204
Views
22
CrossRef citations to date
0
Altmetric
Review

New frontiers in meningococcal vaccines

, &
Pages 617-634 | Published online: 09 Jan 2014

References

  • Rosenstein NE, Perkins BA, Stephens DS et al. Meningococcal disease. N. Engl. J. Med.344(18), 1378–1388 (2001).
  • Pathan N, Faust SN, Levin M. Pathophysiology of meningococcal meningitis and septicaemia. Arch. Dis. Child.88(7), 601–607 (2003).
  • Borg J, Christie D, Coen PG, Booy R, Viner RM. Outcomes of meningococcal disease in adolescence: prospective, matched-cohort study. Pediatrics123(3), e502–e509 (2010).
  • Virji M. Pathogenic neisseriae: surface modulation, pathogenesis and infection control. Nat. Rev. Microbiol.7(4), 274–286 (2009).
  • Bilukha OO, Rosenstein N; National Center for Infectious Diseases, Centers for Disease Control and Prevention (CDC). Prevention and control of meningococcal disease. Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm. Rep.54(7), 1–21 (2005).
  • Harrison LH, Trotter CL, Ramsay ME. Global epidemiology of meningococcal disease. Vaccine27(Suppl. 2), B51–B63 (2009).
  • National Advisory Committee on Immunization (NACI). An update on the invasive meningococcal disease and meningococcal vaccine conjugate recommendations. An Advisory Committee statement (ACS). Can. Commun. Dis. Rep.35(ACS-3), 1–40 (2009).
  • Harrison LH, Pass MA, Mendelsohn AB et al. Invasive meningococcal disease in adolescents and young adults. JAMA286(6), 694–699 (2001).
  • Harrison LH. Prospects for vaccine prevention of meningococcal infection. Clin. Microbiol. Rev.19(1), 142–164 (2006).
  • Stephens DS. Conquering the meningococcus. FEMS Microbiol. Rev.31(1), 3–14 (2007).
  • LaForce FM, Ravenscroft N, Djingarey M, Viviani S. Epidemic meningitis due to Group A Neisseria meningitidis in the African meningitis belt: a persistent problem with an imminent solution. Vaccine27(Suppl. 2), B13–B19 (2009).
  • Molesworth AM, Thomson MC, Connor SJ et al. Where is the meningitis belt? Defining an area at risk of epidemic meningitis in Africa. Trans. R. Soc. Trop. Med. Hyg.96(3), 242–249 (2002).
  • Claus H, Maiden MC, Wilson DJ et al. Genetic analysis of meningococci carried by children and young adults. J. Infect. Dis.191(8), 1263–1271 (2005).
  • Cartwright KA, Stuart JM, Jones DM, Noah ND. The Stonehouse survey: nasopharyngeal carriage of meningococci and Neisseria lactamica. Epidemiol. Infect.99(3), 591–601 (1987).
  • Caugant DA, Maiden MC. Meningococcal carriage and disease – population biology and evolution. Vaccine27(Suppl. 2), B64–B70 (2009).
  • Soriano-Gabarró M, Rosenstein N, LaForce FM. Evaluation of serogroup A meningococcal vaccines in Africa: a demonstration project. J. Health Popul. Nutr.22(3), 275–285 (2004).
  • Trotter CL, Greenwood BM. Meningococcal carriage in the African meningitis belt. Lancet Infect. Dis.7(12), 797–803 (2007).
  • Maiden MC, Ibarz-Pavón AB, Urwin R et al. Impact of meningococcal serogroup C conjugate vaccines on carriage and herd immunity. J. Infect. Dis.197(5), 737–743 (2008).
  • Jones GR, Williams JN, Christodoulides M et al. Lack of immunity in university students before an outbreak of serogroup C meningococcal infection. J. Infect. Dis.181(3), 1172–1175 (2000).
  • Maiden MC, Stuart JM; UK Meningococcal Carraige Group. Carriage of serogroup C meningococci 1 year after meningococcal C conjugate polysaccharide vaccination. Lancet359(9320), 1829–1831 (2002).
  • Yazdankhah SP, Caugant DA. Neisseria meningitidis: an overview of the carriage state. J. Med. Microbiol.53(9), 821–832 (2004).
  • Glitza IC, Ehrhard I, Müller-Pebody B et al. Longitudinal study of meningococcal carrier rates in teenagers. Int. J. Hyg. Environ. Health211(3–4), 263–272 (2008).
  • Wu HM, Harcourt BH, Hatcher CP et al. Emergence of ciprofloxacin-resistant Neisseria meningitidis in North America. N. Engl. J. Med.360(9), 886–892 (2009).
  • Imrey PB, Jackson LA, Ludwinski PH et al. Meningococcal carriage, alcohol consumption, and campus bar patronage in a serogroup C meningococcal disease outbreak. J. Clin. Microbiol.33(12), 3133–3137 (1995).
  • Mayer L. Immunologic methods for diagnosis of infections by Gram-negative cocci. Manual of Clinical Laboratory Immunology, 5th Edition. Rose NR, de Macario EC, Folds JD et al. (Eds). ASM Press, Washington, DC, USA, 473 (1997).
