370
Views
27
CrossRef citations to date
0
Altmetric
Review

IFN-α as a vaccine adjuvant: recent insights into the mechanisms and perspectives for its clinical use

, , , &
Pages 487-498 | Published online: 09 Jan 2014

References

  • Vilcek J. Fifty years of interferon research: aiming at a moving target. Immunity25(3), 343–348 (2006).
  • Belardelli F, Gresser I. The neglected role of type I interferon in the T cell response: implications for its clinical use. Immunol. Today17(8), 369–372 (1996).
  • Belardelli F, Ferrantini M. Cytokines as a link between innate and adaptive antitumor immunity. Trends Immunol.23(4), 201–208 (2002).
  • Santini SM, Lapenta C, Logozzi M et al. Type I interferon as a powerful adjuvant for monocyte-derived dendritic cell development and activity in vitro and in Hu-PBL-SCID mice. J. Exp. Med.191(10), 1777–1788 (2000).
  • Rizza P, Moretti F, Belardelli F. Recent advances on the immunomodulatory effects of IFN-α: implications for cancer immunotherapy and autoimmunity. Autoimmunity43(3), 204–209 (2010).
  • Tovey MG, Lallemand C, Thyphronitis G. Adjuvant activity of type I interferons. Biol. Chem.389(5), 541–545 (2008).
  • Bracci L, La Sorsa V, Belardelli F, Proietti E. Type I interferons as vaccine adjuvants against infectious diseases and cancer. Expert Rev. Vaccines7(3), 373–381 (2008).
  • Toporovski R, Morrow MP, Weiner DB. Interferons as potential adjuvants in prophylactic vaccines. Expert. Opin. Biol. Ther.10(10), 1489–1500 (2010).
  • Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science237(5963), 291–295 (2010).
  • Tough DF, Borrow P, Sprent J. Induction of bystander T cell proliferation by viruses and type I interferon in vivo. Science272(5270), 1947–1950 (1996).
  • Sun S, Zhang X, Tough DF, Sprent J. Type I interferon-mediated stimulation of T cells by CpG DNA. J. Exp. Med.188(12), 2335–2342 (1998).
  • Le Bon A, Etchart N, Rossmann C et al. Cross-priming of CD8+ T cells stimulated by virus-induced type I interferon. Nat. Immunol.4(10), 1009–1015 (2003).
  • Siegal FP, Kadowaki N, Shodell M et al. The nature of the principal type I interferon-producing cells in human blood. Science284(5421), 1835–1837 (1999).
  • Cella M, Jarrossay D, Facchetti F et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat. Med.5(8), 919–923 (1999).
  • Lande R, Gilliet M. Plasmacytoid dendritic cells: key players in the initiation and regulation of immune responses. Ann. NY Acad. Sci.1183, 89–103 (2010).
  • Fitzgerald-Bocarsly P, Dai J, Singh S. Plasmacytoid dendritic cells and type I IFN: 50 years of convergent history. Cytokine Growth Factor Rev.19(1), 3–19 (2008).
  • Gilliet M, Cao W, Liu YJ. Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat. Rev. Immunol.8(8), 594–606 (2008).
  • Le Bon A, Schiavoni G, D’antigenostino G, Gresser I, Belardelli F, Tough DF. Type I interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity14(4), 461–470 (2001).
  • Paquette RL, Hsu NC, Kiertscher SM et al. Interferon-α and granulocyte-macrophage colony-stimulating factor differentiate peripheral blood monocytes into potent antigen-presenting cells. J. Leukoc. Biol.64(3), 358–367 (1998).
  • Blanco P, Palucka AK, Gill M, Pascual V, Banchereau J. Induction of dendritic cell differentiation by IFN-α in systemic lupus erythematosus. Science294(5546), 1540–1543 (2001).
  • Parlato S, Santini SM, Lapenta C et al. Expression of CCR-7, MIP-3β, and Th-1 chemokines in type I IFN-induced monocyte- derived dendritic cells: importance for the rapid acquisition of potent migratory and functional activities. Blood98(10), 3022–3029 (2001).
  • Santodonato L, D’antigenostino G, Nisini R et al. Monocyte-derived dendritic cells generated after a short-term culture with IFN-α and granulocyte-macrophage colony-stimulating factor stimulate a potent Epstein-Barr virus-specific CD8+ T cell response. J. Immunol.170(10), 5195–5202 (2003).
  • Lapenta C, Santini SM, Logozzi M et al. Potent immune response against HIV-1 and protection from virus challenge in hu-PBL-SCID mice immunized with inactivated-virus-pulsed dendritic cells generated in the presence of IFN-α. J. Exp. Med.198(2), 361–367 (2003).
