1,972
Views
251
CrossRef citations to date
0
Altmetric
Review

Recent clinical experience with vaccines using MPL- and QS-21-containing Adjuvant Systems

&
Pages 471-486 | Published online: 09 Jan 2014

References

  • Garçon N, Chomez P, Van Mechelen M. GlaxoSmithKline Adjuvant Systems in vaccines: concepts, achievements and perspectives. Expert Rev. Vaccines6(5), 723–739 (2007).
  • Burdin N, Guy B, Moingeon P. Immunological foundations to the quest for new vaccine adjuvants. BioDrugs18(2), 79–93 (2004).
  • Guy B. The perfect mix: recent progress in adjuvant research. Nat. Rev. Microbiol.5(7), 505–517 (2007).
  • Black M, Trent A, Tirrell M, Olive C. Advances in the design and delivery of peptide subunit vaccines with a focus on Toll-like receptor agonists. Expert Rev. Vaccines9(2), 157–173 (2010).
  • Gordon DM, McGovern TW, Krzych U et al. Safety, immunogenicity, and efficacy of a recombinantly produced Plasmodium falciparum circumsporozoite protein-hepatitis B surface antigen subunit vaccine. J. Infect. Dis.171(6), 1576–1585 (1995).
  • Hoffman SL, Edelman R, Bryan JP et al. Safety, immunogenicity, and efficacy of a malaria sporozoite vaccine administered with monophosphoryl lipid A, cell wall skeleton of mycobacteria, and squalane as adjuvant. Am. J. Trop. Med. Hyg.51(5), 603–612 (1994).
  • Livingston PO, Adluri S, Helling F et al. Phase 1 trial of immunological adjuvant QS-21 with a GM2 ganglioside-keyhole limpet haemocyanin conjugate vaccine in patients with malignant melanoma. Vaccine12(14), 1275–1280 (1994).
  • Rickman LS, Wistar R, Hoffman SL et al. Use of adjuvant containing mycobacterial cell-wall skeleton, monophosphoryl lipid A, and squalane in malaria circumsporozoite protein vaccine. Lancet337(8748), 998–1001 (1991).
  • van Dissel JT, Arend SM, Prins C et al. Ag85B-ESAT-6 adjuvanted with IC31® promotes strong and long-lived Mycobacterium tuberculosis specific T cell responses in naive human volunteers. Vaccine28(20), 3571–3581 (2010).
  • Stoute JA, Slaoui M, Heppner DG et al. A preliminary evaluation of a recombinant circumsporozoite protein vaccine against Plasmodium falciparum malaria. N. Engl. J. Med.336(2), 86–91 (1997).
  • André FE. Clinical experience with a recombinant DNA hepatitis B vaccine. Southeast Asian J. Trop. Med. Public Health19(3), 501–510 (1988).
  • Vogel FR. Adjuvants in perspective. Dev. Biol. Stand.92, 241–248 (1998).
  • Casella CR, Mitchell TC. Putting endotoxin to work for us: monophosphoryl lipid A as a safe and effective vaccine adjuvant. Cell. Mol. Life Sci.65(20), 3231–3240 (2008).
  • Coffman RL, Sher A, Seder RA. Vaccine adjuvants: putting innate immunity to work. Immunity33(4), 492–503 (2010).
  • Brunner R, Jensen-Jarolim E, Pali-Schöll I. The ABC of clinical and experimental adjuvants-a brief overview. Immunol. Lett.128(1), 29–35 (2010).
  • Fearon DT, Locksley RM. The instructive role of innate immunity in the acquired immune response. Science272(5258), 50–53 (1996).
  • Poltorak A, He X, Smirnova I et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in tlr4 gene. Science282(5396), 2085–2088 (1998).
  • Beutler B, Rietschel ET. Innate immune sensing and its roots: the story of endotoxin. Nat. Rev. Immunol.3(2), 169–176 (2003).
  • Hofmann MA, Drury S, Fu C et al. RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell97(7), 889–901 (1999).
  • Shi Y, Evans JE, Rock KL. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature425(6957), 516–521 (2003).
  • Medzhitov R, Janeway CA Jr. Innate immunity: the virtues of a nonclonal system of recognition. Cell91(3), 295–298 (1997).
  • Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature388(6640), 394–397 (1997).
  • Qureshi N, Mascagni P, Ribi E, Takayama K. Monophosphoryl lipid A obtained from lipopolysaccharides of Salmonella minnesota R595. Purification of the dimethyl derivative by high performance liquid chromatography and complete structural determination. J. Biol. Chem.260(9), 5271–5278 (1985).
  • Baldridge JR, Myers K, Johnson D, Persing D, Cluff C, Hershberg R. Monophosphoryl lipid A and synthetic lipid A mimetics as TLR4-based adjuvants and immunomodulators. In: Vaccine Adjuvants: Immunological and Clinical Principles. Hackett CJ, Harn DA Jr (Eds). Humana Press Inc., Totowa, NJ, USA, 235–255 (2008).
  • Kensil CR, Patel U, Lennick M, Marciani D. Separation and characterization of saponins with adjuvant activity from Quillaja saponaria Molina cortex. J. Immunol.146(2), 431–437 (1991).