  • Tan LK, Carlone GM, Borrow R. Advances in the development of vaccines against Neisseria meningitidis. N. Engl. J. Med.362(16), 1511–1520 (2010).
  • Taha MK, Achtman M, Alonso JM et al. Serogroup W135 meningococcal disease in Hajj pilgrims. Lancet356(9248), 2159 (2000).
  • Bertherat E, Yada A, Djingarey MH, Koumare B. First major epidemic caused by Neisseria meningitidis serogroup W135 in Africa? Med. Trop. (Mars.)62(3), 301–304 French (2002).
  • Grabenstein JD, Pittman PR, Greenwood JT, Engler RJ. Immunization to protect the US Armed Forces: heritage, current practice, and prospects. Epidemiol. Rev.28, 3–26 (2006).
  • Tyler KT. Chapter 28: a history of bacterial meningitis. Handb. Clin. Neurol.95, 417–433 (2009).
  • Brundage JF, Ryan MA, Feighner BH et al. Meningococcal disease among United States military service members in relation to routine uses of vaccines with different serogroup-specific components, 1964–1998. Clin. Infect. Dis.35(11), 1376–1381 (2002).
  • Bose A, Coen P, Tully J, Viner R, Booy R. Effectiveness of meningococcal C conjugate vaccine in teenagers in England. Lancet361(9358), 675–676 (2003).
  • De Wals P, Deceuninck G, Boulianne N, De Serres G. Effectiveness of a mass immunization campaign using serogroup C meningococcal conjugate vaccine. JAMA292(20), 2491–2494 (2004).
  • Larrauri A, Cano R, García M, Mateo S. Impact and effectiveness of meningococcal C conjugate vaccine following its introduction in Spain. Vaccine23(32), 4097–4100 (2005).
  • de Greeff SC, de Melker HE, Spanjaard L, Schouls LM, van Derende A. Protection from routine vaccination at the age of 14 months with meningococcal serogroup C conjugate vaccine in The Netherlands. Pediatr. Infect. Dis. J.25(1), 79–80 (2006).
  • Campbell H, Borrow R, Salisbury D, Miller E. Meningococcal C conjugate vaccine: the experience in England and Wales. Vaccine27(Suppl. 2), B20–B29 (2009).
  • Martínez AI, Domínguez A, Oviedo M et al. Epidemiología de la enfermedad meningocócica en Cataluña antes y después de la vacunación frente al serogrupo C. Rev. Esp. Salud Publica83(5), 725–735 (2009).
  • Trotter CL, Maiden MC. Meningococcal vaccines and herd immunity: lessons learned from serogroup C conjugate vaccination programs. Expert Rev. Vaccines8(7), 851–861 (2009).
  • Okoko BJ, Idoko OT, Adegbola RA. Prospects and challenges with introduction of a mono-valent meningococcal conjugate vaccine in Africa. Vaccine27(14), 2023–2029 (2009).
  • Updated Recommendation from the Advisory Committee on Immunization Practices (ACIP) for revaccination of persons at prolonged increased risk for meningococcal disease. MMWR58(37), 1042–1043 (2009).
  • National, state, and local area vaccination coverage among adolescents aged 13–17 years – United States, 2009. MMWR59(32), 1018–1023 (2010).
  • Recommended immunization schedules for persons aged 0 through 18 years – United States, 2011. MMWR60(5), 1–4 (2011).
  • CDC. Updated recommendations for use of meningococcal conjugate vaccines – Advisory Committee on Immunization Practices (ACIP), 2010. MMWR60, 72–76 (2011).
  • Tappero JW, Lagos R, Ballesteros AM et al. Immunogenicity of 2 serogroup B outer-membrane protein meningococcal vaccines: a randomized controlled trial in Chile. JAMA281(16), 1520–1527 (1999).
  • Holst J, Feiring B, Naess LM et al. The concept of “tailor-made”, protein-based, outer membrane vesicle vaccines against meningococcal disease. Vaccine23(17–18), 2202–2205 (2005).
  • Martin DR, Ruijne N, McCallum L, O’Hallahan J, Oster P. The VR2 epitope on the PorA P1.7–2,4 protein is the major target for the immune response elicited by the strain-specific group B meningococcal vaccine MeNZB. Clin. Vaccine Immunol.13(4), 486–491 (2006).
  • Girard MP, Preziosi MP, Aguado MT, Kieny MP. A review of vaccine research and development: meningococcal disease. Vaccine24(22), 4692–4700 (2006).
  • Stein KE. Thymus-independent and thymus-dependent responses to polysaccharide antigens. J. Infect. Dis.165(Suppl. 1), S49–S52 (1992).
  • Peltola H, Mäkelä H, Käyhty H et al. Clinical efficacy of meningococcus group A capsular polysaccharide vaccine in children three months to five years of age. N. Engl. J. Med.297(13), 686–691 (1977).
