197
Views
24
CrossRef citations to date
0
Altmetric
Review

Outlining novel cellular adjuvant products for therapeutic vaccines against cancer

&
Pages 1207-1220 | Published online: 09 Jan 2014

References

  • Rosenberg S, Yang J, Restifo N. Cancer immunotherapy: moving beyond current vaccines. Nat. Med.10(9), 909–915 (2004).
  • Palena C, Schlom J. Vaccines against human carcinomas: strategies to improve antitumor immune responses. J. Biomed. Biotechnol. DOI:10.1155/2010/380697 (2010) (Epub ahead of print).
  • Vangasseri DP, Cui Z, Chen W, Hokey DA, Falo LD, Huang L. Immunostimulation of dendritic cells by cationic liposomes. Mol. Membr. Biol.23(5), 385–395 (2006).
  • Schijns VE. Immunological concepts of vaccine adjuvant activity. Curr. Opin. Immunol.12(4), 456–463 (2000).
  • O’Hagan DT, De Gregorio E. The path to a successful vaccine adjuvant – ‘the long and winding road’. Drug Discov. Today14(11–12), 541–551 (2009).
  • Coffman RL, Sher A, Seder RA. Vaccine adjuvants: putting innate immunity to work. Immunity33(4), 492–503 (2010).
  • Tritto E, Mosca F, De Gregorio E. Mechanism of action of licensed vaccine adjuvants. Vaccine27(25–26), 3331–3334 (2009).
  • Li H, Nookala S, Re F. Aluminum hydroxide adjuvants activate caspase-1 and induce IL-1β and IL-18 release. J. Immunol.178(8), 5271–5276 (2007).
  • Gavin AL, Hoebe K, Duong B et al. Adjuvant-enhanced antibody responses in the absence of Toll-like receptor signaling. Science314(5807), 1936–1938 (2006).
  • Didierlaurent AM, Morel S, Lockman L et al. AS04, an aluminum salt- and TLR4 agonist-based adjuvant system, induces a transient localized innate immune response leading to enhanced adaptive immunity. J. Immunol.183(10), 6186–6197 (2009).
  • Schirmbeck R, Melber K, Mertens T, Reimann J. Antibody and cytotoxic T-cell responses to soluble hepatitis B virus (HBV) S antigen in mice: implication for the pathogenesis of HBV-induced hepatitis. J. Virol.68(3), 1418–1425 (1994).
  • Traquina P, Morandi M, Contorni M, Van Nest G. MF59 adjuvant enhances the antibody response to recombinant hepatitis B surface antigen vaccine in primates. J. Infect. Dis.174(6), 1168–1175 (1996).
  • Brewer J, Conacher M, Satoskar A, Bluethmann H, Alexander J. In interleukin-4-deficient mice, alum not only generates T helper 1 responses equivalent to Freund’s complete adjuvant, but continues to induce T helper 2 cytokine production. Eur. J. Immunol.26(9), 2062–2066 (1996).
  • Hamid O, Solomon J, Scotland R et al. Alum with interleukin-12 augments immunity to a melanoma peptide vaccine: correlation with time to relapse in patients with resected high-risk disease. Clin. Cancer Res.13(1), 215–222 (2007).
  • Audibert F, Lise L. Adjuvants: current status, clinical perspectives and future prospects. Immunol. Today14(6), 281–284 (1993).
  • Kawai T, Akira S. TLR signaling. Semin. Immunol.19(1), 24–32 (2007).
  • Medzhitov R, Janeway CA. Innate immunity: impact on the adaptive immune response. Curr. Opin. Immunol.9(1), 4–9 (1997).
  • van Duin D, Medzhitov R, Shaw AC. Triggering TLR signaling in vaccination. Trends Immunol.27(1), 49–55 (2006).
  • Heikenwalder M, Polymenidou M, Junt T et al. Lymphoid follicle destruction and immunosuppression after repeated CpG oligodeoxynucleotide administration. Nat. Med.10(2), 187–192 (2004).