  • Kensil CR, Kammer R. QS-21: a water-soluble triterpene glycoside adjuvant. Expert Opin. Investig. Drugs.7(9), 1475–1482 (1998).
  • Newman MJ, Wu JY, Gardner BH et al. Saponin adjuvant induction of ovalbumin-specific CD8+ cytotoxic T lymphocyte responses. J. Immunol.148(8), 2357–2362 (1992).
  • Garçon N, Heppner DG, Cohen J. Development of RTS,S/AS02: a purified subunit-based malaria vaccine candidate formulated with a novel adjuvant. Expert Rev. Vaccines2(2), 231–238 (2003).
  • Didierlaurent AM, Morel S, Lockman L et al. AS04, an aluminum salt- and TLR4 agonist-based adjuvant system, induces a transient localized innate immune response leading to enhanced adaptive immunity. J. Immunol.183(10), 6186–6197 (2009).
  • Giannini SL, Hanon E, Moris P et al. Enhanced humoral and memory B cellular immunity using HPV16/18 L1 VLP vaccine formulated with the MPL/aluminium salt combination (AS04) compared to aluminium salt only. Vaccine24(33–34), 5937–5949 (2006).
  • Boring L, Gosling J, Chensue SW et al. Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice. J. Clin. Invest.100(10), 2552–2561 (1997).
  • Serbina NV, Jia T, Hohl TM, Pamer EG. Monocyte-mediated defense against microbial pathogens. Annu. Rev. Immunol.26, 421–452 (2008).
  • Brewer JM. (How) do aluminium adjuvants work? Immunol. Lett.102(1), 10–15 (2006).
  • Eddahri F, Denanglaire S, Bureau F et al. Interleukin-6/STAT3 signaling regulates the ability of naive T cells to acquire B-cell help capacities. Blood113(11), 2426–2433 (2009).
  • Marciani DJ. Vaccine adjuvants: role and mechanisms of action in vaccine immunogenicity. Drug Discov. Today8(20), 934–943 (2003).
  • Soltysik S, Wu JY, Recchia J et al. Structure/function studies of QS-21 adjuvant: assessment of triterpene aldehyde and glucuronic acid roles in adjuvant function. Vaccine13(15), 1403–1410 (1995).
  • Marciani DJ, Pathak AK, Reynolds RC, Seitz L, May RD. Altered immunomodulating and toxicological properties of degraded Quillaja saponaria Molina saponins. Int. Immunopharmacol.1(4), 813–818 (2001).
  • Liu G, Anderson C, Scaltreto H, Barbon J, Kensil CR. QS-21 structure/function studies: effect of acylation on adjuvant activity. Vaccine20(21–22), 2808–2815 (2002).
  • Rhodes J, Chen H, Hall SR et al. Therapeutic potentiation of the immune system by costimulatory Schiff-base-forming drugs. Nature377(6544), 71–75 (1995).
  • Mettens P, Dubois PM, Demoitié MA et al. Improved T cell responses to Plasmodium falciparum circumsporozoite protein in mice and monkeys induced by a novel formulation of RTS,S vaccine antigen. Vaccine26(8), 1072–1082 (2008).
  • Pichyangkul S, Kum-Arb U, Yongvanitchit K et al. Preclinical evaluation of the safety and immunogenicity of a vaccine consisting of Plasmodium falciparum liver-stage antigen 1 with adjuvant AS01B administered alone or concurrently with the RTS,S/AS01B vaccine in rhesus primates. Infect. Immun.76(1), 229–238 (2008).
  • Sun P, Schwenk R, White K et al. Protective immunity induced with malaria vaccine, RTS,S, is linked to Plasmodium falciparum circumsporozoite protein-specific CD4+ and CD8+ T cells producing IFN-γ. J. Immunol.171(12), 6961–6967 (2003).
  • Pichyangkul S, Tongtawe P, Kum-Arb U et al. Evaluation of the safety and immunogenicity of Plasmodium falciparum apical membrane antigen 1, merozoite surface protein 1 or RTS,S vaccines with adjuvant system AS02A administered alone or concurrently in rhesus monkeys. Vaccine28(2), 452–462 (2009).
  • Sallusto F, Lanzavecchia A, Araki K, Ahmed R. From vaccines to memory and back. Immunity33(4), 451–463 (2010).
  • Plotkin SA. Vaccines: correlates of vaccine-induced immunity. Clin. Infect. Dis.47(3), 401–409 (2008).
  • Wrammert J, Smith K, Miller J et al. Rapid cloning of high-affinity human monoclonal antibodies against influenza virus. Nature453(7195), 667–671 (2008).
  • Lanzavecchia A, Sallusto F. Human B cell memory. Curr. Opin. Immunol.21(3), 298–304 (2009).
  • Hofer T, Muehlinghaus G, Moser K et al. Adaptation of humoral memory. Immunol. Rev.211, 295–302 (2006).
  • Tokoyoda K, Hauser AE, Nakayama T, Radbruch A. Organization of immunological memory by bone marrow stroma. Nat. Rev. Immunol.10(3), 193–200 (2010).
  • Radbruch A, Muehlinghaus G, Luger EO et al. Competence and competition: the challenge of becoming a long-lived plasma cell. Nat. Rev. Immunol.6(10), 741–750 (2006).