  • Law BJ, Rosenberg T, MacDonald NE et al. Age-related immunogenicity of meningococcal polysaccharide vaccine in aboriginal children and adolescents living in a Northern Manitoba reserve community. Pediatr. Infect. Dis. J.17(10), 860–864 (1998).
  • Maslanka SE, Tappero JW, Plikaytis BD et al. Age-dependent Neisseria meningitidis serogroup C class-specific antibody concentrations and bactericidal titers in sera from young children from Montana immunized with a licensed polysaccharide vaccine. Infect. Immun.66(6), 2453–2459 (1998).
  • Borrow R, Richmond P, Kaczmarski EB et al. Meningococcal serogroup C-specific IgG antibody responses and serum bactericidal titres in children following vaccination with a meningococcal A/C polysaccharide vaccine. FEMS Immunol. Med. Microbiol.28(1), 79–85 (2000).
  • Vergnano S, Heath P. Neisseria meningitidis serogroup A vaccines: an overview. Expert Rev. Vaccines2(4), 571–582 (2003).
  • Trotter CL, Gay NJ, Edmunds WJ. Dynamic models of meningococcal carriage, disease, and the impact of serogroup C conjugate vaccine. Am. J. Epidemiol.162(1), 89–100 (2005).
  • Mohle-Boetani JC, Ajello G, Breneman E et al. Carriage of Haemophilus influenzae type b in children after widespread vaccination with conjugate Haemophilus influenzae type b vaccines. Pediatr. Infect. Dis. J.12(7), 589–593 (1993).
  • Bisgard KM, Kao A, Leake J et al. Haemophilus influenza invasive disease in the United States, 1994–1995: near disappearance of a vaccine-preventable childhood disease. Emerg. Infect. Dis.4(2), 229–237 (1998).
  • Vestrheim DF, Høiby EA, Aaberge IS, Caugant DA. Impact of a pneumococcal conjugate vaccination program on carriage among children in Norway. Clin. Vaccine Immunol.17(3), 325–334 (2010).
  • Campbell H, Andrews N, Borrow R, Trotter C, Miller E. Updated postlicensure surveillance of the meningococcal C conjugate vaccine in England and Wales: effectiveness, validation of serological correlates of protection, and modeling predictions of the duration of herd immunity. Clin. Vaccine Immunol.17(5), 840–847 (2010).
  • Trotter CL, Ramsay ME, Gray S, Fox A, Kaczmarski E. No evidence for capsule replacement following mass immunisation with meningococcal serogroup C conjugate vaccines in England and Wales. Lancet Infect. Dis.6(10), 616–617; author reply 617–618 (2006).
  • Borrow R, Andrews N, Findlow H et al. Kinetics of antibody persistence following administration of a combination meningococcal serogroup C and Haemophilus influenzae type b conjugate vaccine in healthy infants in the United Kingdom primed with a monovalent meningococcal serogroup C vaccine. Clin. Vaccine Immunol.17(1), 154–159 (2010).
  • Perrett KP, Winter AP, Kibwana E et al. Antibody persistence after serogroup C meningococcal conjugate immunization of United Kingdom primary-school children in 1999–2000 and response to a booster: a Phase 4 clinical trial. Clin. Infect. Dis.50(12), 1601–1610 (2010).
  • Cohn AC, MacNeil JR, Harrison LH et al. Changes in Neisseria meningitidis disease epidemiology in the United States, 1998–2007: implications for prevention of meningococcal disease. Clin. Infect. Dis.50(2), 184–191 (2010).
  • Habermehl P, Leroux-Roels G, Sänger R, Mächler G, Boutriau D. Combined Haemophilus influenzae type b and Neisseria meningitidis serogroup C (HibMenC) or serogroup C and Y-tetanus toxoid conjugate (and HibMenCY) vaccines are well-tolerated and immunogenic when administered according to the 2, 3, 4 months schedule with a fourth dose at 12–18 months of age. Hum. Vaccin.6(8), 640–651 (2010).
  • Hodgson A, Forgor AA, Chandramohan D et al. A Phase II, randomized study on an investigational DTPw–HBV/Hib–MenAC conjugate vaccine administered to infants in Northern Ghana. PLoS ONE3(5), e2159 (2008).
  • Robbins JB, Towne DW, Gotschlich EC, Schneerson R. “Love’s labours lost”: failure to implement mass vaccination against group A meningococcal meningitis in sub-Saharan Africa. Lancet350(9081), 880–882 (1997).
  • LaForce FM, Konde K, Viviani S, Préziosi MP. The Meningitis Vaccine Project. Vaccine25(Suppl. 1), A97–A100 (2007).
  • Jódar L, LaForce FM, Ceccarini C, Aguado T, Granoff DM. Meningococcal conjugate vaccine for Africa: a model for development of new vaccines for the poorest countries. Lancet361(9372), 1902–1904 (2003).
  • Kshirsagar N, Mur N, Thatte U et al. Safety, immunogenicity, and antibody persistence of a new meningococcal group A conjugate vaccine in healthy Indian adults. Vaccine25(Suppl. 1), A101–A107 (2007).