  • Soliman H, Mediavilla-Varela M, Antonia S. Indoleamine 2,3-dioxygenase: is it an immune suppressor? Cancer J.16(4), 354–359 (2010).
  • Herr H, Morales A. History of bacillus Calmette–Guerin and bladder cancer: an immunotherapy success story. J. Urol.179(1), 53–56 (2008).
  • Kumar H, Kawai T, Akira S. Pathogen recognition in the innate immune response. Biochem. J.420(1), 1–16 (2009).
  • Mosolits S, Nilsson B, Mellstedt H. Towards therapeutic vaccines for colorectal carcinoma: a review of clinical trials. Expert Rev. Vaccines4(3), 329–350 (2005).
  • Kadison AS, Morton DL. Immunotherapy of malignant melanoma. Surg. Clin. North Am.83(2), 343–370 (2003).
  • Morton D, Hsueh E, Essner R et al. Prolonged survival of patients receiving active immunotherapy with Canvaxin therapeutic polyvalent vaccine after complete resection of melanoma metastatic to regional lymph nodes. Ann. Surg.236(4), 438–448; discussion 448–439 (2002).
  • Hsueh EC, Essner R, Foshag LJ et al. Prolonged survival after complete resection of disseminated melanoma and active immunotherapy with a therapeutic cancer vaccine. J. Clin. Oncol.20(23), 4549–4554 (2002).
  • Hsueh E, Gupta R, Qi K, Morton D. Correlation of specific immune responses with survival in melanoma patients with distant metastases receiving polyvalent melanoma cell vaccine. J. Clin. Oncol.16(9), 2913–2920 (1998).
  • Morton DL, Mozzillo N, Thompson MC et al. An international, randomized, Phase III trial of bacillus Calmette–Guerin (BCG) plus allogeneic melanoma vaccine (MCV) or placebo after complete resection of melanoma metastatic to regional or distant sites. ASCO Annual Meeting Proceedings. J. Clin. Oncol.25(18 Suppl.), Part I (2007).
  • Hoover HJ, Brandhorst J, Peters L et al. Adjuvant active specific immunotherapy for human colorectal cancer: 6.5-year median follow-up of a Phase III prospectively randomized trial. J. Clin. Oncol.11(3), 390–399 (1993).
  • Harris J, Ryan L, Hoover HJ et al. Adjuvant active specific immunotherapy for stage II and III colon cancer with an autologous tumor cell vaccine: Eastern Cooperative Oncology Group Study E5283. J. Clin. Oncol.18(1), 148–157 (2000).
  • Vermorken J, Claessen A, van Tinteren H et al. Active specific immunotherapy for stage II and stage III human colon cancer: a randomised trial. Lancet353(9150), 345–350 (1999).
  • Uyl-de Groot C, Vermorken J, Hanna MJ et al. Immunotherapy with autologous tumor cell-BCG vaccine in patients with colon cancer: a prospective study of medical and economic benefits. Vaccine23(17–18), 2379–2387 (2005).
  • Hanna MJ, Hoover HJ, Vermorken J, Harris J, Pinedo H. Adjuvant active specific immunotherapy of stage II and stage III colon cancer with an autologous tumor cell vaccine: first randomized Phase III trials show promise. Vaccine19(17–19), 2576–2582 (2001).
  • Livingston P, Wong G, Adluri S et al. Improved survival in stage III melanoma patients with GM2 antibodies: a randomized trial of adjuvant vaccination with GM2 ganglioside. J. Clin. Oncol.12(5), 1036–1044 (1994).
  • Chapman P, Morrissey D, Panageas K et al. Induction of antibodies against GM2 ganglioside by immunizing melanoma patients using GM2-keyhole limpet hemocyanin + QS21 vaccine: a dose–response study. Clin. Cancer Res.6(3), 874–879 (2000).
  • Yao T, Begg C, Livingston P. Optimal sample size for a series of pilot trials of new agents. Biometrics52(3), 992–1001 (1996).
  • Zhang S, Cordon-Cardo C, Zhang H et al. Selection of tumor antigens as targets for immune attack using immunohistochemistry: I. Focus on gangliosides. Int. J. Cancer73(1), 42–49 (1997).