  • Tosi D, Valenti R, Cova A et al. Role of cross-talk between IFN-α-induced monocyte-derived dendritic cells and NK cells in priming CD8+ T cell responses against human tumor antigens. J. Immunol.172(9), 5363–5370 (2004).
  • Lapenta C, Santini SM, Spada M et al. IFN-α-conditioned dendritic cells are highly efficient in inducing cross-priming CD8+ T-cells against exogenous viral antigens even in the absence of CD4+ T-cell help. Eur. J. Immunol.36(8), 2046–2060 (2006).
  • Gabriele L, Borghi P, Rozera C et al. IFN-α promotes the rapid differentiation of monocytes from patients with chronic myeloid leukemia into activated dendritic cells tuned to undergo full maturation after LPS treatment. Blood103(3), 980–987 (2004).
  • Salem ML, El-Naggar SA, Kadima A, Gillanders WE, Cole DJ. The adjuvant effects of the Toll-like receptor 3 ligand polyinosinic-cytidylic acid poly (I:C) on antigen-specific CD8+ T cell responses are partially dependent on NK cells with the induction of a beneficial cytokine milieu. Vaccine24(24), 5119–5132 (2006).
  • Stahl-Hennig C, Eisenblätter M, Jasny E et al. Synthetic double-stranded RNAs are adjuvants for the induction of T helper 1 and humoral immune responses to human papillomavirus in rhesus macaques. PLoS Pathog.5(4), e1000373 (2009).
  • Trumpfheller C, Caskey M, Nchinda G et al. The microbial mimic poly I:C induces durable and protective CD4+ T cell immunity together with a dendritic cell targeted vaccine. Proc. Natl Acad. Sci. USA105(7), 2574–2579 (2008).
  • Longhi MP, Trumpfheller C, Idoyaga J et al. Dendritic cells require a systemic type I interferon response to mature and induce CD4+ Th1 immunity with poly I:C as adjuvant. J. Exp. Med.206(7), 1589–1602 (2009).
  • Jongbloed SL, Kassianos AJ, McDonald KJ et al. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J. Exp. Med.207(6), 1247–1260 (2010).
  • Bachem A, Güttler S, Hartung E et al. Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells. J. Exp. Med.207(6), 1273–1281 (2010).
  • Poulin LF, Salio M, Griessinger E et al. Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8α+ dendritic cells. J. Exp. Med.207(6), 1261–1271 (2010).
  • Crozat K, Guiton R, Contreras V et al. The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8α+ dendritic cells. J. Exp. Med.207(6), 1283–1292 (2010).
  • Shortman K, Heath WR. The CD8+ dendritic cell subset. Immunol. Rev.234(1), 18–31 (2010).
  • Pichlmair A, Reis e Sousa C. Innate recognition of viruses. Immunity27(3), 370–383 (2007).
  • Gaspari AA, Tyring SK, Rosen T. Beyond a decade of 5% imiquimod topical therapy. J. Drugs Dermatol.8(5), 467–474 (2009).
  • Rajagopal D, Paturel C, Morel Y, Uematsu S, Akira S, Diebold SS. Plasmacytoid dendritic cell-derived type I interferon is crucial for the adjuvant activity of Toll-like receptor 7 agonists. Blood115(10), 1949–1957 (2010).
  • Dondi E, Rogge L, Lutfalla G, Uze G, Pellegrini S. Down-modulation of responses to type I IFN upon T cell activation. J. Immunol.170(2), 749–756 (2003).
  • Chi B, Dickensheets HL, Spann KM et al.α and λ interferon together mediate suppression of CD4 T cells induced by respiratory syncytial virus. J. Virol.80(10), 5032–5040 (2006).
  • Le Bon A, Thompson C, Kamphuis E et al. Cutting edge: enhancement of antibody responses through direct stimulation of B and T cells by type I IFN. J. Immunol.176(4), 2074–2078 (2006).
  • Havenar-Daughton C, Kolumam GA, Murali-Krishna K. Cutting edge: the direct action of type I IFN on CD4 T cells is critical for sustaining clonal expansion in response to a viral but not a bacterial infection. J. Immunol.176(6), 3315–3319 (2006).
  • Krug A, Veeraswamy R, Pekosz A et al. Interferon-producing cells fail to induce proliferation of naive T cells but can promote expansion and T helper 1 differentiation of antigen-experienced unpolarized T cells. J. Exp. Med.197(7), 899–906 (2003).