  • Kalia V, Sarkar S, Gourley TS, Rouse BT, Ahmed R. Differentiation of memory B and T cells. Curr. Opin. Immunol.18(3), 255–264 (2006).
  • Sallusto F, Geginat J, Lanzavecchia A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol.22, 745–763 (2004).
  • Masopust D, Vezys V, Marzo AL, Lefrancois L. Preferential localization of effector memory cells in nonlymphoid tissue. Science291(5512), 2413–2417 (2001).
  • Czerkinsky CC, Nilsson LA, Nygren H, Ouchterlony O, Tarkowski A. A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells. J. Immunol. Methods65(1–2), 109–121 (1983).
  • Bosch FX, Lorincz A, Muñoz N, Meijer CJ, Shah KV. The causal relation between human papillomavirus and cervical cancer. J. Clin. Pathol.55(4), 244–265 (2002).
  • zur Hausen H. Papillomaviruses causing cancer: evasion from host-cell control in early events in carcinogenesis. J. Natl Cancer Inst.92(9), 690–698 (2000).
  • zur Hausen H. Papillomaviruses in the causation of human cancers – a brief historical account. Virology384(2), 260–265 (2009).
  • Clifford GM, Smith JS, Aguado T, Franceschi S. Comparison of HPV type distribution in high-grade cervical lesions and cervical cancer: a meta-analysis. Br. J. Cancer89(1), 101–105 (2003).
  • Walboomers JM, Jacobs MV, Manos MM et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol.189(1), 12–19 (1999).
  • Muñoz N, Bosch FX, de Sanjosé S et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N. Engl. J. Med.348(6), 518–527 (2003).
  • Bosch FX, de Sanjosé S. Chapter 1: human papillomavirus and cervical cancer–burden and assessment of causality. J. Natl Cancer Inst. Monogr. (31), 3–13 (2003).
  • Brown DR, Shew ML, Qadadri B et al. A longitudinal study of genital human papillomavirus infection in a cohort of closely followed adolescent women. J. Infect. Dis.191(2), 182–192 (2005).
  • Koutsky L. Epidemiology of genital human papillomavirus infection. Am. J. Med.102(5A), 3–8 (1997).
  • Baseman JG, Koutsky LA. The epidemiology of human papillomavirus infections. J. Clin. Virol.32(Suppl. 1), S16–S24 (2005).
  • Schwarz TF, Leo O. Immune response to human papillomavirus after prophylactic vaccination with AS04-adjuvanted HPV-16/18 vaccine: improving upon nature. Gynecol. Oncol.110(3 Suppl. 1), S1–S10 (2008).
  • Schiffman M, Castle PE, Jeronimo J, Rodriguez AC, Wacholder S. Human papillomavirus and cervical cancer. Lancet370(9590), 890–907 (2007).
  • Deschuyteneer M, Elouahabi A, Plainchamp D et al. Molecular and structural characterization of the L1 virus-like particles that are used as vaccine antigens in Cervarix™, the AS04-adjuvanted HPV-16 and -18 cervical cancer vaccine. Hum. Vaccin.6(5), 407–419 (2010).
  • Garçon N, Van Mechelen M, Wettendorff M. Development and evaluation of AS04, a novel and improved immunological adjuvant system containing MPL and aluminium salt. In: Immunopotentiators in Modern Vaccines. Elsevier Academic Press, London, UK, 161–178 (2006).
  • Kemp TJ, García-Piñeres A, Falk RT et al. Evaluation of systemic and mucosal anti-HPV16 and anti-HPV18 antibody responses from vaccinated women. Vaccine26(29–30), 3608–3616 (2008).
  • Schwarz TF, Kocken M, Petäjä T et al. Correlation between levels of human papillomavirus (HPV)-16 and 18 antibodies in serum and cervicovaginal secretions in girls and women vaccinated with the HPV-16/18 AS04-adjuvanted vaccine. Hum. Vaccin.6(12), 1054–1061 (2010).
  • Schwarz TF, Spaczynski M, Schneider A et al. Immunogenicity and tolerability of an HPV-16/18 AS04-adjuvanted prophylactic cervical cancer vaccine in women aged 15–55 years. Vaccine27(4), 581–587 (2009).
  • Einstein MH, Baron M, Levin MJ et al. Comparison of the immunogenicity and safety of Cervarix™ and Gardasil® human papillomavirus (HPV) cervical cancer vaccines in healthy women aged 18–45 years. Hum. Vaccin.5(10), 705–719 (2009).
  • Harper DM, Franco EL, Wheeler C et al. Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: a randomised controlled trial. Lancet364(9447), 1757–1765 (2004).
  • Harper DM, Franco EL, Wheeler CM et al. Sustained efficacy up to 4.5 years of a bivalent L1 virus-like particle vaccine against human papillomavirus types 16 and 18: follow-up from a randomised control trial. Lancet367(9518), 1247–1255 (2006).
  • Schwarz TF. AS04-adjuvanted human papillomavirus-16/18 vaccination: recent advances in cervical cancer prevention. Expert Rev. Vaccines7(10), 1465–1473 (2008).
