591
Views
46
CrossRef citations to date
0
Altmetric
Review

Long-term protection after immunization with protein–polysaccharide conjugate vaccines in infancy

&
Pages 673-684 | Published online: 09 Jan 2014

References

  • Watt JP, Wolfson LJ, O’Brien KL et al. Burden of disease caused by Haemophilus influenzae type b in children younger than 5 years: global estimates. Lancet374(9693), 903–911 (2009).
  • O’Brien KL, Wolfson LJ, Watt JP et al. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet374(9693), 893–902 (2009).
  • Pollard AJ, Frasch C. Development of natural immunity to Neisseria meningitidis. Vaccine19(11–12), 1327–1346 (2001).
  • Goldschneider I, Gotschlich EC, Artenstein MS. Human immunity to the meningococcus. I. The role of humoral antibodies. J. Exp. Med.129(6), 1307–1326 (1969).
  • Troncoso G, Sanchez S, Moreda M, Criado MT, Ferreiros CM. Antigenic cross-reactivity between outer membrane proteins of Neisseria meningitidis and commensal Neisseria species. FEMS Immunol. Med. Microbiol.27(2), 103–109 (2000).
  • Lesinski GB, Westerink MA. Novel vaccine strategies to T-independent antigens. J. Microbiol. Methods47(2), 135–149 (2001).
  • Martin F, Kearney JF. B1 cells: similarities and differences with other B cell subsets. Curr. Opin. Immunol.13(2), 195–201 (2001).
  • Boes M. Role of natural and immune IgM antibodies in immune responses. Mol. Immunol.37(18), 1141–1149 (2000).
  • Baumgarth N, Tung JW, Herzenberg LA. Inherent specificities in natural antibodies: a key to immune defense against pathogen invasion. Springer Semin. Immunopathol.26(4), 347–362 (2005).
  • Pillai S, Cariappa A, Moran ST. Marginal zone B cells. Annu. Rev. Immunol.23, 161–196 (2005).
  • Weller S, Braun MC, Tan BK et al. Human blood IgM “memory” B cells are circulating splenic marginal zone B cells harboring a prediversified immunoglobulin repertoire. Blood104(12), 3647–3654 (2004).
  • Kruetzmann S, Rosado MM, Weber H et al. Human immunoglobulin M memory B cells controlling Streptococcus pneumoniae infections are generated in the spleen. J. Exp. Med.197(7), 939–945 (2003).
  • Kruschinski C, Zidan M, Debertin AS, von Horsten S, Pabst R. Age-dependent development of the splenic marginal zone in human infants is associated with different causes of death. Hum. Pathol.35(1), 113–121 (2004).
  • Fearon DT, Carroll MC. Regulation of B lymphocyte responses to foreign and self-antigens by the CD19/CD21 complex. Annu. Rev. Immunol.18, 393–422 (2000).
  • Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat. Immunol.5(10), 987–995 (2004).
  • Rijkers GT, Sanders EA, Breukels MA, Zegers BJ. Infant B cell responses to polysaccharide determinants. Vaccine16(14–15), 1396–1400 (1998).
  • Tzianabos A, Wang JY, Kasper DL. Biological chemistry of immunomodulation by zwitterionic polysaccharides. Carbohydr. Res.338(23), 2531–2538 (2003).
  • Cobb BA, Kasper DL. Zwitterionic capsular polysaccharides: the new MHCII-dependent antigens. Cell. Microbiol.7(10), 1398–1403 (2005).
  • Jokhdar H, Borrow R, Sultan A et al. Immunologic hyporesponsiveness to serogroup C but not serogroup A following repeated meningococcal A/C polysaccharide vaccination in Saudi Arabia. Clin. Diagn. Lab. Immunol.11(1), 83–88 (2004).
  • Peltola H, Makela H, Kayhty H et al. Clinical efficacy of meningococcus group A capsular polysaccharide vaccine in children three months to five years of age. N. Engl. J. Med.297(13), 686–691 (1977).