  • Gallagher KM, Lauder S, Rees IW, Gallimore AM, Godkin AJ. Type I interferon (IFN α) acts directly on human memory CD4+ T cells altering their response to antigen. J. Immunol.183(5), 2915–2920 (2009).
  • Vila J, Isaacs JD, Anderson AE. Regulatory T cells and autoimmunity. Curr. Opin. Hematol.16(4), 274–279 (2009).
  • Pace L, Vitale S, Dettori B et al. APC activation by IFN-α decreases regulatory T cell and enhances Th cell functions. J. Immunol.184(11), 5969–5979 (2010).
  • Ascierto PA, Napolitano M, Celentano E et al. Regulatory T cell frequency in patients with melanoma with different disease stage and course, and modulating effects of high-dose interferon-α 2b treatment. J. Transl. Med.8, 76 (2010).
  • Querec TD, Akondy RS, Lee EK et al. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat. Immunol.10(1), 116–125 (2009).
  • Gaucher D, Therrien R, Kettaf N et al. Yellow fever vaccine induces integrated multilineage and polyfunctional immune responses. J. Exp. Med.205(13), 3119–3131 (2008).
  • Le Bon A, Durand V, Kamphuis E et al. Direct stimulation of T cells by type I IFN enhances the CD8+ T cell response during cross-priming. J. Immunol.176(8), 4682–4689 (2006).
  • Proietti E, Bracci L, Puzelli S et al. Type I IFN as a natural adjuvant for a protective immune response: lessons from the influenza vaccine model. J. Immunol.169(1), 375–383 (2002).
  • Tovey MG, Lallemand C, Meritet JF, Maury C. Adjuvant activity of interferon α: mechanism(s) of action. Vaccine24(Suppl. 2), S2–46–47 (2006).
  • Bracci L, Canini I, Puzelli S et al. Type I IFN is a powerful mucosal adjuvant for a selective intranasal vaccination against influenza virus in mice and affects antigen capture at mucosal level. Vaccine23(23), 2994–3004 (2005).
  • Cull VS, Broomfield S, Bartlett EJ, Brekalo NL, James CM. Coimmunisation with type I IFN genes enhances protective immunity against cytomegalovirus and myocarditis in gB DNA-vaccinated mice. Gene Ther.9(20), 1369–1378 (2002).
  • Grob PJ, Joller-Jemelka HI, Binswanger U, Zaruba K, Descoeudres C, Fernex M. Interferon as an adjuvant for hepatitis B vaccination in non- and low-responder populations. Eur. J. Clin. Microbiol.3(3), 195–198 (1984).
  • Stürchler D, Berger R, Etlinger H et al. Effects of interferons on immune response to a synthetic peptide malaria sporozoite vaccine in non-immune adults. Vaccine7(5), 457–461 (1989).
  • Goldwater PN. Randomized comparative trial of interferon-α versus placebo in hepatitis B vaccine non-responders and hyporesponders. Vaccine12(5), 410–414 (1994).
  • Rizza P, Capone I, Urbani F et al. Evaluation of the effects of human leukocyte IFN-α on the immune response to the HBV vaccine in healthy unvaccinated individuals. Vaccine26(8), 1038–1049 (2008).
  • Mennechet FJ, Uzè G. Interferon-l-treated dendritic cells specifically induce proliferation of FOXP3-expressing suppressor T cells. Blood107(11), 4417–4423 (2006).
  • Morrow MP, Pankhong P, Laddy DJ et al. Comparative ability of IL-12 and IL-28B to regulate Treg populations and enhance adaptive cellular immunity. Blood113(23), 5868–5877 (2009).
  • Miquilena-Colina ME, Lozano-Rodríguez T, García-Pozo L et al. Recombinant interferon-α2b improves immune response to hepatitis B vaccination in haemodialysis patients: results of a randomised clinical trial. Vaccine27(41), 5654–5660 (2009).
  • Eleftheriadis T, Antoniadi G, Liakopoulos V, Kartsios C, Stefanidis I. Disturbances of acquired immunity in hemodialysis patients. Semin. Dial.20(5), 440–451 (2007).
  • Sester U, Sester M, Hauk M, Kaul H, Köhler H, Girndt M. T-cell activation follows Th1 rather than Th2 in haemodialysis patients. Neprhol. Dial. Transplant.15(8), 1217–1223 (2000).
  • Launay O, Grabar S, Bloch F et al. Effect of sublingual administration of interferon-α on the immune response to influenza vaccination in institutionalized elderly individuals. Vaccine26(32), 4073–4079 (2008).