  • Kirkwood J, Ibrahim J, Sosman J et al. High-dose interferon α-2b significantly prolongs relapse-free and overall survival compared with the GM2-KLH/QS-21 vaccine in patients with resected stage IIB-III melanoma: results of intergroup trial E1694/S9512/C509801. J. Clin. Oncol.19(9), 2370–2380 (2001).
  • Eggermont AM, Suciu S, Ruka W et al. EORTC 18961: post-operative adjuvant ganglioside GM2-KLH21 vaccination treatment vs observation in stage II (T3-T4N0M0) melanoma: 2nd interim analysis led to an early disclosure of the results. J. Clin. Oncol.26(Suppl.), Abstract 9004 (2008).
  • Tomai M, Johnson A. T cell and interferon-γ involvement in the adjuvant action of a detoxified endotoxin. J. Biol. Response Mod.8(6), 625–643 (1989).
  • Schwarz T. Clinical update of the AS04-adjuvanted human papillomavirus-16/18 cervical cancer vaccine, Cervarix. Adv. Ther.26(11), 983–998 (2009).
  • Brichard V, Lejeune D. GSK’s antigen-specific cancer immunotherapy programme: pilot results leading to Phase III clinical development. Vaccine25(Suppl. 2), B61–B71 (2007).
  • Kruit WH. Immunization with recombinant MAGE-A3 protein combined with adjuvant systems AS15 or AS02B in patients with unresectable and progressive metastatic cutaneous melanoma: a randomized open-label Phase II study of the EORTC Melanoma Group. J. Clin. Oncol.26(Suppl.), Abstract 9065 (2008).
  • Butts C, Murray N, Maksymiuk A et al. Randomized Phase IIB trial of BLP25 liposome vaccine in stage IIIB and IV non-small-cell lung cancer. J. Clin. Oncol.23(27), 6674–6681 (2005).
  • Palmer M, Parker J, Modi S et al. Phase I study of the BLP25 (MUC1 peptide) liposomal vaccine for active specific immunotherapy in stage IIIB/IV non-small-cell lung cancer. Clin. Lung Cancer3(1), 49–57; discussion 58 (2001).
  • Baldwin S, Shaverdian N, Goto Y et al. Enhanced humoral and Type 1 cellular immune responses with Fluzone adjuvanted with a synthetic TLR4 agonist formulated in an emulsion. Vaccine27(43), 5956–5963 (2009).
  • Mitchell M, Kan-Mitchell J, Kempf R, Harel W, Shau H, Lind S. Active specific immunotherapy for melanoma: Phase I trial of allogeneic lysates and a novel adjuvant. Cancer Res.48(20), 5883–5893 (1988).
  • Eton O, Kharkevitch D, Gianan M et al. Active immunotherapy with ultraviolet B-irradiated autologous whole melanoma cells plus DETOX in patients with metastatic melanoma. Clin. Cancer Res.4(3), 619–627 (1998).
  • Mitchell M. Immunotherapy as part of combinations for the treatment of cancer. Int. Immunopharmacol.3(8), 1051–1059 (2003).
  • Sondak V, Liu P, Tuthill R et al. Adjuvant immunotherapy of resected, intermediate-thickness, node-negative melanoma with an allogeneic tumor vaccine: overall results of a randomized trial of the Southwest Oncology Group. J. Clin. Oncol.20(8), 2058–2066 (2002).
  • Sosman J, Unger J, Liu P et al. Adjuvant immunotherapy of resected, intermediate-thickness, node-negative melanoma with an allogeneic tumor vaccine: impact of HLA class I antigen expression on outcome. J. Clin. Oncol.20(8), 2067–2075 (2002).
  • Sosman J, Sondak V. Melacine: an allogeneic melanoma tumor cell lysate vaccine. Expert Rev. Vaccines2(3), 353–368 (2003).
  • Mitchell M, Harel W, Groshen S. Association of HLA phenotype with response to active specific immunotherapy of melanoma. J. Clin. Oncol.10(7), 1158–1164 (1992).