  • Lucas AH, Apicella MA, Taylor CE. Carbohydrate moieties as vaccine candidates. Clin. Infect. Dis.41(5), 705–712 (2005).
  • Lepow ML, Goldschneider I, Gold R, Randolph M, Gotschlich EC. Persistence of antibody following immunization of children with groups A and C meningococcal polysaccharide vaccines. Pediatrics60(5), 673–680 (1977).
  • Peltola H, Kayhty H, Virtanen M, Makela PH. Prevention of Hemophilus influenzae type b bacteremic infections with the capsular polysaccharide vaccine. N. Engl. J. Med.310(24), 1561–1566 (1984).
  • Conaty S, Watson L, Dinnes J, Waugh N. The effectiveness of pneumococcal polysaccharide vaccines in adults: a systematic review of observational studies and comparison with results from randomised controlled trials. Vaccine22(23–24), 3214–3224 (2004).
  • Granoff DM, Pollard AJ. Reconsideration of the use of meningococcal polysaccharide vaccine. Pediatr. Infect. Dis. J.26(8), 716–722 (2007).
  • Makela PH, Kayhty H. Evolution of conjugate vaccines. Expert Rev. Vaccines1(3), 399–410 (2002).
  • MacLennan IC. Germinal centers. Annu. Rev. Immunol.12, 117–139 (1994).
  • Lai Z, Schreiber JR. Antigen processing of glycoconjugate vaccines; the polysaccharide portion of the pneumococcal CRM197 conjugate vaccine co-localizes with MHC II on the antigen processing cell surface. Vaccine27(24), 3137–3144 (2009).
  • Borrow R, Andrews N, Findlow H et al. Kinetics of antibody persistence following administration of a combination meningococcal serogroup C and Haemophilus influenzae type b conjugate vaccine in healthy infants in the United Kingdom primed with a monovalent meningococcal serogroup C vaccine. Clin. Vaccine Immunol.17(1), 154–159 (2010).
  • Ramsay ME, McVernon J, Andrews NJ, Heath PT, Slack MP. Estimating Haemophilus influenzae type b vaccine effectiveness in England and Wales by use of the screening method. J. Infect. Dis.188(4), 481–485 (2003).
  • Haddy RI, Perry K, Chacko CE et al. Comparison of incidence of invasive Streptococcus pneumoniae disease among children before and after introduction of conjugated pneumococcal vaccine. Pediatr. Infect. Dis. J.24(4), 320–323 (2005).
  • Heath PT, McVernon J. The UK Hib vaccine experience. Arch. Dis. Child.86(6), 396–399 (2002).
  • Ramsay ME, Andrews NJ, Trotter CL, Kaczmarski EB, Miller E. Herd immunity from meningococcal serogroup C conjugate vaccination in England: database analysis. BMJ (Clin. Res. Ed.)326(7385), 365–366 (2003).
  • Borrow R, Goldblatt D, Finn A et al. Immunogenicity of, and immunologic memory to, a reduced primary schedule of meningococcal C-tetanus toxoid conjugate vaccine in infants in the United kingdom. Infect. Immun.71(10), 5549–5555 (2003).
  • Trotter CL, Andrews NJ, Kaczmarski EB, Miller E, Ramsay ME. Effectiveness of meningococcal serogroup C conjugate vaccine 4 years after introduction. Lancet364(9431), 365–367 (2004).
  • Snape MD, Kelly DF, Salt P et al. Serogroup C meningococcal glycoconjugate vaccine in adolescents: persistence of bactericidal antibodies and kinetics of the immune response to a booster vaccine more than 3 years after immunization. Clin. Infect. Dis.43(11), 1387–1394 (2006).
  • Snape MD, Kelly DF, Lewis S et al. Seroprotection against serogroup C meningococcal disease in adolescents in the United Kingdom: observational study. BMJ (Clin. Res. Ed.)336(7659), 1487–1491 (2008).