  • Bash MC, Sow S, Okoko B et al. Human complement bactericidal activity following vaccination in a Phase 2 safety and immunogenicity study of a new meningococcal A conjugate vaccine in healthy African toddlers. Programs and Abstracts of the 16th International Pathogenic Neisseria Conference. Rotterdam, Netherlands, 7–12 September 2008 (Abstract P223).
  • Mocca B, Sow S, Akinsola A et al. Human complement bactericidal activity in a Phase 2 safety and immunogenicity study following vaccination with a new meningococcal A conjugate vaccine in healthy Africans living in sub-Saharan Africa. Programs and Abstracts of the 17th International Pathogenic Neisseria Conference. Banff, Canada, 11–14 September 2010 (Abstract P198).
  • LaForce FM, Djingarey M, Tevi-Benissan C. Introduction of a new Group A meningococcal conjugate vaccine (MenAfriVac) in the African meningitis belt. Programs and Abstracts of the 17th International Pathogenic Neisseria Conference. Banff, Canada, 11–14 September 2010 (Abstract OM39).
  • Clark TA, Kristiansen PA, Diomandé F et al. Risk factors and epidemiology of Neisseria meningitidis carriage among 1–29 year-olds in one urban and two rural districts in Burkina Faso, 2009. Programs and Abstracts of the 17th International Pathogenic Neisseria Conference. Banff, Canada, 11–14 September 2010 (Abstract P043).
  • Kristiansen PA, Diomandé F, Wei SC et al. Baseline meningococcal carriage in Burkina Faso before the introduction of a meningococcal serogroup A conjugate vaccine. Clin. Vaccine Immunol.18(3), 435–443 (2011).
  • Delrieu I, Yaro S, Ouédraogo-Traoré R et al. Emergence of Neisseria meningitidis serogroup X meningitis in Togo and Burkina Faso before introduction of a monovalent meningococcal conjugate vaccine against serogroup A. Programs and Abstracts of the 17th International Pathogenic Neisseria Conference. Banff, Canada, 11–14 September 2010 (Abstract OM11).
  • Fletcher LD, Bernfield L, Barniak V et al. Vaccine potential of the Neisseria meningitidis 2086 lipoprotein. Infect. Immun.72(4), 2088–2100 (2004).
  • Finne J, Leinonen M, Mäkelä PH. Antigenic similarities between brain components and bacteria causing meningitis: implications for vaccine development and pathogenesis. Lancet322(8346), 355–357 (1983).
  • Howitz M, Krause TG, Simonsen JB et al. Lack of association between group B meningococcal disease and autoimmune disease. Clin. Infect. Dis.45(10), 1327–1334 (2007).
  • Bruge J, Bouveret-Le Cam N, Danve B, Rougon G, Schulz D. Clinical evaluation of a group B meningococcal N-propionylated polysaccharide conjugate vaccine in adult, male volunteers. Vaccine22(9–10), 1087–1096 (2004).
  • Milagres LG, Ramos SR, Sacchi CT et al. Immune response of Brazilian children to a Neisseria meningitidis serogroup B outer membrane protein vaccine: comparison with efficacy. Infect. Immun.62(10), 4419–4424 (1994).
  • Martin SL, Borrow R, van der Ley P et al. Effect of sequence variation in meningococcal PorA outer membrane protein on the effectiveness of a hexavalent PorA outer membrane vesicle vaccine. Vaccine18(23), 2476–2481 (2000).
  • Rosenqvist E, Høiby EA, Bjune G et al. Effect of aluminium hydroxide and meningococcal serogroup C capsular polysaccharide on the immunogenicity and reactogenicity of a group B Neisseria meningitidis outer membrane vesicle vaccine. Dev. Biol. Stand.92, 323–333 (1998).
  • Wong SH, Lennon DR, Jackson CM et al. Immunogenicity and tolerability in infants of a New Zealand epidemic strain meningococcal B outer membrane vesicle vaccine. Pediatr. Infect. Dis. J.28(5), 385–390 (2009).
  • Song J, Minetti CA, Blake MS et al. Meningococcal PorA/C1, a channel that combines high conductance and high selectivity. Biophys. J.76(2), 804–813 (1999).
  • Bjune G, Høiby EA, Grønnesby JK et al. Effect of outer membrane vesicle vaccine against group B meningococcal disease in Norway. Lancet338(8775), 1093–1096 (1991).
  • Sierra GV, Campa HC, Varcacel NM et al. Vaccine against group B Neisseria meningitidis: protection trial and mass vaccination results in Cuba. NIPH Ann.14(2), 195–210 (1991).
  • de Moraes JC, Perkins BA, Camargo MC et al. Protective efficacy of a serogroup B meningococcal vaccine in Sao Paulo, Brazil. Lancet340(8827), 1074–1078 (1992).
  • Boslego J, Garcia J, Cruz C et al. Efficacy, safety, and immunogenicity of a meningococcal group B (15:P1.3) outer membrane protein vaccine in Iquique, Chile. Chilean National Committee for Meningococcal Disease. Vaccine13(9), 821–829 (1995).