  • Mitchell M, Abrams J, Thompson J et al. Randomized trial of an allogeneic melanoma lysate vaccine with low-dose interferon α-2b compared with high-dose interferon α-2b for resected stage III cutaneous melanoma. J. Clin. Oncol.25(15), 2078–2085 (2007).
  • MacLean G, Reddish M, Koganty R et al. Immunization of breast cancer patients using a synthetic sialyl-Tn glycoconjugate plus Detox adjuvant. Cancer Immunol. Immunother.36(4), 215–222 (1993).
  • Holmberg L, Oparin D, Gooley T et al. Clinical outcome of breast and ovarian cancer patients treated with high-dose chemotherapy, autologous stem cell rescue and THERATOPE STn-KLH cancer vaccine. Bone Marrow Transplant.25(12), 1233–1241 (2000).
  • Holmberg L, Oparin D, Gooley T, Sandmaier B. The role of cancer vaccines following autologous stem cell rescue in breast and ovarian cancer patients: experience with the STn-KLH vaccine (Theratope). Clin. Breast Cancer3(Suppl. 4), S144–S151 (2003).
  • Holmberg L, Sandmaier B. Vaccination with Theratope (STn-KLH) as treatment for breast cancer. Expert Rev. Vaccines3(6), 655–663 (2004).
  • Kato H, Takeuchi O, Sato S et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature441(7089), 101–105 (2006).
  • Schulz O, Diebold S, Chen M et al. Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature433(7028), 887–892 (2005).
  • Adams M, Navabi H, Jasani B et al. Dendritic cell (DC) based therapy for cervical cancer: use of DC pulsed with tumour lysate and matured with a novel synthetic clinically non-toxic double stranded RNA analogue poly ‘I]:poly ‘C(12)U] (Ampligen R). Vaccine21(7–8), 787–790 (2003).
  • Choe J, Kelker M, Wilson I. Crystal structure of human Toll-like receptor 3 (TLR3) ectodomain. Science309(5734), 581–585 (2005).
  • Ewel C, Urba W, Kopp W et al. Polyinosinic-polycytidylic acid complexed with poly-L-lysine and carboxymethylcellulose in combination with interleukin 2 in patients with cancer: clinical and immunological effects. Cancer Res.52(11), 3005–3010 (1992).
  • Giantonio B, Hochster H, Blum R et al. Toxicity and response evaluation of the interferon inducer poly ICLC administered at low dose in advanced renal carcinoma and relapsed or refractory lymphoma: a report of two clinical trials of the Eastern Cooperative Oncology Group. Invest. New Drugs19(1), 89–92 (2001).
  • Gitlin L, Barchet W, Gilfillan S et al. Essential role of MDA-5 in type I IFN responses to polyriboinosinic: polyribocytidylic acid and encephalomyocarditis picornavirus. Proc. Natl Acad. Sci. USA103(22), 8459–8464 (2006).
  • Kawai T, Akira S. Innate immune recognition of viral infection. Nat. Immunol.7(2), 131–137 (2006).
  • Mailliard R, Wankowicz-Kalinska A, Cai Q et al. α-type-1 polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity. Cancer Res.64(17), 5934–5937 (2004).
  • Uematsu S, Akira S. Toll-like receptors and type I interferons. J. Biol. Chem.282(21), 15319–15323 (2007).
  • Yoneyama M, Kikuchi M, Natsukawa T et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol.5(7), 730–737 (2004).
  • Marshall-Clarke S, Downes J, Haga I et al. Polyinosinic acid is a ligand for Toll-like receptor 3. J. Biol. Chem.282(34), 24759–24766 (2007).
  • Zhu X, Nishimura F, Sasaki K et al. Toll like receptor-3 ligand poly-ICLC promotes the efficacy of peripheral vaccinations with tumor antigen-derived peptide epitopes in murine CNS tumor models. J. Transl. Med.5, 10 (2007).
