259
Views
65
CrossRef citations to date
0
Altmetric
Review

Vaccinia viruses: vaccines against smallpox and vectors against infectious diseases and tumors

&
Pages 1221-1240 | Published online: 09 Jan 2014

References

  • Fenner F, Henderson DA, Arita I, Jezek Z, Ladnyi I. Smallpox and its Eradication. World Health Organization, Geneva, Switzerland (1988).
  • Bray M, Buller M. Looking back at smallpox. Clin. Infect. Dis.38(6), 882–889 (2004).
  • Henderson DA. Smallpox: clinical and epidemiologic features. Emerg. Infect. Dis.5(4), 537–539 (1999).
  • Henderson DA, Inglesby TV, Bartlett JG et al. Smallpox as a biological weapon: medical and public health management. Working Group on Civilian Biodefense. JAMA281(22), 2127–2137 (1999).
  • Moore ZS, Seward JF, Lane JM. Smallpox. Lancet367(9508), 425–435 (2006).
  • Damon IK. Orthopoxviruses. In: Principles and Practice of Infectious Diseases, 7th Edition. Mandell GL, Bennett JE, Dolin R (Eds). Churchill Livingstone Elsevier, Philadelphia, PA, USA, 1923–1932 (2010).
  • WHO recommendations concerning the distribution, handling and synthesis of variola virus DNA, May 2008. Wkly Epidemiol. Rec.83(44), 393–395 (2008).
  • Breman JG, Henderson DA. Diagnosis and management of smallpox. N. Engl. J. Med.346(17), 1300–1308 (2002).
  • Jahrling PB, Fritz EA, Hensley LE. Countermeasures to the bioterrorist threat of smallpox. Curr. Mol. Med.5(8), 817–826 (2005).
  • Bicknell WJ. The case for voluntary smallpox vaccination. N. Engl. J. Med.346(17), 1323–1325 (2002).
  • Breman JG, Arita I, Fenner F. Preventing the return of smallpox. N. Engl. J. Med.348(5), 463–466 (2003).
  • Bozzette SA, Boer R, Bhatnagar V et al. A model for a smallpox vaccination policy. N. Engl. J. Med.348(5), 416–425 (2003).
  • Meltzer MI, Damon I, LeDuc JW, Millar JD. Modeling potential responses to smallpox as a bioterrorist weapon. Emerg. Infect. Dis.7(6), 959–969 (2001).
  • Weiss MM, Weiss PD, Mathisen G, Guze P. Rethinking smallpox. Clin. Infect. Dis.39(11), 1668–1673 (2004).
  • Mack T. A Different view of smallpox and vaccination. N. Engl. J. Med.348(5), 460–463 (2003).
  • Lane JM, Goldstein J. Evaluation of 21st Century risks of smallpox vaccination and policy options. Ann. Intern. Med.138(6), 488–493 (2003).
  • LeDuc JW, Damon I, Relman DA, Huggins J, Jahrling PB. Smallpox research activities: U.S. interagency collaboration, 2001. Emerg. Infect. Dis.8(7), 743–745 (2002).
  • Rosenthal SR, Merchlinsky M, Kleppinger C, Goldenthal KL. Developing new smallpox vaccines. Emerg. Infect. Dis.7(6), 920–926 (2001).
  • Lane JM, Millar JD. Risks of smallpox vaccination complications in the United States. Am. J. Epidemiol.93(4), 238–240 (1971).
  • Lane JM, Millar JD, Neff JM. Smallpox and smallpox vaccination policy. Annu. Rev. Med.22, 251–272 (1971).
  • O’Connell CJ, Karzon DT, Barron AL, Plaut ME, Ali VM. Progressive vaccinia with normal antibodies. A case possibly due to deficient cellular immunity. Ann. Intern. Med.60, 282–289 (1964).
  • Casey C, Vellozzi C, Mootrey GT et al. Surveillance guidelines for smallpox vaccine (vaccinia) adverse reactions. MMWR Recomm. Rep.55(RR-1), 1–16 (2006).
  • Freed ER, Duma RJ, Escobar MR. Vaccinia necrosum and its relationship to impaired immunologic responsiveness. Am. J. Med.52(3), 411–420 (1972).