  • Romanowski B, de Borba PC, Naud PS et al. Sustained efficacy and immunogenicity of the human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine: analysis of a randomised placebo-controlled trial up to 6.4 years. Lancet374(9706), 1975–1985 (2009).
  • Paavonen J, Naud P, Salmerón J et al. Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): final analysis of a double-blind, randomised study in young women. Lancet374(9686), 301–314 (2009).
  • de Carvalho N, Teixeira J, Roteli-Martins CM et al. Sustained efficacy and immunogenicity of the HPV-16/18 AS04-adjuvanted vaccine up to 7.3 years in young adult women. Vaccine28(38), 6247–6255 (2010).
  • Konno R, Tamura S, Dobbelaere K, Yoshikawa H. Efficacy of human papillomavirus type 16/18 AS04-adjuvanted vaccine in Japanese women aged 20 to 25 years: final analysis of a Phase 2 double-blind, randomized controlled trial. Int. J. Gynecol. Cancer20(5), 847–855 (2010).
  • Konno R, Tamura S, Dobbelaere K, Yoshikawa H. Efficacy of human papillomavirus 16/18 AS04-adjuvanted vaccine in Japanese women aged 20 to 25 years: interim analysis of a Phase 2 double-blind, randomized, controlled trial. Int. J. Gynecol. Cancer20(3), 404–410 (2010).
  • Bhatla N, Suri V, Basu P et al. Immunogenicity and safety of human papillomavirus-16/18 AS04-adjuvanted cervical cancer vaccine in healthy Indian women. J. Obstet. Gynaecol. Res.36(1), 123–132 (2010).
  • Konno R, Dobbelaere KO, Godeaux OO, Tamura S, Yoshikawa H. Immunogenicity, reactogenicity, and safety of human papillomavirus 16/18 AS04-adjuvanted vaccine in Japanese women: interim analysis of a Phase II, double-blind, randomized controlled trial at month 7. Int. J. Gynecol. Cancer19(5), 905–911 (2009).
  • Kim YJ, Kim KT, Kim JH et al. Vaccination with a human papillomavirus (HPV)-16/18 AS04-adjuvanted cervical cancer vaccine in Korean girls aged 10–14 years. J. Korean Med. Sci.25(8), 1197–1204 (2010).
  • Ngan HY, Cheung AN, Tam KF et al. Human papillomavirus-16/18 AS04-adjuvanted cervical cancer vaccine: immunogenicity and safety in healthy Chinese women from Hong Kong. Hong Kong Med. J.16(3), 171–179 (2010).
  • David MP, Van Herck K, Hardt K et al. Long-term persistence of anti-HPV-16 and -18 antibodies induced by vaccination with the AS04-adjuvanted cervical cancer vaccine: modeling of sustained antibody responses. Gynecol. Oncol.115(Suppl. 3), S1–S6 (2009).
  • Petäjä T, Keränen H, Karppa T et al. Immunogenicity and safety of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine in healthy boys aged 10–18 years. J. Adolesc. Health44(1), 33–40 (2009).
  • Rivera Medina DM, Valencia A, de Velasquez A et al. Safety and immunogenicity of the HPV-16/18 AS04-adjuvanted vaccine: a randomized, controlled trial in adolescent girls. J. Adolesc. Health46(5), 414–421 (2010).
  • Schwarz TF. Clinical update of the AS04-adjuvanted human papillomavirus-16/18 cervical cancer vaccine, Cervarix. Adv. Ther.26(11), 983–998 (2009).
  • Garcia-Sicilia J, Schwarz TF, Carmona A et al. Immunogenicity and safety of human papillomavirus-16/18 AS04-adjuvanted cervical cancer vaccine coadministered with combined diphtheria–tetanus–acellular pertussis-inactivated poliovirus vaccine to girls and young women. J. Adolesc. Health46(2), 142–151 (2010).
  • Beran J. Safety and immunogenicity of a new hepatitis B vaccine for the protection of patients with renal insufficiency including pre-haemodialysis and haemodialysis patients. Expert Opin. Biol. Ther.8(2), 235–247 (2008).
  • Kong NC, Beran J, Kee SA et al. Immunogenicity and safety of an adjuvanted hepatitis B vaccine in pre-hemodialysis and hemodialysis patients. Kidney Int.68(5), 2298–2303 (2005).
  • Kong NC, Beran J, Kee SA et al. A new adjuvant improves the immune response to hepatitis B vaccine in hemodialysis patients. Kidney Int.73(7), 856–862 (2008).
  • Dasgupta G, Chentoufi AA, Nesburn AB, Wechsler SL, BenMohamed L. New concepts in herpes simplex virus vaccine development: notes from the battlefield. Expert Rev. Vaccines8(8), 1023–1035 (2009).
  • Smith JS, Robinson NJ. Age-specific prevalence of infection with herpes simplex virus types 2 and 1: a global review. J. Infect. Dis.186(Suppl. 1), S3–S28 (2002).
  • Cunningham AL, Diefenbach RJ, Miranda-Saksena M et al. The cycle of human herpes simplex virus infection: virus transport and immune control. J. Infect. Dis.194(Suppl. 1), S11–S18 (2006).