  • Gibson S, Lindh J, Riter T et al. Plasmacytoid dendritic cells produce cytokines and mature in response to the TLR7 agonists, imiquimod and resiquimod. Cell Immunol.218(1–2), 74–86 (2002).
  • Lee J, Chuang T, Redecke V et al. Molecular basis for the immunostimulatory activity of guanine nucleoside analogs: activation of Toll-like receptor 7. Proc. Natl Acad. Sci. USA100(11), 6646–6651 (2003).
  • Sauder DN, Smith MH, Senta-McMillian T, Soria I, Meng TC. Randomized, single-blind, placebo-controlled study of topical application of the immune response modulator resiquimod in healthy adults. Antimicrob. Agents Chemother.47(12), 3846–3852 (2003).
  • Matthews W, Jordan C, Wiegand G, Pardoll D, Lemischka I. A receptor tyrosine kinase specific to hematopoietic stem and progenitor cell-enriched populations. Cell65(7), 1143–1152 (1991).
  • Lynch D, Andreasen A, Maraskovsky E, Whitmore J, Miller R, Schuh J. Flt3 ligand induces tumor regression and antitumor immune responses in vivo. Nat. Med.3(6), 625–631 (1997).
  • Marroquin C, Westwood J, Lapointe R et al. Mobilization of dendritic cell precursors in patients with cancer by flt3 ligand allows the generation of higher yields of cultured dendritic cells. J. Immunother.25(3), 278–288 (2002).
  • Cui Y, Kelleher E, Straley E et al. Immunotherapy of established tumors using bone marrow transplantation with antigen gene-modified hematopoietic stem cells. Nat. Med.9(7), 952–958 (2003).
  • Furumoto K, Soares L, Engleman E, Merad M. Induction of potent antitumor immunity by in situ targeting of intratumoral DCs. J. Clin. Invest.113(5), 774–783 (2004).
  • Chen W, Chan A, Dawson A, Liang X, Blazar B, Miller J. FLT3 ligand administration after hematopoietic cell transplantation increases circulating dendritic cell precursors that can be activated by CpG oligodeoxynucleotides to enhance T-cell and natural killer cell function. Biol. Blood Marrow Transplant.11(1), 23–34 (2005).
  • Davis I, Chen Q, Morris L et al. Blood dendritic cells generated with Flt3 ligand and CD40 ligand prime CD8+ T cells efficiently in cancer patients. J. Immunother.29(5), 499–511 (2006).
  • Shackleton M, Davis ID, Hopkins W et al. The impact of imiquimod, a Toll-like receptor-7 ligand (TLR7L), on the immunogenicity of melanoma peptide vaccination with adjuvant Flt3 ligand. Cancer Immun.4, 9 (2004).
  • Adams S, O’Neill D, Nonaka D et al. Immunization of malignant melanoma patients with full-length NY-ESO-1 protein using TLR7 agonist imiquimod as vaccine adjuvant. J. Immunol.181(1), 776–784 (2008).
  • Scheel B, Aulwurm S, Probst J et al. Therapeutic anti-tumor immunity triggered by injections of immunostimulating single-stranded RNA. Eur. J. Immunol.36(10), 2807–2816 (2006).
  • Dudek A, Yunis C, Harrison L et al. First in human Phase I trial of 852A, a novel systemic Toll-like receptor 7 agonist, to activate innate immune responses in patients with advanced cancer. Clin. Cancer Res.13(23), 7119–7125 (2007).
  • Dummer R, Hauschild A, Becker J et al. An exploratory study of systemic administration of the Toll-like receptor-7 agonist 852A in patients with refractory metastatic melanoma. Clin. Cancer Res.14(3), 856–864 (2008).
  • Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol.2(8), 675–680 (2001).
  • Weiner G, Liu H, Wooldridge J, Dahle C, Krieg A. Immunostimulatory oligodeoxynucleotides containing the CpG motif are effective as immune adjuvants in tumor antigen immunization. Proc. Natl Acad. Sci. USA94(20), 10833–10837 (1997).