  • Khatami A, Snape MD, John T et al. Persistence of immunity following a booster dose of Haemophilus influenzae type b-meningococcal serogroup c glycoconjugate vaccine: follow-up of a randomized controlled trial. Pediatr. Infect. Dis. J.30(3), 197–202 (2011).
  • Siber GR, Chang I, Baker S et al. Estimating the protective concentration of anti-pneumococcal capsular polysaccharide antibodies. Vaccine25(19), 3816–3826 (2007).
  • Plotkin SA. Correlates of protection induced by vaccination. Clin. Vaccine Immunol.17(7), 1055–1065 (2010).
  • Vernacchio L, Romero-Steiner S, Martinez JE et al. Comparison of an opsonophagocytic assay and IgG ELISA to assess responses to pneumococcal polysaccharide and pneumococcal conjugate vaccines in children and young adults with sickle cell disease. J. Infect. Dis.181(3), 1162–1166 (2000).
  • WHO. Recommendations to assure the quality, safety and efficacy of pneumococcal conjugate vaccines. In: WHO Technical Report Series. WHO, Geneva, Switzerland, 927 (2009).
  • Borrow R, Andrews N, Goldblatt D, Miller E. Serological basis for use of meningococcal serogroup C conjugate vaccines in the United Kingdom: reevaluation of correlates of protection. Infect. Immun.69(3), 1568–1573 (2001).
  • Maslanka SE, Tappero JW, Plikaytis BD et al. Age-dependent Neisseria meningitidis serogroup C class-specific antibody concentrations and bactericidal titers in sera from young children from Montana immunized with a licensed polysaccharide vaccine. Infect. Immun.66(6), 2453–2459 (1998).
  • Kayhty H, Peltola H, Karanko V, Makela PH. The protective level of serum antibodies to the capsular polysaccharide of Haemophilus influenzae type b. J. Infect. Dis.147(6), 1100 (1983).
  • Lee LH, Frasch CE, Falk LA, Klein DL, Deal CD. Correlates of immunity for pneumococcal conjugate vaccines. Vaccine21(17–18), 2190–2196 (2003).
  • Kayhty H. Difficulties in establishing a serological correlate of protection after immunization with Haemophilus influenzae conjugate vaccines. Biologicals22(4), 397–402 (1994).
  • Snape MD, Kelly DF, Green B, Moxon ER, Borrow R, Pollard AJ. Lack of serum bactericidal activity in preschool children two years after a single dose of serogroup C meningococcal polysaccharide–protein conjugate vaccine. Pediatr. Infect. Dis. J.24(2), 128–131 (2005).
  • Auckland C, Gray S, Borrow R et al. Clinical and immunologic risk factors for meningococcal C conjugate vaccine failure in the United Kingdom. J. Infect. Dis.194(12), 1745–1752 (2006).
  • McVernon J, Johnson PD, Pollard AJ, Slack MP, Moxon ER. Immunologic memory in Haemophilus influenzae type b conjugate vaccine failure. Arch. Dis. Child.88(5), 379–383 (2003).
  • Blanchard Rohner G, Snape MD, Kelly DF et al. The magnitude of the antibody and memory B cell responses during priming with a protein–polysaccharide conjugate vaccine in human infants is associated with the persistence of antibody and the intensity of booster response. J. Immunol.180(4), 2165–2173 (2008).
  • Edwards EA, Devine LF, Sengbusch GH, Ward HW. Immunological investigations of meningococcal disease. III. Brevity of group C acquisition prior to disease occurrence. Scand. J. Infect. Dis.9(2), 105–110 (1977).
  • John TJ, Samuel R. Herd immunity and herd effect: new insights and definitions. Eur. J. Epidemiol.16(7), 601–606 (2000).
  • Lexau CA, Lynfield R, Danila R et al. Changing epidemiology of invasive pneumococcal disease among older adults in the era of pediatric pneumococcal conjugate vaccine. JAMA294(16), 2043–2051 (2005).
