614
Views
45
CrossRef citations to date
0
Altmetric
Review

Animal poxvirus vaccines: a comprehensive review

, , , , &
Pages 1355-1374 | Published online: 09 Jan 2014

References

  • Tan SY. Medicine in stamps. Singapore Med. J. 45(11), 507–508 (2004).
  • Li Y, Carroll DS, Gardner SN, Walsh MC, Vitalis EA, Damon IK. On the origin of smallpox: correlating variola phylogenics with historical smallpox records. Proc. Natl Acad. Sci. USA 104(40), 15787–15792 (2007).
  • Essbauer S, Pfeffer M, Meyer H. Zoonotic poxviruses. Vet. Microbiol. 140(3–4), 229–236 (2010).
  • Singh RK, Hosamani M, Balamurugan V, Bhanuprakash V, Rasool TJ, Yadav MP. Buffalopox: an emerging and re-emerging zoonosis. Anim. Health Res. Rev. 8(1), 105–114 (2007).
  • Zafar A, Swanepoel R, Hewson R et al. Nosocomial buffalopoxvirus infection, Karachi, Pakistan. Emerging Infect. Dis. 13(6), 902–904 (2007).
  • Singh RK, Balamurugan V, Bhanuprakash V, Venkatesan G, Hosamani M. Emergence and reemergence of vaccinia-like viruses: global scenario and perspectives. Indian J. Virol. 23(1), 1–11 (2012).
  • Damaso CR, Esposito JJ, Condit RC, Moussatché N. An emergent poxvirus from humans and cattle in Rio de Janeiro State: Cantagalo virus may derive from Brazilian smallpox vaccine. Virology 277(2), 439–449 (2000).
  • Nagasse-Sugahara TK, Kisielius JJ, Ueda-Ito M et al. Human vaccinia-like virus outbreaks in São Paulo and Goiás States, Brazil: virus detection, isolation and identification. Rev. Inst. Med. Trop. Sao Paulo 46(6), 315–322 (2004).
  • da Fonseca FG, Trindade GS, Silva RL, Bonjardim CA, Ferreira PC, Kroon EG. Characterization of a vaccinia-like virus isolated in a Brazilian forest. J. Gen. Virol. 83(Pt 1), 223–228 (2002).
  • Marques JT, Trindade GD, Da Fonseca FG et al. Characterization of ATI, TK and IFN-a/bR genes in the genome of the BeAn 58058 virus, a naturally attenuated wild Orthopoxvirus. Virus Genes 23(3), 291–301 (2001).
  • Trindade GS, da Fonseca FG, Marques JT et al. Belo Horizonte virus: a vaccinia-like virus lacking the A-type inclusion body gene isolated from infected mice. J. Gen. Virol. 85(Pt 7), 2015–2021 (2004).
  • Moussatché N, Damaso CR, McFadden G. When good vaccines go wild: feral orthopoxvirus in developing countries and beyond. J. Infect. Dev. Ctries. 2(3), 156–173 (2008).
  • Murphy FA, Gibbs EPJ, Horzinek MC, Studdert MJ. Veterinary Virology (3rd Editon). Academic Press, CA, USA, 282 (1999).
  • Parrino J, Graham BS. Smallpox vaccines: past, present, and future. J. Allergy Clin. Immunol. 118(6), 1320–1326 (2006).
  • Mercer AA, Schmidt A, Weber O. Poxviruses. In: Birkha user Advances in Infectious Diseases. Birkha¨user Verlag, Basel, Switzerland, 1–45, 113–166, 355–373 (2007).
  • Kolhapure RM, Deolankar RP, Tupe CD et al. Investigation of buffalopox outbreaks in Maharashtra State during 1992–1996. Indian J. Med. Res. 106, 441–446 (1997).
  • Bhanuprakash V, Venkatesan G, Balamurugan V et al. Zoonotic infections of buffalopox in India. Zoonoses Public Health 57(7–8), e149–e155 (2010).
  • Venkatesan G, Balamurugan V, Prabhu M et al. Emerging and re-emerging zoonotic buffalopox infection: a severe outbreak in Kolhapur (Maharashtra), India. Vet. Ital. 46(4), 439–448 (2010).
  • FauquetCM, MayoMA, ManiloffJ, DesselbergerU, BallLA (Eds). Virus Taxonomy: VIII Report of the International Committee on Taxonomy of Viruses Elsevier Academic Press, CA, USA (2005).
  • de Souza Trindade G, da Fonseca FG, Marques JT et al. Araçatuba virus: a vaccinialike virus associated with infection in humans and cattle. Emerging Infect. Dis. 9(2), 155–160 (2003).