  • Oster P, Lennon D, O’Hallahan J et al. MeNZB: a safe and highly immunogenic tailor-made vaccine against the New Zealand Neisseria meningitidis serogroup B disease epidemic strain. Vaccine23(17–18), 2191–2196 (2005).
  • Pace D, Cuschieri P, Galea Debono A, Attard-Montalto S. Epidemiology of pathogenic Neisseria meningitidis serogroup B serosubtypes in Malta: implications for introducing PorA based vaccines. Vaccine26(47), 5952–5956 (2008).
  • Borrow R, Balmer P, Miller E. Meningococcal surrogates of protection – serum bactericidal antibody activity. Vaccine23(17–18), 2023–2406 (2005).
  • Baart GJ, de Jong G, Philippi M et al. Scale-up for bulk production of vaccine against meningococcal disease. Vaccine25(34), 6399–6408 (2007).
  • van den Dobbelsteen GP, van Dijken HH, Pillai S, van Alphen L. Immunogenicity of a combination vaccine containing pneumococcal conjugates and meningococcal PorA OMVs. Vaccine25(13), 2491–2496 (2007).
  • Tondella ML, Popovic T, Rosenstein NE et al. Distribution of Neisseria meningitidis serogroup B serosubtypes and serotypes circulating in the United States. The Active Bacterial Core Surveillance Team. J. Clin. Microbiol.38(9), 3323–3328 (2000).
  • Sacchi CT, Whitney AM, Popovic T et al. Diversity and prevalence of PorA types in Neisseria meningitidis serogroup B in the United States, 1992–1998. J. Infect. Dis.182(4), 1169–1176 (2000).
  • Weynants VE, Feron CM, Goraj KK et al. Additive and synergistic bactericidal activity of antibodies directed against minor outer membrane proteins of Neisseria meningitidis. Infect. Immun.75(11), 5434–5442 (2007).
  • Bennett JS, Bentley SD, Vernikos GS et al. Independent evolution of the core and accessory gene sets in the genus Neisseria: insights gained from the genome of Neisseria lactamica isolate 020–006. BMC Genomics11, 652 (2010).
  • Gorringe AR, Taylor S, Brookes C et al. Phase I safety and immunogenicity study of a candidate meningococcal disease vaccine based on Neisseria lactamica outer membrane vesicles. Clin. Vaccine Immunol.16(8), 1113–1120 (2009).
  • Evans CM, Pratt CB, Matheson M et al. Nasopharyngeal colonization by Neisseria lactamica and induction of protective immunity against Neisseria meningitidis. Clin. Infect. Dis.52(1), 70–77 (2011).
  • Verheul AF, Boons GJ, Van der Marel GA et al. Minimal oligosaccharide structures required for induction of immune responses against meningococcal immunotype L1, L2, and L3,7,9 lipopolysaccharides determined by using synthetic oligosaccharide-protein conjugates. Infect. Immun.59(10), 3566–3573 (1991).
  • Weynants V, Denoël P, Devos N et al. Genetically modified L3,7 and L2 lipooligosaccharides from Neisseria meningitidis serogroup B confer a broad cross-bactericidal response. Infect. Immun.77(5), 2084–2093 (2009).
  • Verheul AF, Van Gaans JA, Wiertz EJ et al. Meningococcal lipopolysaccharide (LPS)-derived oligosaccharide-protein conjugates evoke outer membrane protein- but not LPS-specific bactericidal antibodies in mice: influence of adjuvants. Infect. Immun.61(1), 187–196 (1993).
  • Gu XX, Tsai CM. Preparation, characterization, and immunogenicity of meningococcal lipooligosaccharide-derived oligosaccharide–protein conjugates. Infect. Immun.61(5), 1873–1880 (1993).
  • Cox AD, Zou W, Gidney MA et al. Candidacy of LPS-based glycoconjugates to prevent invasive meningococcal disease: developmental chemistry and investigation of immunological responses following immunization of mice and rabbits. Vaccine23(43), 5045–5054 (2005).
  • Bonvehí P, Boutriau D, Casellas J et al. Three doses of an experimental detoxified L3-derived lipooligosaccharide meningococcal vaccine offer good safety but low immunogenicity in healthy young adults. Clin. Vaccine Immunol.17(9), 1460–1466 (2010).
  • Lissolo L, Maitre-Wilmotte G, Dumas P et al. Evaluation of transferrin-binding protein 2 within the transferrin-binding protein complex as a potential antigen for future meningococcal vaccines. Infect. Immun.63(3), 884–890 (1995).
  • Ala’Aldeen DA, Davies HA, Borriello SP. Vaccine potential of meningococcal FrpB: studies on surface exposure and functional attributes of common epitopes. Vaccine12(6), 535–541 (1994).
  • Rosenqvist E, Høiby EA, Wedege E et al. Human antibody responses to meningococcal outer membrane antigens after three doses of the Norwegian group B meningococcal vaccine. Infect. Immun.63(12), 4642–4652 (1995).
  • Comanducci M, Bambini S, Brunelli B et al. NadA, a novel vaccine candidate of Neisseria meningitidis. J. Exp. Med.195(11), 1445–1454 (2002).