  • Couch RB, Atmar RL, Cate TR et al. Contrasting effects of type I interferon as a mucosal adjuvant for influenza vaccine in mice and humans. Vaccine27(39), 5344–5348 (2009).
  • Bracarda S, Eggermont AM, Samuelsson J. Redefining the role of interferon in the treatment of malignant diseases. Eur. J. Cancer.46(2), 284–297 (2010).
  • Ferrantini M, Belardelli F. Gene therapy of cancer with interferon: lessons from tumor models and perspectives for clinical applications. Semin. Cancer. Biol.10(2), 145–157 (2000).
  • Ferrantini M, Capone I, Belardelli F. Interferon-α and cancer: mechanisms of action and new perspectives of clinical use. Biochimie89(6–7), 884–893 (2007).
  • Sikora AG, Jaffarzad N, Hailemichael Y et al. IFN-α enhances peptide vaccine-induced CD8+ T cell numbers, effector function, and antitumor activity. J. Immunol.182(12), 7398–7407 (2009).
  • Hance KW, Rogers CJ, Zaharoff DA, Canter D, Schlom J, Greiner JW. The antitumor and immunoadjuvant effects of IFN-α in combination with recombinant poxvirus vaccines. Clin. Cancer Res.15(7), 2387–2396 (2009).
  • Gogas H, Ioannovich J, Dafni U et al. Prognostic significance of autoimmunity during treatment of melanoma with interferon. N. Engl. J. Med.354(7), 709–718 (2006).
  • Crow MK. Type I interferon in systemic lupus erythematosus. Curr. Top. Microbiol. Immunol.316, 359–386 (2007).
  • Banchereau J, Pascual V. Type I IFN in systemic lupus erythematosus and other autoimmune diseases. Immunity25(3), 383–392 (2006).
  • Koon H, Atkins M. Autoimmunity and immunotherapy of cancer. N. Engl. J. Med.354(7), 758–760 (2006).
  • Di Pucchio T, Pilla L, Capone I et al. Immunization of stage IV melanoma patients with Melan-A/MART-1 and gp100 peptides plus IFN-α results in the activation of specific CD8+ T cells and monocyte/dendritic cell precursors. Cancer Res.66(9), 4943–4951 (2006).
  • Kirkwood JM, Lee S, Moschos SJ et al. Immunogenicity and antitumor effects of vaccination with peptide vaccine+/-granulocyte-monocyte colony-stimulating factor and/or IFN-α2b in advanced metastatic melanoma: Eastern Cooperative Oncology Group Phase II Trial E1696. Clin. Cancer Res.15(4), 1443–1451 (2009).
  • Ziegler-Heitbrock L. The CD14+ CD16+ blood monocytes: their role in infection and inflammation. J. Leukoc. Biol.81(3), 584–592 (2007).
  • Krutzik SR, Tan B, Li H et al. TLR activation triggers the rapid differentiation of monocytes into macrophages and dendritic cells. Nat. Med.11(6), 653–660 (2005).
  • Mohty AM, Grob JJ, Mohty M, Richard MA, Olive D, Gaugler B. Induction of IP-10/CXCL10 secretion as an immunomodulatory effect of low-dose adjuvant interferon-α during treatment of melanoma. Immunobiology215(2), 113–123 (2010).
  • Nisticò P, Capone I, Palermo B et al. Chemotherapy enhances vaccine-induced antitumor immunity in melanoma patients. Int. J. Cancer.124(1), 130–139 (2009).
  • Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature449(7161), 419–426 (2007).
  • Parlato S, Romagnoli G, Spadaro F et al. LOX-1 as a natural IFN-α-mediated signal for apoptotic cell uptake and antigen presentation in dendritic cells. Blood115(8), 1554–1563 (2010).
  • Rouzaut A, Garasa S, Teijeira A et al. Dendritic cells adhere to and transmigrate across lymphatic endothelium in response to IFN-α. Eur. J. Immunol.40(11), 3054–3063 (2010).
  • Vermi W, Fisogni S, Salogni L et al. Spontaneous regression of highly immunogenic molluscum contagiosum virus (MCV)-induced skin lesions is associated with plasmacytoid dendritic cells and IFN-DC infiltration. J. Invest. Dermatol.131(2), 426–434 (2010).
  • Moschella F, Proietti E, Capone I, Belardelli F. Combination strategies for enhancing the efficacy of immunotherapy in cancer patients. Ann. NY Acad. Sci.1194, 169–178 (2010).
  • Locher C, Conforti R, Aymeric L et al. Desirable cell death during anticancer chemotherapy. Ann. NY Acad. Sci.1209, 99–108 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.