  • Jacob J, Kassir R, Kelsoe G. In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. I. The architecture and dynamics of responding cell populations. J. Exp. Med.173(5), 1165–1175 (1991).
  • Nossal GJ, Makela O. Autoradiographic studies on the immune response. I. The kinetics of plasma cell proliferation. J. Exp. Med.115, 209–230 (1962).
  • Klein U, Rajewsky K, Kuppers R. Human immunoglobulin (Ig)M+IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J. Exp. Med.188(9), 1679–1689 (1998).
  • Smith KG, Light A, Nossal GJ, Tarlinton DM. The extent of affinity maturation differs between the memory and antibody-forming cell compartments in the primary immune response. EMBO J.16(11), 2996–3006 (1997).
  • Vieira P, Rajewsky K. The half-lives of serum immunoglobulins in adult mice. Eur. J. Immunol.18(2), 313–316 (1988).
  • Crotty S, Ahmed R. Immunological memory in humans. Semin. Immun.16(3), 197–203 (2004).
  • Manz RA, Hauser AE, Hiepe F, Radbruch A. Maintenance of serum antibody levels. Annu. Rev. Immunol.23, 367–386 (2005).
  • Slifka MK, Antia R, Whitmire JK, Ahmed R. Humoral immunity due to long-lived plasma cells. Immunity8(3), 363–372 (1998).
  • DiLillo DJ, Hamaguchi Y, Ueda Y et al. Maintenance of long-lived plasma cells and serological memory despite mature and memory B cell depletion during CD20 immunotherapy in mice. J. Immunol.180(1), 361–371 (2008).
  • Fairfax KA, Kallies A, Nutt SL, Tarlinton DM. Plasma cell development: from B-cell subsets to long-term survival niches. Semin. Immun.20(1), 49–58 (2008).
  • Edwards JC, Szczepanski L, Szechinski J et al. Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N. Engl. J. Med.350(25), 2572–2581 (2004).
  • Crotty S, Felgner P, Davies H, Glidewell J, Villarreal L, Ahmed R. Cutting edge: long-term B cell memory in humans after smallpox vaccination. J. Immunol.171(10), 4969–4973 (2003).
  • Maruyama M, Lam KP, Rajewsky K. Memory B-cell persistence is independent of persisting immunizing antigen. Nature407(6804), 636–642 (2000).
  • Ochsenbein AF, Pinschewer DD, Sierro S, Horvath E, Hengartner H, Zinkernagel RM. Protective long-term antibody memory by antigen-driven and T help-dependent differentiation of long-lived memory B cells to short-lived plasma cells independent of secondary lymphoid organs. Proc. Natl Acad. Sci. USA97(24), 13263–13268 (2000).
  • Bernasconi NL, Traggiai E, Lanzavecchia A. Maintenance of serological memory by polyclonal activation of human memory B cells. Science298(5601), 2199–2202 (2002).
  • Kelly DF, Snape MD, Perrett KP et al. Plasma and memory B-cell kinetics in infants following a primary schedule of CRM 197-conjugated serogroup C meningococcal polysaccharide vaccine. Immunology127(1), 134–143 (2009).
  • Kelly DF, Snape M, Clutterbuck EC et al. CRM197-conjugated serogroup C meningococcal capsular polysaccharide, but not the native polysaccharide, induces persistent antigen specific memory B cells. Blood108(8), 2642–2647 (2006).
  • Clutterbuck EA, Oh S, Hamaluba M, Westcar S, Beverley PC, Pollard AJ. Serotype-specific and age-dependent generation of pneumococcal polysaccharide-specific memory B-cell and antibody responses to immunization with a pneumococcal conjugate vaccine. Clin. Vaccine Immunol.15(2), 182–193 (2008).
  • Siegrist CA, Aspinall R. B-cell responses to vaccination at the extremes of age. Nat. Rev.9(3), 185–194 (2009).
  • Griffioen AW, Franklin SW, Zegers BJ, Rijkers GT. Expression and functional characteristics of the complement receptor type 2 on adult and neonatal B lymphocytes. Clin. Immunol. Immunopathol.69(1), 1–8 (1993).