  • Krieg A. Antitumor applications of stimulating Toll-like receptor 9 with CpG oligodeoxynucleotides. Curr. Oncol. Rep.6(2), 88–95 (2004).
  • Speiser D, Liénard D, Rufer N et al. Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J. Clin. Invest.115(3), 739–746 (2005).
  • Appay V, Jandus C, Voelter V et al. New generation vaccine induces effective melanoma-specific CD8+ T cells in the circulation but not in the tumor site. J. Immunol.177(3), 1670–1678 (2006).
  • Valmori D, Souleimanian N, Tosello V et al. Vaccination with NY-ESO-1 protein and CpG in Montanide induces integrated antibody/Th1 responses and CD8 T cells through cross-priming. Proc. Natl Acad. Sci. USA104(21), 8947–8952 (2007).
  • Haining W, Davies J, Kanzler H et al. CpG oligodeoxynucleotides alter lymphocyte and dendritic cell trafficking in humans. Clin. Cancer Res.14(17), 5626–5634 (2008).
  • Sun H, Xie Y, Ye Y. Advances in saponin-based adjuvants. Vaccine27(12), 1787–1796 (2009).
  • Sun H, Xie Y, Ye Y. ISCOMs and ISCOMATRIX. Vaccine27(33), 4388–4401 (2009).
  • Kensil C. Saponins as vaccine adjuvants. Crit. Rev. Ther. Drug Carrier Syst.13(1–2), 1–55 (1996).
  • Allison A, Byars N. Immunological adjuvants: desirable properties and side-effects. Mol. Immunol.28(3), 279–284 (1991).
  • Takahashi H, Takeshita T, Morein B, Putney S, Germain R, Berzofsky J. Induction of CD8+ cytotoxic T cells by immunization with purified HIV-1 envelope protein in ISCOMs. Nature344(6269), 873–875 (1990).
  • Dalsgaard K. Adjuvants. Vet. Immunol. Immunopathol.17(1–4), 145–152 (1987).
  • Gilewski T, Ragupathi G, Dickler M et al. Immunization of high-risk breast cancer patients with clustered STn-KLH conjugate plus the immunologic adjuvant QS-21. Clin. Cancer Res.13(10), 2977–2985 (2007).
  • Ragupathi G, Gathuru J, Livingston P. Antibody inducing polyvalent cancer vaccines. Cancer Treat. Res.123, 157–180 (2005).
  • Chen Q, Jackson H, Parente P et al. Immunodominant CD4+ responses identified in a patient vaccinated with full-length NY-ESO-1 formulated with ISCOMATRIX adjuvant. Proc. Natl Acad. Sci. USA101(25), 9363–9368 (2004).
  • Davis ID, Chen W, Jackson H et al. Recombinant NY-ESO-1 protein with ISCOMATRIX adjuvant induces broad integrated antibody and CD4(+) and CD8(+) T cell responses in humans. Proc. Natl Acad. Sci. USA101(29), 10697–10702 (2004).
  • Nicholaou T, Ebert LM, Davis ID et al. Regulatory T-cell-mediated attenuation of T-cell responses to the NY-ESO-1 ISCOMATRIX vaccine in patients with advanced malignant melanoma. Clin. Cancer Res.15(6), 2166–2173 (2009).
  • Jensen F, Savary J, Diveley J, Chang J. Adjuvant activity of incomplete Freund’s adjuvant. Adv. Drug Deliv. Rev.32(3), 173–186 (1998).
  • Stills HJ Jr. Adjuvants and antibody production: dispelling the myths associated with Freund’s complete and other adjuvants. ILAR J.46(3), 280–293 (2005).
  • Freund J. The mode of action of immunologic adjuvants. Bibl. Tuberc. (10), 130–148 (1956).
  • Aucouturier J, Dupuis L, Deville S, Ascarateil S, Ganne V. Montanide ISA 720 and 51: a new generation of water in oil emulsions as adjuvants for human vaccines. Expert Rev. Vaccines1(1), 111–118 (2002).