  • Corey L, Wald A. Maternal and neonatal herpes simplex virus infections. N. Engl. J. Med.361(14), 1376–1385 (2009).
  • Looker KJ, Garnett GP, Schmid GP. An estimate of the global prevalence and incidence of herpes simplex virus type 2 infection. Bull. World Health Organ.86(10), 805–812 (2008).
  • Bourne N, Bravo FJ, Francotte M et al. Herpes simplex virus (HSV) type 2 glycoprotein D subunit vaccines and protection against genital HSV-1 or HSV-2 disease in guinea pigs. J. Infect. Dis.187(4), 542–549 (2003).
  • Stanberry LR, Spruance SL, Cunningham AL et al. Glycoprotein-D-adjuvant vaccine to prevent genital herpes. N. Engl. J. Med.347(21), 1652–1661 (2002).
  • Descamps D, Hardt K, Spiessens B et al. Safety of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine for cervical cancer prevention: a pooled analysis of 11 clinical trials. Hum. Vaccin.5(5), 1–9 (2009).
  • Paavonen J, Jenkins D, Bosch FX et al. Efficacy of a prophylactic adjuvanted bivalent L1 virus-like-particle vaccine against infection with human papillomavirus types 16 and 18 in young women: an interim analysis of a Phase III double-blind, randomised controlled trial. Lancet369(9580), 2161–2170 (2007).
  • Verstraeten T, Descamps D, David MP et al. Analysis of adverse events of potential autoimmune aetiology in a large integrated safety database of AS04 adjuvanted vaccines. Vaccine26(51), 6630–6638 (2008).
  • Greenwood BM, Fidock DA, Kyle DE et al. Malaria: progress, perils, and prospects for eradication. J. Clin. Invest.118(4), 1266–1276 (2008).
  • Cohen J, Nussenzweig V, Nussenzweig R, Vekemans J, Leach A. From the circumsporozoite protein to the RTS,S/AS candidate vaccine. Hum. Vaccin.6(1), 90–96 (2010).
  • Singh AP, Buscaglia CA, Wang Q et al. Plasmodium circumsporozoite protein promotes the development of the liver stages of the parasite. Cell131(3), 492–504 (2007).
  • Garcia JE, Puentes A, Patarroyo ME. Developmental biology of sporozoite-host interactions in Plasmodium falciparum malaria: implications for vaccine design. Clin. Microbiol. Rev.19(4), 686–707 (2006).
  • Egan JE, Weber JL, Ballou WR et al. Efficacy of murine malaria sporozoite vaccines: implications for human vaccine development. Science236(4800), 453–456 (1987).
  • Potocnjak P, Yoshida N, Nussenzweig RS, Nussenzweig V. Monovalent fragments (Fab) of monoclonal antibodies to a sporozoite surface antigen (Pb44) protect mice against malarial infection. J. Exp. Med.151(6), 1504–1513 (1980).
  • Frevert U, Nardin E. Cellular effector mechanisms against Plasmodium liver stages. Cell. Microbiol.10(10), 1956–1967 (2008).
  • Bojang KA, Milligan PJ, Pinder M et al. Efficacy of RTS,S/AS02 malaria vaccine against Plasmodium falciparum infection in semi-immune adult men in The Gambia: a randomised trial. Lancet358(9297), 1927–1934 (2001).
  • Alonso PL, Sacarlal J, Aponte JJ et al. Efficacy of the RTS,S/AS02A vaccine against Plasmodium falciparum infection and disease in young African children: randomised controlled trial. Lancet364(9443), 1411–1420 (2004).
  • Alonso PL, Sacarlal J, Aponte JJ et al. Duration of protection with RTS,S/AS02A malaria vaccine in prevention of Plasmodium falciparum disease in Mozambican children: single-blind extended follow-up of a randomised controlled trial. Lancet366(9502), 2012–2018 (2005).
  • Vekemans J, Ballou WR. Plasmodium falciparum malaria vaccines in development. Expert Rev. Vaccines7(2), 223–240 (2008).
  • Vekemans J, Leach A, Cohen J. Development of the RTS,S/AS malaria candidate vaccine. Vaccine27(Suppl. 6), G67–G71 (2009).
  • Sacarlal J, Aide P, Aponte JJ et al. Long-term safety and efficacy of the RTS,S/AS02A malaria vaccine in Mozambican children. J. Infect. Dis.200(3), 329–336 (2009).
  • Aponte JJ, Aide P, Renom M et al. Safety of the RTS,S/AS02D candidate malaria vaccine in infants living in a highly endemic area of Mozambique: a double blind randomised controlled Phase I/IIb trial. Lancet370(9598), 1543–1551 (2007).
  • Barbosa A, Naniche D, Aponte JJ et al. Plasmodium falciparum-specific cellular immune responses after immunization with the RTS,S/AS02D candidate malaria vaccine in infants living in an area of high endemicity in Mozambique. Infect. Immun.77(10), 4502–4509 (2009).
  • Abdulla S, Oberholzer R, Juma O et al. Safety and immunogenicity of RTS,S/AS02D malaria vaccine in infants. N. Engl. J. Med.359(24), 2533–2544 (2008).