  • Redfield RR, Wright DC, James WD, Jones TS, Brown C, Burke DS. Disseminated vaccinia in a military recruit with human immunodeficiency virus (HIV) disease. N. Engl. J. Med.316(11), 673–676 (1987).
  • Aragon TJ, Ulrich S, Fernyak S, Rutherford GW. Risks of serious complications and death from smallpox vaccination: a systematic review of the United States experience, 1963–1968. BMC Public Health3, 26 (2003).
  • Casey CG, Iskander JK, Roper MH et al. Adverse events associated with smallpox vaccination in the United States, January–October 2003. JAMA294(21), 2734–2743 (2005).
  • Grabenstein JD, Winkenwerder W Jr. US military smallpox vaccination program experience. JAMA289(24), 3278–3282 (2003).
  • Poland GA, Grabenstein JD, Neff JM. The US smallpox vaccination program: a review of a large modern era smallpox vaccination implementation program. Vaccine23(17–18), 2078–2081 (2005).
  • Update: adverse events following civilian smallpox vaccination – United States, 2003. MMWR Morb. Mortal. Wkly Rep.53(5), 106–107 (2004).
  • Morgan J, Roper MH, Sperling L et al. Myocarditis, pericarditis, and dilated cardiomyopathy after smallpox vaccination among civilians in the United States, January–October 2003. Clin. Infect. Dis.46(Suppl. 3), S242–S250 (2008).
  • Swerdlow DL, Roper MH, Morgan J et al. Ischemic cardiac events during the Department of Health and Human Services Smallpox Vaccination Program, 2003. Clin. Infect. Dis.46(Suppl. 3), S234–241 (2008).
  • Halsell JS, Riddle JR, Atwood JE et al. Myopericarditis following smallpox vaccination among vaccinia-naive US military personnel. JAMA289(24), 3283–3289 (2003).
  • Bray M, Wright ME. Progressive vaccinia. Clin. Infect. Dis.36(6), 766–774 (2003).
  • Nell P, Kohl KS, Graham PL et al. Progressive vaccinia as an adverse event following exposure to vaccinia virus: case definition and guidelines of data collection, analysis, and presentation of immunization safety data. Vaccine25(31), 5735–5744 (2007).
  • Engler RJM, Kenner J, Leung DYM. Smallpox vaccination: risk considerations for patients with atopic dermatitis. J. Allergy Clin. Immunol.110(3), 357–365 (2002).
  • Nell P, Kohl KS, Graham PL et al. Eczema vaccinatum as an adverse event following exposure to vaccinia virus: case definition & guidelines of data collection, analysis, and presentation of immunization safety data. Vaccine25(31), 5725–5734 (2007).
  • Fulginiti VA, Papier A, Lane JM, Neff JM, Henderson DA. Smallpox vaccination: a review, part II. Adverse events. Clin. Infect. Dis.37(2), 251–271 (2003).
  • Vellozzi C, Lane JM, Averhoff F et al. Generalized vaccinia, progressive vaccinia, and eczema vaccinatum are rare following smallpox (vaccinia) vaccination: United States surveillance, 2003. Clin. Infect. Dis.41(5), 689–697 (2005).
  • Talbot TR, Bredenberg HK, Smith M, LaFleur BJ, Boyd A, Edwards KM. Focal and generalized folliculitis following smallpox vaccination among vaccinia-naive recipients. JAMA289(24), 3290–3294 (2003).
  • Walsh SR, Johnson RP. Vaccinia folliculitis after primary dryvax vaccination. Infect. Dis. Clin. Pract.15(2), 132–134 (2007).
  • Kemper AR, Davis MM, Freed GL. Expected adverse events in a mass smallpox vaccination campaign. Eff. Clin. Pract.5(2), 84–90 (2002).
  • Rotz LD, Dotson DA, Damon IK, Becher JA. Vaccinia (smallpox) vaccine: recommendations of the Advisory Committee on Immunization Practices (ACIP), 2001. MMWR Recomm. Rep.50(RR-10), 1–25 (2001).
  • Wharton M, Strikas RA, Harpaz R et al. Recommendations for using smallpox vaccine in a pre-event vaccination program. Supplemental recommendations of the Advisory Committee on Immunization Practices (ACIP) and the Healthcare Infection Control Practices Advisory Committee (HICPAC). MMWR Recomm. Rep.52(RR-7), 1–16 (2003).