  • Saul A, Lawrence G, Smillie A et al. Human Phase I vaccine trials of 3 recombinant asexual stage malaria antigens with Montanide ISA720 adjuvant. Vaccine17(23–24), 3145–3159 (1999).
  • Miles A, McClellan H, Rausch K et al. Montanide ISA 720 vaccines: quality control of emulsions, stability of formulated antigens, and comparative immunogenicity of vaccine formulations. Vaccine23(19), 2530–2539 (2005).
  • Lawrence G, Saul A, Giddy A, Kemp R, Pye D. Phase I trial in humans of an oil-based adjuvant SEPPIC MONTANIDE ISA 720. Vaccine15(2), 176–178 (1997).
  • Chianese-Bullock K, Pressley J, Garbee C et al. MAGE-A1-, MAGE-A10-, and gp100-derived peptides are immunogenic when combined with granulocyte-macrophage colony-stimulating factor and Montanide ISA-51 adjuvant and administered as part of a multipeptide vaccine for melanoma. J. Immunol.174(5), 3080–3086 (2005).
  • Oka Y, Tsuboi A, Taguchi T et al. Induction of WT1 (Wilms’ tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc. Natl Acad. Sci. USA101(38), 13885–13890 (2004).
  • Galli G, Medini D, Borgogni E et al. Adjuvanted H5N1 vaccine induces early CD4+ T cell response that predicts long-term persistence of protective antibody levels. Proc. Natl Acad. Sci. USA106(10), 3877–3882 (2009).
  • Atmar R, Keitel W. Adjuvants for pandemic influenza vaccines. Curr. Top. Microbiol. Immunol.333, 323–344 (2009).
  • Vogel F, Caillet C, Kusters I, Haensler J. Emulsion-based adjuvants for influenza vaccines. Expert Rev. Vaccines8(4), 483–492 (2009).
  • Saupe A, McBurney W, Rades T, Hook S. Immunostimulatory colloidal delivery systems for cancer vaccines. Expert Opin. Drug Deliv.3(3), 345–354 (2006).
  • Shek P, Yung B, Stanacev N. Comparison between multilamellar and unilamellar liposomes in enhancing antibody formation. Immunology49(1), 37–44 (1983).
  • van Rooijen N, van Nieuwmegen R. Use of liposomes as biodegradable and harmless adjuvants. Methods Enzymol.93, 83–95 (1983).
  • Kramp W, Six H, Kasel J. Postimmunization clearance of liposome entrapped adenovirus type 5 hexon. Proc. Soc. Exp. Biol. Med.169(1), 135–139 (1982).
  • Guan H, Budzynski W, Koganty R et al. Liposomal formulations of synthetic MUC1 peptides: effects of encapsulation versus surface display of peptides on immune responses. Bioconjug. Chem.9(4), 451–458 (1998).
  • Meidenbauer N, Harris D, Spitler L, Whiteside T. Generation of PSA-reactive effector cells after vaccination with a PSA-based vaccine in patients with prostate cancer. Prostate43(2), 88–100 (2000).
  • Salgaller M, Lodge P. Use of cellular and cytokine adjuvants in the immunotherapy of cancer. J. Surg. Oncol.68(2), 122–138 (1998).
  • Xiang Z, Ertl H. Manipulation of the immune response to a plasmid-encoded viral antigen by coinoculation with plasmids expressing cytokines. Immunity2(2), 129–135 (1995).
  • Heufler C, Koch F, Schuler G. Granulocyte/macrophage colony-stimulating factor and interleukin 1 mediate the maturation of murine epidermal Langerhans cells into potent immunostimulatory dendritic cells. J. Exp. Med.167(2), 700–705 (1988).
  • Peterson AC, Harlin H, Gajewski TF. Immunization with Melan-A peptide-pulsed peripheral blood mononuclear cells plus recombinant human interleukin-12 induces clinical activity and T-cell responses in advanced melanoma. J. Clin. Oncol.21(12), 2342–2348 (2003).
  • Colombo M, Trinchieri G. Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev.13(2), 155–168 (2002).