  • Bejon P, Lusingu J, Olotu A et al. Efficacy of RTS,S/AS01E vaccine against malaria in children 5 to 17 months of age. N. Engl. J. Med.359(24), 2521–2532 (2008).
  • Kester KE, Cummings JF, Ofori-Anyinam O et al. Randomized, double-blind, Phase 2a trial of falciparum malaria vaccines RTS,S/AS01B and RTS,S/AS02A in malaria-naive adults: safety, efficacy, and immunologic associates of protection. J. Infect. Dis.200(3), 337–346 (2009).
  • Polhemus ME, Remich SA, Ogutu BR et al. Evaluation of RTS,S/AS02A and RTS,S/AS01B in adults in a high malaria transmission area. PLoS ONE4(7), e6465 (2009).
  • Waitumbi JN, Anyona SB, Hunja CW et al. Impact of RTS,S/AS02A and RTS,S/AS01B on genotypes of P. falciparum in adults participating in a malaria vaccine clinical trial. PLoS ONE4(11), e7849 (2009).
  • Stewart VA, McGrath SM, Walsh DS et al. Pre-clinical evaluation of new adjuvant formulations to improve the immunogenicity of the malaria vaccine RTS,S/AS02A. Vaccine24(42–43), 6483–6492 (2006).
  • Stewart VA, McGrath SM, Dubois PM et al. Priming with an adenovirus 35-circumsporozoite protein (CS) vaccine followed by RTS,S/AS01B boosting significantly improves immunogenicity to Plasmodium falciparum CS compared to that with either malaria vaccine alone. Infect. Immun.75(5), 2283–2290 (2007).
  • Owusu-Agyei S, Ansong D, Asante K et al. Randomized controlled trial of RTS,S/AS02D and RTS,S/AS01E malaria candidate vaccines given according to different schedules in Ghanaian children. PLoS ONE4(10), e7302 (2009).
  • Lell B, Agnandji S, von Glasenapp I et al. A randomized trial assessing the safety and immunogenicity of AS01 and AS02 adjuvanted RTS,S malaria vaccine candidates in children in Gabon. PLoS ONE4(10), e7611 (2009).
  • Guinovart C, Aponte JJ, Sacarlal J et al. Insights into long-lasting protection induced by RTS,S/AS02A malaria vaccine: further results from a Phase IIb trial in Mozambican children. PLoS ONE4(4), e5165 (2009).
  • Audran R, Lurati-Ruiz F, Genton B et al. The synthetic Plasmodium falciparum circumsporozoite peptide PfCS102 as a malaria vaccine candidate: a randomized controlled Phase I trial. PLoS ONE4(10), e7304 (2009).
  • Polhemus ME, Magill AJ, Cummings JF et al. Phase I dose escalation safety and immunogenicity trial of Plasmodium falciparum apical membrane protein (AMA-1) FMP2.1, adjuvanted with AS02A, in malaria-naive adults at the Walter Reed Army Institute of Research. Vaccine25(21), 4203–4212 (2007).
  • Spring MD, Cummings JF, Ockenhouse CF et al. Phase 1/2a study of the malaria vaccine candidate apical membrane antigen-1 (AMA-1) administered in adjuvant system AS01B or AS02A. PLoS ONE4(4), e5254 (2009).
  • Thera MA, Doumbo OK, Coulibaly D et al. Safety and immunogenicity of an AMA-1 malaria vaccine in Malian adults: results of a Phase 1 randomized controlled trial. PLoS ONE3(1), e1465 (2008).
  • Thera MA, Doumbo OK, Coulibaly D et al. Safety and immunogenicity of an AMA1 malaria vaccine in Malian children: results of a Phase 1 randomized controlled trial. PLoS ONE5(2), e9041 (2010).
  • Roestenberg M, Remarque E, de Jonge E et al. Safety and immunogenicity of a recombinant Plasmodium falciparum AMA1 malaria vaccine adjuvanted with Alhydrogel™, Montanide ISA 720 or AS02. PLoS ONE3(12), e3960 (2008).
  • Ogutu BR, Apollo OJ, McKinney D et al. Blood stage malaria vaccine eliciting high antigen-specific antibody concentrations confers no protection to young children in Western Kenya. PLoS ONE4(3), e4708 (2009).
  • Cummings JF, Spring MD, Schwenk RJ et al. Recombinant liver stage antigen-1 (LSA-1) formulated with AS01 or AS02 is safe, elicits high titer antibody and induces IFN-γ/IL-2 CD4+ T cells but does not protect against experimental Plasmodium falciparum infection. Vaccine28(31), 5135–5144 (2010).
  • Hollingdale MR, Aikawa M, Atkinson CT et al. Non-CS pre-erythrocytic protective antigens. Immunol. Lett.25(1–3), 71–76 (1990).
  • Narum DL, Thomas AW. Differential localization of full-length and processed forms of PF83/AMA-1 an apical membrane antigen of Plasmodium falciparum merozoites. Mol. Biochem. Parasitol.67(1), 59–68 (1994).
  • Diggs CL, Ballou WR, Miller LH. The major merozoite surface protein as a malaria vaccine target. Parasitol. Today9(8), 300–302 (1993).