  • Slifka MK, Hanifin JM. Smallpox: the basics. Dermatol. Clin.22(3), 263–274 (2004).
  • Cono J, Casey CG, Bell DM. Smallpox vaccination and adverse reactions. Guidance for clinicians. MMWR Recomm. Rep.52(RR-4), 1–28 (2003).
  • Greenberg RN, Kennedy JS. ACAM2000: a newly licensed cell culture-based live vaccinia smallpox vaccine. Expert Opin. Investig. Drugs17(4), 555–564 (2008).
  • Greenberg RN, Kennedy JS, Clanton DJ et al. Safety and immunogenicity of new cell-cultured smallpox vaccine compared with calf-lymph derived vaccine: a blind, single-centre, randomised controlled trial. Lancet365(9457), 398–409 (2005).
  • Weltzin R, Liu J, Pugachev KV et al. Clonal vaccinia virus grown in cell culture as a new smallpox vaccine. Nat. Med.9(9), 1125–1130 (2003).
  • Jacobs BL, Langland JO, Kibler KV et al. Vaccinia virus vaccines: past, present and future. Antiviral Res.84(1), 1–13 (2009).
  • Cutchins E, Warren J, Jones WP. The antibody response to smallpox vaccination as measured by a tissue culture plaque method. J. Immunol.85, 275–283 (1960).
  • McCarthy K, Downie AW, Bradley WH. The antibody response in man following infection with viruses of the pox group. II. Antibody response following vaccination. J. Hyg. (Lond.)56(4), 466–478 (1958).
  • Belshe RB, Newman FK, Frey SE et al. Dose-dependent neutralizing-antibody responses to vaccinia. J. Infect. Dis.189(3), 493–497 (2004).
  • Couch RB, Winokur P, Edwards KM et al. Reducing the dose of smallpox vaccine reduces vaccine-associated morbidity without reducing vaccination success rates or immune responses. J. Infect. Dis.195(6), 826–832 (2007).
  • LeDuc JW, Becher J. Current status of smallpox vaccine. Emerg. Infect. Dis.5(4), 593–594 (1999).
  • LeDuc JW, Jahrling PB. Strengthening national preparedness for smallpox: an update. Emerg. Infect. Dis.7(1), 155–157 (2001).
  • Monath TP, Caldwell JR, Mundt W et al. ACAM2000 clonal Vero cell culture vaccinia virus (New York City Board of Health strain) – a second-generation smallpox vaccine for biological defense. Int. J. Infect. Dis.8(Suppl. 2), S31–S44 (2004).
  • Marriott KA, Parkinson CV, Morefield SI, Davenport R, Nichols R, Monath TP. Clonal vaccinia virus grown in cell culture fully protects monkeys from lethal monkeypox challenge. Vaccine26(4), 581–588 (2008).
  • Frey SE, Newman FK, Kennedy JS et al. Comparison of the safety and immunogenicity of ACAM1000, ACAM2000 and Dryvax in healthy vaccinia-naive adults. Vaccine27(10), 1637–1644 (2009).
  • Artenstein AW, Johnson C, Marbury TC et al. A novel, cell culture-derived smallpox vaccine in vaccinia-naive adults. Vaccine23(25), 3301–3309 (2005).
  • Osborne JD, Da Silva M, Frace AM et al. Genomic differences of Vaccinia virus clones from Dryvax smallpox vaccine: the Dryvax-like ACAM2000 and the mouse neurovirulent Clone-3. Vaccine25(52), 8807–8832 (2007).
  • Beachkofsky TM, Carrizales SC, Bidinger JJ, Hrncir DE, Whittemore DE, Hivnor CM. Adverse events following smallpox vaccination with ACAM2000 in a military population. Arch. Dermatol.146(6), 656–661 (2010).
  • Mack TM, Noble J Jr, Thomas DB. A prospective study of serum antibody and protection against smallpox. Am. J. Trop. Med. Hyg.21(2), 214–218 (1972).
  • Sarkar J, Mitra A, Mukherjee M. The minimum protective level of antibodies in smallpox. Bull. World Health Organ.52, 307–311 (1975).
  • Frey SE, Couch RB, Tacket CO et al. Clinical responses to undiluted and diluted smallpox vaccine. N. Engl. J. Med.346(17), 1265–1274 (2002).