  • Martin D, Cadieux N, Hamel J, Brodeur BR. Highly conserved Neisseria meningitidis surface protein confers protection against experimental infection. J. Exp. Med.185(7), 1173–1183 (1997).
  • Masignani V, Comanducci M, Giuliani MM et al. Vaccination against Neisseria meningitidis using three variants of the lipoprotein GNA1870. J. Exp. Med.197(6), 789–799 (2003).
  • Ala’Aldeen DA, Stevenson P, Griffiths E et al. Immune responses in humans and animals to meningococcal transferrin-binding proteins: implications for vaccine design. Infect. Immun.62(7), 2984–2990 (1994).
  • Rokbi B, Renauld-Mongenie G, Mignon M et al. Allelic diversity of the two transferrin binding protein B gene isotypes among a collection of Neisseria meningitidis strains representative of serogroup B disease: implication for the composition of a recombinant TbpB-based vaccine. Infect. Immun.68(9), 4938–4947 (2000).
  • Harrison OB, Maiden MC, Rokbi B. Distribution of transferrin binding protein B gene (tbpB) variants among Neisseria species. BMC Microbiol.8, 66 (2008).
  • Renauld-Mongénie G, Poncet D, Mignon M et al. Role of transferrin receptor from a Neisseria meningitidis tbpB isotype II strain in human transferrin binding and virulence. Infect. Immun.72(6), 3461–3470 (2004).
  • Pettersson A, Kortekaas J, Weynants VE et al. Vaccine potential of the Neisseria meningitidis lactoferrin-binding proteins LbpA and LbpB. Vaccine24(17), 3545–3557 (2006).
  • Black JR, Dyer DW, Thompson MK et al. Human immune response to iron-repressible outer membrane proteins of Neisseria meningitidis. Infect. Immun.54(3), 710–713 (1986).
  • Dyer DW, West EP, McKenna W et al. A pleiotropic iron-uptake mutant of Neisseria meningitidis lacks a 70-kilodalton iron-regulated protein. Infect. Immun.56(4), 977–983 (1988).
  • Kortekaas J, Pettersson A, van der Biezen J et al. Shielding of immunogenic domains in Neisseria meningitidis FrpB (FetA) by the major variable region. Vaccine25(1), 72–84 (2007).
  • Urwin R, Russell JE, Thompson EA et al. Distribution of surface protein variants among hyperinvasive meningococci: implications for vaccine design. Infect. Immun.72(10), 5955–5962 (2004).
  • Thompson EA, Feavers IM, Maiden MC. Antigenic diversity of meningococcal enterobactin receptor FetA, a vaccine component. Microbiology149(Pt 7), 1849–1858 (2003).
  • Claus H, Elias J, Meinhardt C, Frosch M, Vogel U. Deletion of the meningococcal fetA gene used for antigen sequence typing of invasive and commensal isolates from Germany: frequencies and mechanisms. J. Clin. Microbiol.45(9), 2960–2964 (2007).
  • Marsh JW, O’Leary MM, Shutt KA, Harrison LH. Deletion of fetA gene sequences in serogroup B and C Neisseria meningitidis isolates. J. Clin. Microbiol.45(4), 1333–1335 (2007).
  • Frasch CE, Zollinger WD, Poolman JT. Serotype antigens of Neisseria meningitidis and a proposed scheme for designation of serotypes. Rev. Infect. Dis.7(4), 504–510 (1985).
  • Olyhoek AJ, Sarkari J, Bopp M et al. Cloning and expression in Escherichia coli of opc, the gene for an unusual class 5 outer membrane protein from Neisseria meningitidis (meningococci/surface antigen). Microb. Pathog.11(4), 249–257 (1991).
  • Rosenqvist E, Høiby EA, Wedege E et al. The 5C protein of Neisseria meningitidis is highly immunogenic in humans and induces bactericidal antibodies. J. Infect. Dis.167(5), 1065–1073 (1993).
  • Musacchio A, Carmenate T, Delgado M, González S. Recombinant Opc meningococcal protein, folded in vitro, elicits bactericidal antibodies after immunization. Vaccine15(6–7), 751–758 (1997).
  • Cunha CS, Griffiths NJ, Murillo I et al. Neisseria meningitidis Opc invasin binds to the cytoskeletal protein α-actinin. Cell Microbiol.11(3), 389–405 (2009).
  • Kawula TH, Aho EL, Barritt DS, Klapper DG, Cannon JG. Reversible phase variation of expression of Neisseria meningitidis class 5 outer membrane proteins and their relationship to gonococcal proteins II. Infect. Immun.56(2), 380–386 (1988).
  • Seiler A, Reinhardt R, Sarkari J et al. Allelic polymorphism and site-specific recombination in the opc locus of Neisseria meningitidis. Mol. Microbiol.19(4), 841–856 (1996).
  • Litt DJ, Savino S, Beddek A et al. Putative vaccine antigens from Neisseria meningitidis recognized by serum antibodies of young children convalescing after meningococcal disease. J. Infect. Dis.190(8), 1488–1497 (2004).