  • Kurtis JD, Hollingdale MR, Luty AJ, Lanar DE, Krzych U, Duffy PE. Pre-erythrocytic immunity to Plasmodium falciparum: the case for an LSA-1 vaccine. Trends Parasitol.17(5), 219–223 (2001).
  • Silvie O, Franetich JF, Charrin S et al. A role for apical membrane antigen 1 during invasion of hepatocytes by Plasmodium falciparum sporozoites. J. Biol. Chem.279(10), 9490–9496 (2004).
  • Nabel GJ. Mapping the future of HIV vaccines. Nat. Rev. Microbiol.5(7), 482–484 (2007).
  • McElrath MJ, Haynes BF. Induction of immunity to human immunodeficiency virus type-1 by vaccination. Immunity33(4), 542–554 (2010).
  • Virgin HW, Walker BD. Immunology and the elusive AIDS vaccine. Nature464(7286), 224–231 (2010).
  • Wijesundara DK, Jackson RJ, Ramshaw IA, Ranasinghe C. Human immunodeficiency virus-1 vaccine design: where do we go now? Immunol. Cell. Biol.1–8 (2010).
  • Montefiori DC, Mascola JR. Neutralizing antibodies against HIV-1: can we elicit them with vaccines and how much do we need? Curr. Opin. HIV AIDS4(5), 347–351 (2009).
  • Goepfert PA, Tomaras GD, Horton H et al. Durable HIV-1 antibody and T-cell responses elicited by an adjuvanted multi-protein recombinant vaccine in uninfected human volunteers. Vaccine25(3), 510–518 (2007).
  • Leroux-Roels I, Koutsoukos M, Clementa F et al. Strong and persistent CD4+ T cell response in healthy adults immunized with a candidate HIV-1 vaccine containing gp120, Nef and Tat antigens formulated in three adjuvant systems. Vaccine28(43), 7016–7024 (2010).
  • Van Braeckel E, Bourguignon P, Koutsoukos M et al. An adjuvanted polyprotein HIV-1 vaccine induces polyfunctional cross-reactive CD4+ T cell responses in seronegative volunteers. Clin. Infect. Dis.52(4), 522–531 (2011).
  • Coplan PM, Gupta SB, Dubey SA et al. Cross-reactivity of anti-HIV-1 T cell immune responses among the major HIV-1 clades in HIV-1-positive individuals from 4 continents. J. Infect. Dis.191(9), 1427–1434 (2005).
  • Potter SJ, Lacabaratz C, Lambotte O et al. Preserved central memory and activated effector memory CD4+ T cell subsets in human immunodeficiency virus controllers: an ANRS EP36 study. J. Virol.81(24), 13904–13915 (2007).
  • Kannanganat S, Kapogiannis BG, Ibegbu C et al. Human immunodeficiency virus type 1 controllers but not noncontrollers maintain CD4 T cells coexpressing three cytokines. J. Virol.81(21), 12071–12076 (2007).
  • Lichterfeld M, Kaufmann DE, Yu XG et al. Loss of HIV-1-specific CD8+ T cell proliferation after acute HIV-1 infection and restoration by vaccine-induced HIV-1-specific CD4+ T cells. J. Exp. Med.200(6), 701–712 (2004).
  • Barouch DH, Letvin NL. CD8+ cytotoxic T lymphocyte responses to lentiviruses and herpesviruses. Curr. Opin. Immunol.13(4), 479–482 (2001).
  • Betts MR, Nason MC, West SM et al. HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood107(12), 4781–4789 (2006).
  • Jin X, Bauer DE, Tuttleton SE et al. Dramatic rise in plasma viremia after CD8+ T cell depletion in simian immunodeficiency virus-infected macaques. J. Exp. Med.189(6), 991–998 (1999).
  • Lambotte O, Ferrari G, Moog C et al. Heterogeneous neutralizing antibody and antibody-dependent cell cytotoxicity responses in HIV-1 elite controllers. AIDS23(8), 897–906 (2009).
  • Hessell AJ, Hangartner L, Hunter M et al. Fc receptor but not complement binding is important in antibody protection against HIV. Nature449(7158), 101–104 (2007).
  • Andersen P. Tuberculosis vaccines – an update. Nat. Rev. Microbiol.5(7), 484–487 (2007).
  • Dye C, Williams BG. The population dynamics and control of tuberculosis. Science328(5980), 856–861 (2010).
  • Russell DG, Barry CE 3rd, Flynn JL. Tuberculosis: what we don’t know can, and does, hurt us. Science328(5980), 852–856 (2010).
  • Kaufmann SH, Hussey G, Lambert PH. New vaccines for tuberculosis. Lancet375(9731), 2110–2119 (2010).
  • Reed SG, Coler RN, Dalemans W et al. Defined tuberculosis vaccine, Mtb72F/AS02A, evidence of protection in cynomolgus monkeys. Proc. Natl Acad. Sci. USA106(7), 2301–2306 (2009).
  • Kaufmann SH. Recent findings in immunology give tuberculosis vaccines a new boost. Trends Immunol.26(12), 660–667 (2005).
  • Von Eschen K, Morrison R, Braun M et al. The candidate tuberculosis vaccine Mtb72F/AS02A: tolerability and immunogenicity in humans. Hum. Vaccin.5(7), 475–482 (2009).