  • McClain DJ, Harrison S, Yeager CL et al. Immunologic responses to vaccinia vaccines administered by different parenteral routes. J. Infect. Dis.175(4), 756–763 (1997).
  • Wiser I, Balicer RD, Cohen D. An update on smallpox vaccine candidates and their role in bioterrorism related vaccination strategies. Vaccine25(6), 976–984 (2007).
  • Jang HC, Kim CJ, Kim KH et al. A randomized, double-blind, controlled clinical trial to evaluate the efficacy and safety of CJ-50300, a newly developed cell culture-derived smallpox vaccine, in healthy volunteers. Vaccine28(36), 5845–5849 (2010).
  • Kim SH, Choi SJ, Park WB et al. Detailed kinetics of immune responses to a new cell culture-derived smallpox vaccine in vaccinia-naive adults. Vaccine25(33), 6287–6291 (2007).
  • Kenner J, Cameron F, Empig C, Jobes DV, Gurwith M. LC16m8: an attenuated smallpox vaccine. Vaccine24(47–48), 7009–7022 (2006).
  • Saito T, Fujii T, Kanatani Y et al. Clinical and immunological response to attenuated tissue-cultured smallpox vaccine LC16m8. JAMA301(10), 1025–1033 (2009).
  • Meseda CA, Mayer AE, Kumar A et al. Comparative evaluation of the immune responses and protection engendered by LC16m8 and Dryvax smallpox vaccines in a mouse model. Clin. Vaccine Immunol.16(9), 1261–1271 (2009).
  • Wilck MB, Seaman MS, Baden LR et al. Safety and immunogenicity of modified vaccinia Ankara (ACAM3000): effect of dose and route of administration. J. Infect. Dis.201(9), 1361–1370 (2010).
  • Rivers TM. Cultivation of vaccine virus for Jennerian prophylaxis in man. J. Exp. Med.54(4), 453–461 (1931).
  • Rivers TM, Ward SM. Jennerian prophylaxis by means of intradermal injections of culture vaccine virus. J. Exp. Med.62(4), 549–560 (1935).
  • Kempe CH, Fulginiti V, Minamitani M, Shinefield H. Smallpox vaccination of eczema patients with a strain of attenuated live vaccinia (CVI-78). Pediatrics42(6), 980–985 (1968).
  • Kempe CH. Smallpox vaccination of eczema patients with attenuated live vaccinia virus. Yale J. Biol. Med.41, 1–12 (1968).
  • Jerome KR. Lennette’s Laboratory Diagnosis of Viral Infections, 4th Edition. Informa Healthcare, New York, NY, USA (2010).
  • Speers WC, Wesley RB, Neff JM, Goldstein J, Lourie B. Evaluation of two kinds of smallpox vaccine: CVI-78 and calf lymph vaccine. II. Clinical and serologic observations of response to revaccination with calf lymph vaccine. Pediatr. Res.9(8), 628–632 (1975).
  • Wesley RB, Speers WC, Neff JM, Ruben FL, Lourie B. Evaluation of two kinds of smallpox vaccine: CVI-78 and calf lymph vaccine. I. Clinical and serologic response to primary vaccination. Pediatr. Res.9(8), 624–628 (1975).
  • Antoine G, Scheiflinger F, Dorner F, Falkner FG. The complete genomic sequence of the modified vaccinia Ankara strain: comparison with other orthopoxviruses. Virology244(2), 365–396 (1998).
  • Mayr A. Smallpox vaccination and bioterrorism with pox viruses. Comp. Immunol. Microbiol. Infect. Dis.26(5–6), 423–430 (2003).
  • Meyer H, Sutter G, Mayr A. Mapping of deletions in the genome of the highly attenuated vaccinia virus MVA and their influence on virulence. J. Gen. Virol.72(5), 1031–1038 (1991).
  • Stittelaar KJ, Osterhaus ADME. MVA: a cuckoo in the vaccine nest? Vaccine19(27), V–VI (2001).
  • Kennedy JS, Greenberg RN. IMVAMUNE: modified vaccinia Ankara strain as an attenuated smallpox vaccine. Expert Rev. Vaccines8(1), 13–24 (2009).