  • Jolley KA, Appleby L, Wright JC, Christodoulides M, Heckels JE. Immunization with recombinant Opc outer membrane protein from Neisseria meningitidis: influence of sequence variation and levels of expression on the bactericidal immune response against meningococci. Infect. Immun.69(6), 3809–3816 (2001).
  • Stork M, Bos MP, Jongerius I et al. An outer membrane receptor of Neisseria meningitidis involved in zinc acquisition with vaccine potential. PLoS Pathog.6(7), e1000969 (2010).
  • Capecchi B, Adu-Bobie J, Di Marcello F et al. Neisseria meningitidis NadA is a new invasin which promotes bacterial adhesion to and penetration into human epithelial cells. Mol. Microbiol.55(3), 687–698 (2005).
  • Pizza M, Scarlato V, Masignani V et al. Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science287(5459), 1816–1820 (2000).
  • Goldschneider I, Gotschlich EC, Artenstein MS. Human immunity to the meningococcus. I. The role of humoral antibodies. J. Exp. Med.129(6), 1307–1326 (1969).
  • Jacobsson S, Mölling P, Olcén P. Seroprevalence of antibodies against fHbp and NadA, two potential vaccine antigens for Neisseria meningitidis. Vaccine27(42), 5755–5759 (2009a).
  • Norheim G, Aseffa A, Yassin MA et al. Specificity of subcapsular antibody responses in Ethiopian patients following disease caused by serogroup A meningococci. Clin. Vaccine Immunol.15(5), 863–871 (2008).
  • Bai X, Borrow R. Genetic shifts of Neisseria meningitidis serogroup B antigens and the quest for a broadly cross-protective vaccine. Expert Rev. Vaccines9(10), 1203–1217 (2010).
  • Comanducci M, Bambini S, Caugant DA et al. NadA diversity and carriage in Neisseria meningitidis. Infect. Immun.72(7), 4217–4223 (2004).
  • Jansen KU, Emini EA, Anderson AS et al. Estimating effectiveness for Neisseria meningitidis serogroup B (MnB) vaccine candidates composed of non-serogroup specific antigens. Programs and Abstracts of the 17th International Pathogenic Neisseria Conference. Banff, Canada, 11–14 September 2010 (Abstract VW03).
  • Lucidarme J, Comanducci M, Findlow J et al. Characterization of fHbp, nhba (gna2132), nadA, porA, sequence type (ST), and genomic presence of IS1301 in group B meningococcal ST269 clonal complex isolates from England and Wales. J. Clin. Microbiol.47(11), 3577–3585 (2009).
  • Wang X, Cohn A, Comanducci M et al. Prevalence and genetic diversity of candidate vaccine antigens among invasive Neisseria meningitidis isolates in the United States. Vaccine (2011) (In Press).
  • Murphy E, Andrew L, Lee KL et al. Sequence diversity of the factor H binding protein vaccine candidate in epidemiologically relevant strains of serogroup B Neisseria meningitidis. J. Infect. Dis.200(3), 379–389 (2009).
  • Jacobsson S, Hedberg ST, Mölling P et al. Prevalence and sequence variations of the genes encoding the five antigens included in the novel 5CVMB vaccine covering group B meningococcal disease. Vaccine27(10), 1579–1584 (2009).
  • Donnelly J, Medini D, Boccadifuoco G et al. Qualitative and quantitative assessment of meningococcal antigens to evaluate the potential strain coverage of protein-based vaccines. Proc. Natl Acad. Sci. USA107(45), 19490–19495 (2010).
  • Lewis LA, Ngampasutadol J, Wallace R, Reid JE, Vogel U, Ram S. The meningococcal vaccine candidate neisserial surface protein A (NspA) binds to factor H and enhances meningococcal resistance to complement. PLoS Pathog.6(7), e1001027 (2010).
  • Laarman A, Milder F, van Strijp J, Rooijakkers S. Complement inhibition by Gram-positive pathogens: molecular mechanisms and therapeutic implications. J. Mol. Med.88(2), 115–120 (2010).
  • Moe GR, Tan S, Granoff DM. Differences in surface expression of NspA among Neisseria meningitidis group B strains. Infect. Immun.67(11), 5664–5675 (1999).
  • Bernfield L, Fletcher L, Howell A et al. Identification of a novel vaccine candidate for group B Neisseria meningitidis. Programs and Abstracts of the 13th International Pathogenic Neisseria Conference. Oslo, Norway, 1–6 September 2002.
  • McNeil LK, Murphy E, Zhao XJ et al. Detection of LP2086 on the cell surface of Neisseria meningitidis and its accessibility in the presence of serogroup B capsular polysaccharide. Vaccine27(25–26), 3417–3421 (2009).
  • Madico G, Welsch JA, Lewis LA et al. The meningococcal vaccine candidate GNA1870 binds the complement regulatory protein factor H and enhances serum resistance. J. Immunol.177(1), 501–510 (2006).
  • Ala’aldeen DA, Flint M, Oldfield NJ et al. Human antibody responses to the meningococcal factor H binding protein (LP2086) during invasive disease, colonization and carriage. Vaccine28(48), 7667–7675 (2010).