  • Cebon J, Jäger E, Shackleton M et al. Two Phase I studies of low dose recombinant human IL-12 with Melan-A and influenza peptides in subjects with advanced malignant melanoma. Cancer Immun.3, 7 (2003).
  • Gollob J, Mier J, Veenstra K et al. Phase I trial of twice-weekly intravenous interleukin 12 in patients with metastatic renal cell cancer or malignant melanoma: ability to maintain IFN-γ induction is associated with clinical response. Clin. Cancer Res.6(5), 1678–1692 (2000).
  • Fewkes NM, Mackall CL. Novel γ-chain cytokines as candidate immune modulators in immune therapies for cancer. Cancer J.16(4), 392–398 (2010).
  • Kobayashi E, Motoki K, Uchida T, Fukushima H, Koezuka Y. KRN7000, a novel immunomodulator, and its antitumor activities. Oncol. Res.7(10–11), 529–534 (1995).
  • Bendelac A, Savage PB, Teyton L. The biology of NKT cells. Annu. Rev. Immunol.25, 297–336 (2007).
  • Zhou D, Mattner J, Cantu C et al. Lysosomal glycosphingolipid recognition by NKT cells. Science306(5702), 1786–1789 (2004).
  • Kinjo Y, Wu D, Kim G et al. Recognition of bacterial glycosphingolipids by natural killer T cells. Nature434(7032), 520–525 (2005).
  • Mattner J, Debord KL, Ismail N et al. Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature434(7032), 525–529 (2005).
  • Van Kaer L. Regulation of immune responses by CD1d-restricted natural killer T cells. Immunol. Res.30(2), 139–153 (2004).
  • Fujii S, Motohashi S, Shimizu K, Nakayama T, Yoshiga Y, Taniguchi M. Adjuvant activity mediated by iNKT cells. Semin. Immunol.22(2), 97–102 (2010).
  • Hong C, Park S. Application of natural killer T cells in antitumor immunotherapy. Crit. Rev. Immunol.27(6), 511–525 (2007).
  • Schneiders FL, Scheper RJ, von Blomberg BM et al. Clinical experience with α-galactosylceramide (KRN7000) in patients with advanced cancer and chronic hepatitis B/C infection. Clin. Immunol.140(2), 130–141 (2010).
  • Parekh VV, Wilson MT, Olivares-Villagómez D et al. Glycolipid antigen induces long-term natural killer T cell anergy in mice. J. Clin. Invest.115(9), 2572–2583 (2005).
  • Chang DH, Osman K, Connolly J et al. Sustained expansion of NKT cells and antigen-specific T cells after injection of α-galactosyl-ceramide loaded mature dendritic cells in cancer patients. J. Exp. Med.201(9), 1503–1517 (2005).
  • Stirnemann K, Romero JF, Baldi L et al. Sustained activation and tumor targeting of NKT cells using a CD1d–anti-HER2–scFv fusion protein induce antitumor effects in mice. J. Clin. Invest.118(3), 994–1005 (2008).
  • Hilleman MR. Overview of vaccinology with special reference to papillomavirus vaccines. J. Clin. Virol.19(1–2), 79–90 (2000).
  • Mills KH. Designer adjuvants for enhancing the efficacy of infectious disease and cancer vaccines based on suppression of regulatory T cell induction. Immunol. Lett.122(2), 108–111 (2009).
  • Buchan S, Grønevik E, Mathiesen I, King CA, Stevenson FK, Rice J. Electroporation as a ‘prime/boost’ strategy for naked DNA vaccination against a tumor antigen. J. Immunol.174(10), 6292–6298 (2005).
  • Kim-Schulze S, Kaufman HL. Gene therapy for antitumor vaccination. Methods Mol. Biol.542, 515–527 (2009).
  • Lin K, Roosinovich E, Ma B, Hung CF, Wu TC. Therapeutic HPV DNA vaccines. Immunol. Res.47(1–3), 86–112 (2010).
  • Chen W, McCluskey J. Immunodominance and immunodomination: critical factors in developing effective CD8+ T-cell-based cancer vaccines. Adv. Cancer Res.95, 203–247 (2006).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.