  • Frey SE, Newman FK, Kennedy JS et al. Clinical and immunologic responses to multiple doses of IMVAMUNE (Modified Vaccinia Ankara) followed by Dryvax challenge. Vaccine25(51), 8562–8573 (2007).
  • Parrino J, McCurdy LH, Larkin BD et al. Safety, immunogenicity and efficacy of modified vaccinia Ankara (MVA) against Dryvax® challenge in vaccinia-naive and vaccinia-immune individuals. Vaccine25(8), 1513–1525 (2007).
  • Vollmar J, Arndtz N, Eckl KM et al. Safety and immunogenicity of IMVAMUNE, a promising candidate as a third generation smallpox vaccine. Vaccine24(12), 2065–2070 (2006).
  • Seaman MS, Wilck MB, Baden LR et al. Effect of vaccination with modified vaccinia Ankara (ACAM3000) on subsequent challenge with Dryvax. J. Infect. Dis.201(9), 1353–1360 (2010).
  • von Krempelhuber A, Vollmar J, Pokorny R et al. A randomized, double-blind, dose-finding Phase II study to evaluate immunogenicity and safety of the third generation smallpox vaccine candidate IMVAMUNE. Vaccine28(5), 1209–1216 (2010).
  • Meisinger-Henschel C, Schmidt M, Lukassen S et al. Genomic sequence of chorioallantois vaccinia virus Ankara, the ancestor of modified vaccinia virus Ankara. J. Gen. Virol.88(12), 3249–3259 (2007).
  • Blanchard TJ, Alcami A, Andrea P, Smith GL. Modified vaccinia virus Ankara undergoes limited replication in human cells and lacks several immunomodulatory proteins: implications for use as a human vaccine. J. Gen. Virol.79(5), 1159–1167 (1998).
  • Carroll MW, Moss B. Host range and cytopathogenicity of the highly attenuated MVA strain of vaccinia virus: propagation and generation of recombinant viruses in a nonhuman mammalian cell line. Virology238(2), 198–211 (1997).
  • Sutter G, Moss B. Nonreplicating vaccinia vector efficiently expresses recombinant genes. Proc. Natl Acad. Sci. USA89(22), 10847–10851 (1992).
  • Perkus ME, Tartaglia J, Paoletti E. Poxvirus-based vaccine candidates for cancer, AIDS, and other infectious diseases. J. Leukoc. Biol.58(1), 1–13 (1995).
  • Gomez CE, Najera JL, Krupa M, Esteban M. The poxvirus vectors MVA and NYVAC as gene delivery systems for vaccination against infectious diseases and cancer. Curr. Gene Ther.8(2), 97–120 (2008).
  • Acres B, Bonnefoy JY. Clinical development of MVA-based therapeutic cancer vaccines. Expert Rev. Vaccines7(7), 889–893 (2008).
  • Tykodi SS, Thompson JA. Development of modified vaccinia Ankara-5T4 as specific immunotherapy for advanced human cancer. Expert Opin. Biol. Ther.8(12), 1947–1953 (2008).
  • Damon IK, Davidson WB, Hughes CM et al. Evaluation of smallpox vaccines using variola neutralization. J. Gen. Virol.90(Pt 8), 1962–1966 (2009).
  • Greenberg R, Von Krempelhuber A, Arndtz N et al. The third generation smallpox vaccine IMVAMUNE®: update on the clinical immunogenicity. XVIII International Poxvirus, Asfivirus, and Iridovirus Symposium. Sedona, AZ. (2010).
  • Mackett M, Smith GL, Moss B. Vaccinia virus: a selectable eukaryotic cloning and expression vector. Proc. Natl Acad. Sci. USA79(23), 7415–7419 (1982).
  • Panicali D, Paoletti E. Construction of poxviruses as cloning vectors: insertion of the thymidine kinase gene from herpes simplex virus into the DNA of infectious vaccinia virus. Proc. Natl Acad. Sci. USA79(16), 4927–4931 (1982).
  • Johnston JB, McFadden G. Technical knockout: understanding poxvirus pathogenesis by selectively deleting viral immunomodulatory genes. Cell Microbiol.6(8), 695–705 (2004).
  • Pastoret PP, Brochier B. The development and use of a vaccinia-rabies recombinant oral vaccine for the control of wildlife rabies; a link between Jenner and Pasteur. Epidemiol. Infect.116(3), 235–240 (1996).