  • Pedraz C, Lorente F, Pedraz MJ, Salazar Villalobos V. Development of the serum levels of complement during the first year of life. An. Esp. Pediatr.13(7), 571–576 (1980).
  • Pihlgren M, Tougne C, Bozzotti P et al. Unresponsiveness to lymphoid-mediated signals at the neonatal follicular dendritic cell precursor level contributes to delayed germinal center induction and limitations of neonatal antibody responses to T-dependent antigens. J. Immunol.170(6), 2824–2832 (2003).
  • Siegrist CA. Mechanisms by which maternal antibodies influence infant vaccine responses: review of hypotheses and definition of main determinants. Vaccine21(24), 3406–3412 (2003).
  • Bryant VL, Ma CS, Avery DT et al. Cytokine-mediated regulation of human B cell differentiation into Ig-secreting cells: predominant role of IL-21 produced by CXCR5+ T follicular helper cells. J. Immunol.179(12), 8180–8190 (2007).
  • Pihlgren M, Schallert N, Tougne C et al. Delayed and deficient establishment of the long-term bone marrow plasma cell pool during early life. Eur J. Immunol.31(3), 939–946 (2001).
  • Pihlgren M, Friedli M, Tougne C, Rochat AF, Lambert PH, Siegrist CA. Reduced ability of neonatal and early-life bone marrow stromal cells to support plasmablast survival. J. Immunol.176(1), 165–172 (2006).
  • Parsons HK, Dockrell DH. The burden of invasive pneumococcal disease and the potential for reduction by immunisation. Int. J. Antimicrob. Agents19(2), 85–93 (2002).
  • Policy statement – Recommended childhood and adolescent immunization schedules – United States, 2010. Pediatrics125(1), 195–196 (2010).
  • Snape MD, Perrett KP, Ford KJ et al. Immunogenicity of a tetravalent meningococcal glycoconjugate vaccine in infants: a randomized controlled trial. JAMA299(2), 173–184 (2008).
  • Rodenburg GD, van Gils EJ, Veenhoven RH et al. Comparability of antibody response to a booster dose of 7-valent pneumococcal conjugate vaccine in infants primed with either 2 or 3 doses. Vaccine28(5), 1391–1396 (2010).
  • Pace D, Snape M, Westcar S et al. A novel combined Hib–MenC–TT glycoconjugate vaccine as a booster dose for toddlers: a Phase 3 open randomised controlled trial. Arch. Dis. Child.93(11), 963–970 (2008).
  • Heath PT, Booy R, Azzopardi HJ et al. Antibody concentration and clinical protection after Hib conjugate vaccination in the United Kingdom. JAMA284(18), 2334–2340 (2000).
  • Southern J, McVernon J, Gelb D et al. Immunogenicity of a fourth dose of Haemophilus influenzae type b (Hib) conjugate vaccine and antibody persistence in young children from the United Kingdom who were primed with acellular or whole-cell pertussis component-containing Hib combinations in infancy. Clin. Vaccine Immunol.14(10), 1328–1333 (2007).
  • Tsai TF, Borrow R, Gnehm HE et al. Early appearance of bactericidal antibodies after polysaccharide challenge of toddlers primed with a group C meningococcal conjugate vaccine: what is its role in the maintenance of protection? Clin. Vaccine Immunol.13(8), 854–861 (2006).
  • Richmond P, Borrow R, Goldblatt D et al. Ability of 3 different meningococcal C conjugate vaccines to induce immunologic memory after a single dose in UK toddlers. J. Infect. Dis.183(1), 160–163 (2001).
  • McVernon J, Maclennan J, Buttery J, Oster P, Danzig L, Moxon ER. Safety and immunogenicity of meningococcus serogroup C conjugate vaccine administered as a primary or booster vaccination to healthy four-year-old children. Pediatr. Infect. Dis. J.21(8), 747–753 (2002).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.