  • Skeiky YA, Lodes MJ, Guderian JA et al. Cloning, expression, and immunological evaluation of two putative secreted serine protease antigens of Mycobacterium tuberculosis. Infect. Immun.67(8), 3998–4007 (1999).
  • Al-Attiyah R, Mustafa AS, Abal AT, El-Shamy AS, Dalemans W, Skeiky YA. In vitro cellular immune responses to complex and newly defined recombinant antigens of Mycobacterium tuberculosis. Clin. Exp. Immunol.138(1), 139–144 (2004).
  • Montoya J, Solon JA, Acosta L et al. An antigen and adjuvant system dose ranging safety and immunogenicity study of the M72 candidate tuberculosis vaccines in healthy Filipino adults. Trop. Med. Int. Health14(Suppl. 2), 42 (2009) (Abstract).
  • Surquin M, Tielemans CL, Kulcsar I et al. Rapid, enhanced, and persistent protection of patients with renal insufficiency by AS02V-adjuvanted hepatitis B vaccine. Kidney Int77(3), 247–255 (2010).
  • Vandepapelière P, Lau GK, Leroux-Roels G et al. Therapeutic vaccination of chronic hepatitis B patients with virus suppression by antiviral therapy: a randomized, controlled study of co-administration of HBsAg/AS02 candidate vaccine and lamivudine. Vaccine25(51), 8585–8597 (2007).
  • Vandepapelière P, Horsmans Y, Moris P et al. Vaccine adjuvant systems containing monophosphoryl lipid A and QS-21 induce strong and persistent humoral and T cell responses against hepatitis B surface antigen in healthy adult volunteers. Vaccine26(10), 1375–1386 (2008).
  • Beran J, Hobzova L, Wertzova V et al. Safety and immunogenicity of an investigational adjuvanted hepatitis B vaccine (HB-AS02V) in healthy adults. Hum. Vaccin.6(7), 578–584 (2010).
  • Gérard C, Debruyne C. Immunotherapy in the landscape of new targeted treatments for non-small cell lung cancer. Mol. Oncol.3(5–6), 409–424 (2009).
  • Brichard VG, Lejeune D. Cancer immunotherapy targeting tumour-specific antigens: towards a new therapy for minimal residual disease. Expert Opin. Biol. Ther.8(7), 951–968 (2008).
  • Vantomme V, Dantinne C, Amrani N et al. Immunologic analysis of a Phase I/II study of vaccination with MAGE-3 protein combined with the AS02B adjuvant in patients with MAGE-3-positive tumors. J. Immunother.27(2), 124–135 (2004).
  • Boon T, Cerottini JC, Van den Eynde B, van der Bruggen P, Van Pel A. Tumor antigens recognized by T lymphocytes. Annu. Rev. Immunol.12, 337–365 (1994).
  • Szmania S, Gnjatic S, Tricot G et al. Immunization with a recombinant MAGE-A3 protein after high-dose therapy for myeloma. J. Immunother.30(8), 847–854 (2007).
  • Atanackovic D, Altorki NK, Stockert E et al. Vaccine-induced CD4+ T cell responses to MAGE-3 protein in lung cancer patients. J. Immunol.172(5), 3289–3296 (2004).
  • Atanackovic D, Altorki NK, Cao Y et al. Booster vaccination of cancer patients with MAGE-A3 protein reveals long-term immunological memory or tolerance depending on priming. Proc. Natl Acad. Sci. USA105(5), 1650–1655 (2008).
  • Vansteenkiste J, Zielinski M, Linder A et al. Final results of a multi-center, double-blind, randomized, placebo-controlled Phase II study adjuvant therapy in stage IB/II non-small cell lung cancer (NSCLC). J. Clin. Oncol.25, 7554 (2007) (Abstract).
  • Kruit WH, Suciu S, Dreno B et al. Immunization with recombinant MAGE-A3 protein combined with adjuvant systems AS15 or AS02B in patients with unresectable and progressive metastatic cutaneous melanoma: a randomized open-label Phase II study of the EORTC Melanoma Group. J. Clin. Oncol.26(15 Suppl.), 9065 (2008).
  • Klenerman P, Hill A. T cells and viral persistence: lessons from diverse infections. Nat. Immunol.6(9), 873–879 (2005).
  • Koopman G, Mortier D, Hofman S et al. Immune-response profiles induced by human immunodeficiency virus type 1 vaccine DNA, protein or mixed-modality immunization: increased protection from pathogenic simian-human immunodeficiency virus viraemia with protein/DNA combination. J. Gen. Virol.89(Pt 2), 540–553 (2008).
  • Sacarlal J, Aponte JJ, Aide P et al. Safety of the RTS,S/AS02A malaria vaccine in Mozambican children during a Phase IIb trial. Vaccine26(2), 174–184 (2008).
  • Kester KE, Cummings JF, Ockenhouse CF et al. Phase 2a trial of 0, 1, and 3 month and 0, 7, and 28 day immunization schedules of malaria vaccine RTS,S/AS02 in malaria-naive adults at the Walter Reed Army Institute of Research. Vaccine26(18), 2191–2202 (2008).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.