  • Hanlon CA, Niezgoda M, Hamir AN, Schumacher C, Koprowski H, Rupprecht CE. First North American field release of a vaccinia-rabies glycoprotein recombinant virus. J. Wildl. Dis.34(2), 228–239 (1998).
  • Slate D, Algeo TP, Nelson KM et al. Oral rabies vaccination in North America: opportunities, complexities, and challenges. PLoS Negl. Trop. Dis.3(12), e549 (2009).
  • Human vaccinia infection after contact with a raccoon rabies vaccine bait – Pennsylvania, 2009. MMWR Morb. Mortal. Wkly Rep.58(43), 1204–1207 (2009).
  • Rupprecht CE, Blass L, Smith K et al. Human infection due to recombinant vaccinia-rabies glycoprotein virus. N. Engl. J. Med.345(8), 582–586 (2001).
  • Kantoff PW, Schuetz TJ, Blumenstein BA et al. Overall survival analysis of a Phase II randomized controlled trial of a poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J. Clin. Oncol.28(7), 1099–1105 (2010).
  • Hanke T, Goonetilleke N, McMichael AJ, Dorrell L. Clinical experience with plasmid DNA- and modified vaccinia virus Ankara-vectored human immunodeficiency virus type 1 clade A vaccine focusing on T-cell induction. J. Gen. Virol.88(Pt 1), 1–12 (2007).
  • Mwau M, Cebere I, Sutton J et al. A human immunodeficiency virus 1 (HIV-1) clade A vaccine in clinical trials: stimulation of HIV-specific T-cell responses by DNA and recombinant modified vaccinia virus Ankara (MVA) vaccines in humans. J. Gen. Virol.85(Pt 4), 911–919 (2004).
  • Cebere I, Dorrell L, McShane H et al. Phase I clinical trial safety of DNA- and modified virus Ankara-vectored human immunodeficiency virus type 1 (HIV-1) vaccines administered alone and in a prime–boost regime to healthy HIV-1-uninfected volunteers. Vaccine24(4), 417–425 (2006).
  • Guimaraes-Walker A, Mackie N, McCormack S et al. Lessons from IAVI-006, a Phase I clinical trial to evaluate the safety and immunogenicity of the pTHr.HIVA DNA and MVA.HIVA vaccines in a prime–boost strategy to induce HIV-1 specific T-cell responses in healthy volunteers. Vaccine26(51), 6671–6677 (2008).
  • Goonetilleke N, Moore S, Dally L et al. Induction of multifunctional human immunodeficiency virus type 1 (HIV-1)-specific T cells capable of proliferation in healthy subjects by using a prime–boost regimen of DNA- and modified vaccinia virus Ankara-vectored vaccines expressing HIV-1 Gag coupled to CD8+ T-cell epitopes. J. Virol.80(10), 4717–4728 (2006).
  • Dorrell L, Yang H, Ondondo B et al. Expansion and diversification of virus-specific T cells following immunization of human immunodeficiency virus type 1 (HIV-1)-infected individuals with a recombinant modified vaccinia virus Ankara/HIV-1 Gag vaccine. J. Virol.80(10), 4705–4716 (2006).
  • Goepfert PA, Elizaga M, Sato A et al. Phase 1 safety and immunogenicity testing of DNA and recombinant modified vaccinia Ankara vaccines expressing HIV-1 virus-like particles. J. Infect. Dis.203(5), 610–619 (2011).
  • Ibanga HB, Brookes RH, Hill PC et al. Early clinical trials with a new tuberculosis vaccine, MVA85A, in tuberculosis-endemic countries: issues in study design. Lancet Infect. Dis.6(8), 522–528 (2006).
  • McShane H, Pathan AA, Sander CR et al. Recombinant modified vaccinia virus Ankara expressing antigen 85A boosts BCG-primed and naturally acquired antimycobacterial immunity in humans. Nat. Med.10(11), 1240–1244 (2004).
  • Webster DP, Dunachie S, Vuola JM et al. Enhanced T cell-mediated protection against malaria in human challenges by using the recombinant poxviruses FP9 and modified vaccinia virus Ankara. Proc. Natl Sci. USA102(13), 4836–4841 (2005).
