 175–184 (1999).
  • Day CL, Seth NP, Lucas M et al.Ex vivo analysis of human memory CD4 T cells specific for hepatitis C virus using MHC class II tetramers. J. Clin. Invest.112(6), 831–842 (2003).
  • Porcelli SA. The CD1 family: a third lineage of antigen-presenting molecules. Adv. Immunol.59, 1–98 (1995).
  • Benlagha K, Bendelac A. CD1d-restricted mouse V α 14 and human V α 24 T cells: lymphocytes of innate immunity. Semin. Immunol.12(6), 537–542 (2000).
  • Matsuda JL, Naidenko OV, Gapin L et al. Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J. Exp. Med.192(5), 741–754 (2000).
  • Guillaume P, Dojcinovic D, Luescher IF. Soluble MHC–peptide complexes: tools for the monitoring of T cell responses in clinical trials and basic research. Cancer Immun.9, 7 (2009).
  • Komatsu H, Sierro S, V Cuero A, Klenerman P. Population analysis of antiviral T cell responses using MHC class I–peptide tetramers. Clin. Exp. Immunol.134(1), 9–12 (2003).
  • Scriba TJ, Zhang HT, Brown HL et al. HIV-1-specific CD4+ T lymphocyte turnover and activation increase upon viral rebound. J. Clin. Invest.115(2), 443–450 (2005).
  • Day CL, Kiepiela P, Leslie AJ et al. Proliferative capacity of epitope-specific CD8 T-cell responses is inversely related to viral load in chronic human immunodeficiency virus type 1 infection. J. Virol.81(1), 434–438 (2007).
  • Barnes E, Ward SM, Kasprowicz VO, Dusheiko G, Klenerman P, Lucas M. Ultra-sensitive class I tetramer analysis reveals previously undetectable populations of antiviral CD8+ T cells. Eur. J. Immunol.34(6), 1570–1577 (2004).
  • Lucas M, Day CL, Wyer JR et al.Ex vivo phenotype and frequency of influenza virus-specific CD4 memory T cells. J. Virol.78(13), 7284–7287 (2004).
  • Novak EJ, Liu AW, Gebe JA et al. Tetramer-guided epitope mapping: rapid identification and characterization of immunodominant CD4+ T cell epitopes from complex antigens. J. Immunol.166(11), 6665–6670 (2001).
  • Reijonen H, Kwok WW. Use of HLA class II tetramers in tracking antigen-specific T cells and mapping T-cell epitopes. Methods29(3), 282–288 (2003).
  • Kwok WW, Gebe JA, Liu A et al. Rapid epitope identification from complex class-II-restricted T-cell antigens. Trends Immunol.22(11), 583–588 (2001).
  • Lyons AB. Analysing cell division in vivo and in vitro using flow cytometric measurement of CFSE dye dilution. J. Immunol. Methods243(1–2), 147–154 (2000).
  • Takata H, Takiguchi M. Three memory subsets of human CD8+ T cells differently expressing three cytolytic effector molecules. J. Immunol.177(7), 4330–4340 (2006).
  • Oxenius A, Gunthard HF, Hirschel B et al. Direct ex vivo analysis reveals distinct phenotypic patterns of HIV-specific CD8+ T lymphocyte activation in response to therapeutic manipulation of virus load. Eur. J. Immunol.31(4), 1115–1121 (2001).
  • Sierro S, Rothkopf R, Klenerman P. Evolution of diverse antiviral CD8+ T cell populations after murine cytomegalovirus infection. Eur. J. Immunol.35(4), 1113–1123 (2005).
  • Appay V, Nixon DF, Donahoe SM et al. HIV-specific CD8+ T cells produce antiviral cytokines but are impaired in cytolytic function. J. Exp. Med.192(1), 63–75 (2000).
  • Holmberg K, Mariathasan S, Ohteki T, Ohashi PS, Gascoigne NR. TCR binding kinetics measured with MHC class I tetramers reveal a positive selecting peptide with relatively high affinity for TCR. J. Immunol.171(5), 2427–2434 (2003).
  • Delon J, Gregoire C, Malissen B et al. CD8 expression allows T cell signaling by monomeric peptide–MHC complexes. Immunity9(4), 467–473 (1998).
  • Betts MR, Brenchley JM, Price DA et al. Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J. Immunol. Methods281(1–2), 65–78 (2003).