  • Pajon R, Beernink PT, Harrison LH, Granoff DM. Frequency of factor H-binding protein modular groups and susceptibility to cross-reactive bactericidal activity in invasive meningococcal isolates. Vaccine28(9), 2122–2129 (2010).
  • Jiang HQ, Hoiseth SK, Harris SL et al. Broad vaccine coverage predicted for a bivalent recombinant factor H binding protein based vaccine to prevent serogroup B meningococcal disease. Vaccine28(37), 6086–6093 (2010).
  • Jones T, McNeil L, Harris S et al. Adult sera generated after immunization with a bivalent rFHBP vaccine demonstrated serum bactericidal activity against a broad panel of N. meningitidis serogroup B clinical isolates. Programs and Abstracts of the Seventh World Congress on Vaccines, Immunisation and Immunotherapy. Berlin, Germany, 26–28 May 2010 (Abstract S5–S7).
  • Keiser PB, Miller LB, Biggs-Cicatelli S, Zollinger WD. Plasma fibrinogen levels after vaccination with a native outer membrane vesicle vaccine for Neisseria meningitidis. Vaccine27(49), 6809–6813 (2009).
  • Zollinger WD, Donets MA, Schmiel DH et al. Design and evaluation in mice of a broadly protective meningococcal group B native outer membrane vesicle vaccine. Vaccine28(31), 5057–5067 (2010).
  • Danve B, Lissolo L, Guinet F et al. Safety and immunogenicity of a Neisseria meningitidis group B transferrin binding protein vaccine in adults. Presented at: Eleventh International Pathogenic Neisseria Conference. Nice, France, 1998.
  • Halperin SA, Langley JM, Smith B et al. Phase 1 first-in-human studies of the reactogenicity and immunogenicity of a recombinant meningococcal NspA vaccine in healthy adults. Vaccine25(3), 450–457 (2007).
  • Arora A. World Vaccine Congress. Expert Rev. Vaccines8(2), 135–138 (2009).
  • Richmond P, Marshall H, Sheldon E et al. Safety and immunogenicity of serogroup B Neisseria meningitidis (MnB) rLP2086 vaccine in adults and adolescent subjects: overview of 3 clinical trials. Programs and Abstracts of the 17th International Pathogenic Neisseria Conference. Banff, Canada, 11–14 September 2010 (Abstract VW04).
  • Findlow J, Borrow R, Snape MD et al. Multicenter, open-label, randomized Phase II controlled trial of an investigational recombinant meningococcal serogroup B vaccine with and without outer membrane vesicles, administered in infancy. Clin. Infect. Dis.51(10), 1127–1137 (2010).
  • Brunelli B, Del Tordello E, Palumbo E et al. Influence of sequence variability on bactericidal activity sera induced by factor H binding protein variant 1.1. Vaccine29(5), 1072–1018 (2010).
  • Snape MD, Dawson T, Oster P et al. Immunogenicity of two investigational serogroup B meningococcal vaccines in the first year of life: a randomized comparative trial. Pediatr. Infect. Dis. J.29(11), e71–e79 (2010).
  • Dull PM, Pizza M, Toneatto D et al. Early clinical development of a novel, multicomponent meningococcal serogroup B vaccine (4CMenB). Programs and Abstracts of the 17th International Pathogenic Neisseria Conference. Banff, Canada, 11–14 September 2010 (Abstract VW01).
  • Keiser PB, Biggs-Cicatelli S, Moran EE et al. A Phase 1 study of a meningococcal native outer membrane vesicle vaccine made from a group B strain with deleted lpxL1 and synX, over-expressed factor H binding protein, two PorAs and stabilized OpcA expression. Vaccine29(7), 1413–1420 (2011).
  • Keiser PB, Gibbs BT, Coster TS et al. A Phase 1 study of a group B meningococcal native outer membrane vesicle vaccine made from a strain with deleted lpxL2 and synX and stable expression of opcA. Vaccine28(43), 6970–6976 (2010).
  • Miller E, Salisbury D, Ramsay M. Planning, registration, and implementation of an immunisation campaign against meningococcal serogroup C disease in the UK: a success story. Vaccine20(Suppl. 1), S58–S67 (2001).
  • Boutriau D, Poolman J, Borrow R et al. Immunogenicity and safety of three doses of a bivalent (B:4:P1.19,15 and B:4:P1.7–2,4) meningococcal outer membrane vesicle vaccine in healthy adolescents. Clin. Vaccine Immunol.14(1), 65–73 (2007).
  • Holst J, Martin D, Arnold R et al. Properties and clinical performance of vaccines containing outer membrane vesicles from Neisseria meningitidis. Vaccine27(Suppl. 2), B3–B12 (2009).
  • McNeil LK, Zlotnick GW, Camposano E et al. Development of a meningococcal antigen surface expression (MEASURE) assay for the phenotypic characterization of fHBP expression by Neisseria meningitidis. Presented at: 11th EMGM Meeting. Ljubljana, Slovenija, 18–20 May 2011.

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.