  • Bejon P, Mwacharo J, Kai O et al. A Phase 2b randomised trial of the candidate malaria vaccines FP9 ME-TRAP and MVA ME-TRAP among children in Kenya. PLoS Clin. Trials1(6), e29 (2006).
  • Bejon P, Ogada E, Mwangi T et al. Extended follow-up following a Phase 2b randomized trial of the candidate malaria vaccines FP9 ME-TRAP and MVA ME-TRAP among children in Kenya. PLoS ONE2(1), e707 (2007).
  • Amato RJ. 5T4-modified vaccinia Ankara: progress in tumor-associated antigen-based immunotherapy. Expert Opin. Biol. Ther.10(2), 281–287 (2010).
  • Park BH, Hwang T, Liu TC et al. Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a Phase I trial. Lancet Oncol.9(6), 533–542 (2008).
  • Zemp FJ, Corredor JC, Lun X, Muruve DA, Forsyth PA. Oncolytic viruses as experimental treatments for malignant gliomas: using a scourge to treat a devil. Cytokine Growth Factor Rev.21(2–3), 103–117 (2010).
  • Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat. Med.10(9), 909–915 (2004).
  • Boon T, Coulie PG, Van den Eynde BJ, van der Bruggen P. Human T cell responses against melanoma. Annu. Rev. Immunol.24, 175–208 (2006).
  • Smith CL, Dunbar PR, Mirza F et al. Recombinant modified vaccinia Ankara primes functionally activated CTL specific for a melanoma tumor antigen epitope in melanoma patients with a high risk of disease recurrence. Int. J. Cancer113(2), 259–266 (2005).
  • Dangoor A, Lorigan P, Keilholz U et al. Clinical and immunological responses in metastatic melanoma patients vaccinated with a high-dose poly-epitope vaccine. Cancer Immunol. Immunother.59(6), 863–873 (2010).
  • Smith CL, Mirza F, Pasquetto V et al. Immunodominance of poxviral-specific CTL in a human trial of recombinant-modified vaccinia Ankara. J. Immunol.175(12), 8431–8437 (2005).
  • Garber DA, O’Mara LA, Zhao J, Gangadhara S, An I, Feinberg MB. Expanding the repertoire of Modified Vaccinia Ankara-based vaccine vectors via genetic complementation strategies. PLoS ONE4(5), e5445 (2009).
  • Tartaglia J, Perkus ME, Taylor J et al. NYVAC: a highly attenuated strain of vaccinia virus. Virology188(1), 217–232 (1992).
  • Ockenhouse CF, Sun PF, Lanar DE et al. Phase I/IIa safety, immunogenicity, and efficacy trial of NYVAC-Pf7, a pox-vectored, multiantigen, multistage vaccine candidate for Plasmodium falciparum malaria. J. Infect. Dis.177(6), 1664–1673 (1998).
  • Bart PA, Goodall R, Barber T et al. EV01: a Phase I trial in healthy HIV negative volunteers to evaluate a clade C HIV vaccine, NYVAC-C undertaken by the EuroVacc Consortium. Vaccine26(25), 3153–3161 (2008).
  • Sheppard NC, Bates AC, Sattentau QJ. A functional human IgM response to HIV-1 Env after immunization with NYVAC HIV C. AIDS21(4), 524–527 (2007).
  • McCormack S, Stohr W, Barber T et al. EV02: a Phase I trial to compare the safety and immunogenicity of HIV DNA-C prime-NYVAC-C boost to NYVAC-C alone. Vaccine26(25), 3162–3174 (2008).
  • Harari A, Bart PA, Stohr W et al. An HIV-1 clade C DNA prime, NYVAC boost vaccine regimen induces reliable, polyfunctional, and long-lasting T cell responses. J. Exp. Med.205(1), 63–77 (2008).
  • Levy Y, Ellefsen K, Stöehr W et al. Optimal priming of poxvirus vector (NYVAC)-based HIV vaccine regimens requires 3 DNA injections. Results of the randomized multicentre EV03/ANRS Vac20 Phase I/II Trial. Presented at: 17th Conference on Retroviruses and Opportunistic Infections. San Francisco, CA, USA, 16–19 February 2010.