  • Streeck H, Cohen KW, Jolin JS et al. Rapid ex vivo isolation and long-term culture of human Th17 cells. J. Immunol. Methods333(1–2), 115–125 (2008).
  • Van Overtvelt L, Wambre E, Maillere B et al. Assessment of Bet v 1-specific CD4+ T-cell responses in allergic and nonallergic individuals using MHC class II peptide tetramers. J. Immunol.180(7), 4514–4522 (2008).
  • Assenmacher M, Lohning M, Radbruch A. Detection and isolation of cytokine secreting cells using the cytometric cytokine secretion assay. Curr. Protoc. Immunol. Chapter 6, Unit 6 27 (2002).
  • Snyder CM, Cho KS, Bonnett EL, van Dommelen S, Shellam GR, Hill AB. Memory inflation during chronic viral infection is maintained by continuous production of short-lived, functional T cells. Immunity29(4), 650–659 (2008).
  • Karrer U, Sierro S, Wagner M et al. Memory inflation: continuous accumulation of antiviral CD8+ T cells over time. J. Immunol.170(4), 2022–2029 (2003).
  • Shin H, Blackburn SD, Intlekofer AM et al. A role for the transcriptional repressor Blimp-1 in CD8+ T cell exhaustion during chronic viral infection. Immunity31(2), 309–320 (2009).
  • Wang W, Lau R, Yu D, Zhu W, Korman A, Weber J. PD1 blockade reverses the suppression of melanoma antigen-specific CTL by CD4+ CD25Hi regulatory T cells. Int. Immunol.21(9), 1065–1077 (2009).
  • Jain N, Nguyen H, Chambers C, Kang J. Dual function of CTLA-4 in regulatory T cells and conventional T cells to prevent multiorgan autoimmunity. Proc. Natl Acad. Sci. USA107(4), 1524–1528 (2010).
  • Skinner PJ, Daniels MA, Schmidt CS, Jameson SC, Haase AT. Cutting edge: in situ tetramer staining of antigen-specific T cells in tissues. J. Immunol.165(2), 613–617 (2000).
  • Li Q, Skinner PJ, Ha SJ et al. Visualizing antigen-specific and infected cells in situ predicts outcomes in early viral infection. Science323(5922), 1726–1729 (2009).
  • De Vries IJ, Bernsen MR, van Geloof WL et al.In situ detection of antigen-specific T cells in cryo-sections using MHC class I tetramers after dendritic cell vaccination of melanoma patients. Cancer Immunol. Immunother.56(10), 1667–1676 (2007).
  • Casalegno-Garduno R, Schmitt A, Yao J et al. Multimer technologies for detection and adoptive transfer of antigen-specific T cells. Cancer Immunol. Immunother.59(2), 195–202 (2010).
  • Savage P, Millrain M, Dimakou S, Stebbing J, Dyson J. Expansion of CD8+ cytotoxic T cells in vitro and in vivo using MHC class I tetramers. Tumour Biol.28(2), 70–76 (2007).
  • Cobbold M, Khan N, Pourgheysari B et al. Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA–peptide tetramers. J. Exp. Med.202(3), 379–386 (2005).
  • Sarkar S, Kalia V, Haining WN, Konieczny BT, Subramaniam S, Ahmed R. Functional and genomic profiling of effector CD8 T cell subsets with distinct memory fates. J. Exp. Med.205(3), 625–640 (2008).
  • Wherry EJ, Ha SJ, Kaech SM et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity27(4), 670–684 (2007).
  • Kaech SM, Hemby S, Kersh E, Ahmed R. Molecular and functional profiling of memory CD8 T cell differentiation. Cell111(6), 837–851 (2002).
  • Melenhorst JJ, Scheinberg P, Chattopadhyay PK et al. Detection of low avidity CD8+ T cell populations with coreceptor-enhanced peptide–major histocompatibility complex class I tetramers. J. Immunol. Methods338(1–2), 31–39 (2008).
  • Wooldridge L, Lissina A, Vernazza J et al. Enhanced immunogenicity of CTL antigens through mutation of the CD8 binding MHC class I invariant region. Eur. J. Immunol.37(5), 1323–1333 (2007).
  • Newell EW, Klein LO, Yu W, Davis MM. Simultaneous detection of many T-cell specificities using combinatorial tetramer staining. Nat. Methods6(7), 497–499 (2009).
  • Janetzki S, Britten CM, Kalos M et al. ‘MIATA’ – minimal information about T cell assays. Immunity31(4), 527–528 (2009).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.