  • Asmuth DM, Brown EL, DiNubile MJ et al. Comparative cell-mediated immunogenicity of DNA/DNA, DNA/adenovirus type 5 (Ad5), or Ad5/Ad5 HIV-1 clade B gag vaccine prime–boost regimens. J. Infect. Dis.201(1), 132–141 (2010).
  • Esteban M. Attenuated poxvirus vectors MVA and NYVAC as promising vaccine candidates against HIV/AIDS. Hum. Vaccin.5(12), 867–871 (2009).
  • Nalca A, Zumbrun EE. ACAM2000: the new smallpox vaccine for United States Strategic National Stockpile. Drug Des. Devel. Ther.4, 71–79 (2010).
  • Gomez CE, Najera JL, Jimenez EP et al. Head-to-head comparison on the immunogenicity of two HIV/AIDS vaccine candidates based on the attenuated poxvirus strains MVA and NYVAC co-expressing in a single locus the HIV-1BX08 gp120 and HIV-1(IIIB) Gag-Pol-Nef proteins of clade B. Vaccine25(15), 2863–2885 (2007).
  • Mooij P, Balla-Jhagjhoorsingh SS, Koopman G et al. Differential CD4+ versus CD8+ T-cell responses elicited by different poxvirus-based human immunodeficiency virus type 1 vaccine candidates provide comparable efficacies in primates. J. Virol.82(6), 2975–2988 (2008).
  • Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N. Engl. J. Med.361(23), 2209–2220 (2009).
  • Greenough TC, Cunningham CK, Muresan P et al. Safety and immunogenicity of recombinant poxvirus HIV-1 vaccines in young adults on highly active antiretroviral therapy. Vaccine26(52), 6883–6893 (2008).
  • Harrer E, Bauerle M, Ferstl B et al. Therapeutic vaccination of HIV-1-infected patients on HAART with a recombinant HIV-1 nef-expressing MVA: safety, immunogenicity and influence on viral load during treatment interruption. Antivir. Ther.10(2), 285–300 (2005).
  • Ramanathan VD, Kumar M, Mahalingam J et al. A Phase 1 study to evaluate the safety and immunogenicity of a recombinant HIV type 1 subtype C-modified vaccinia Ankara virus vaccine candidate in Indian volunteers. AIDS Res. Hum. Retroviruses25(11), 1107–1116 (2009).
  • Currier JR, Ngauy V, de Souza MS et al. Phase I safety and immunogenicity evaluation of MVA-CMDR, a multigenic, recombinant modified vaccinia Ankara-HIV-1 vaccine candidate. PLoS ONE5(11), e13983 (2010).
  • Amato RJ, Hawkins RE, Kaufman HL et al. Vaccination of metastatic renal cancer patients with MVA-5T4: a randomized, double-blind, placebo-controlled Phase III study. Clin. Cancer Res.16(22), 5539–5547 (2010).
  • Harrop R, Shingler W, Kelleher M, de Belin J, Treasure P. Cross-trial analysis of immunologic and clinical data resulting from Phase I and II trials of MVA-5T4 (TroVax) in colorectal, renal, and prostate cancer patients. J. Immunother.33(9), 999–1005 (2010).
  • Carvajal AA, de la Garza A, Cruz Quiroz BJ et al. MVA E2 recombinant vaccine in the treatment of human papillomavirus infection in men presenting intraurethral flat condyloma: a Phase I/II study. BioDrugs21(1), 47–59 (2007).
  • Garcia-Hernandez E, Gonzalez-Sanchez JL, Andrade-Manzano A et al. Regression of papilloma high-grade lesions (CIN 2 and CIN 3) is stimulated by therapeutic vaccination with MVA E2 recombinant vaccine. Cancer Gene Ther.13(6), 592–597 (2006).
  • Berthoud TK, Hamill M, Lillie PJ et al. Potent CD8+ T-cell immunogenicity in humans of a novel heterosubtypic influenza A vaccine, MVA-NP+M1. Clin. Infect. Dis.52(1), 1–7 (2011).
  • Arlen PM, Pazdur M, Skarupa L, Rauckhorst M, Gulley JL. A randomized Phase II study of docetaxel alone or in combination with PANVAC-V (vaccinia) and PANVAC-F (fowlpox) in patients with metastatic breast cancer (NCI 05-C-0229). Clin. Breast Cancer7(2), 176–179 (2006).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.