  • Abrahão JS, Guedes MI, Trindade GS et al. One more piece in the VACV ecological puzzle: could peridomestic rodents be the link between wildlife and bovine vaccinia outbreaks in Brazil? PLoS ONE 4(10), e7428 (2009).
  • Mohanty PK, Rai A, Goel AC. Assay of immune response of buffalo pox virus in rabbits and buffaloes using b-propiolactone and formalin inactivated Vero cell culture vaccine. Indian J. Virol. 5(1–2), 21–29 (1989).
  • Mohanty PK, Rai A. Immune response induced by Vero cell culture adapted buffalo pox virus in rabbits and buffaloes. Indian J. Exp. Biol. 27(4), 350–355 (1989).
  • Dogra SC, Sharma VK. A note on the attenuation of buffalopox virus. Indian J. Exp. Biol. 19(7), 683–684 (1981).
  • Mayr A, Eissner G, Mayr-Bibrack B. Handbuch der Schutzimpfungen in der Tiermedizin. Paul Parey, Berlin, Germany, 739 (1984).
  • Paran N, Suezer Y, Lustig S et al. Postexposure immunization with modified vaccinia virus Ankara or conventional Lister vaccine provides solid protection in a murine model of human smallpox. J. Infect. Dis. 199(1), 39–48 (2009).
  • Bhatt PN, Jacoby RO. Effect of vaccination on the clinical response, pathogenesis and transmission of mousepox. Lab. Anim. Sci. 37(5), 610–614 (1987).
  • Lustig S, Maik-Rachline G, Paran N et al. Effective post-exposure protection against lethal orthopoxviruses infection by vaccinia immune globulin involves induction of adaptive immune response. Vaccine 27(11), 1691–1699 (2009).
  • Xiao Y, Aldaz-Carroll L, Ortiz AM et al. A protein-based smallpox vaccine protects mice from vaccinia and ectromelia virus challenges when given as a prime and single boost. Vaccine 25(7), 1214–1224 (2007).
  • Borovkov A, Magee DM, Loskutov A et al. New classes of orthopoxvirus vaccine candidates by functionally screening a synthetic library for protective antigens. Virology 395(1), 97–113 (2009).
  • Hanke T, Goonetilleke N, McMichael AJ, Dorrell L. Clinical experience with plasmid DNA- and modified vaccinia virus Ankara-vectored human immunodeficiency virus type 1 clade A vaccine focusing on T-cell induction. J. Gen. Virol. 88(Pt 1), 1–12 (2007).
  • Kent S, De Rose R, Rollman E. Drug evaluation: DNA/MVA prime-boost HIV vaccine. Curr. Opin. Investig. Drugs 8(2), 159–167 (2007).
  • Bhanuprakash V, Prabhu M, Venkatesan G et al. Camelpox: epidemiology, diagnosis and control measures. Expert Rev. Anti. Infect. Ther. 8(10), 1187–1201 (2010).
  • Hafez SM, al-Sukayran A, dela Cruz D et al. Development of a live cell culture camelpox vaccine. Vaccine 10(8), 533–539 (1992).
  • Bhanuprakash V, Balamurugan V, Hosamani M et al. Isolation and characterization of Indian isolates of camel pox virus. Trop. Anim. Health Prod. 42(6), 1271–1275 (2010).
  • Bera BC, Shanmugasundaram K, Barua S et al. Zoonotic cases of camelpox infection in India. Vet. Microbiol. 152(1–2), 29–38 (2011).
  • Duraffour S, Meyer H, Andrei G, Snoeck R. Camelpox virus. Antiviral Res. 92(2), 167–186 (2011).
  • Bray M, Babiuk S. Camelpox: target for eradication? Antiviral Res. 92(2), 164–166 (2011).
  • Balamurugan V, Bhanuprakash V, Hosamani M et al. A polymerase chain reaction strategy for the diagnosis of camelpox. J. Vet. Diagn. Invest. 21(2), 231–237 (2009).
  • Krupenko SS, Bailarov A, Annadurdyev O. [Lactotherapy for pox in camels]. Veterinariia 7, 51–52 (1973).
  • Higgins AJ. The Camel in Health and Disease. Bailliere Tindall, London, 168 (1986).
  • Buchnev KN, Tulepbaev SZ, Sansyzbaev AR. Infectious diseases of camels in the USSR. Revue Sci. Tech. 6, 487–495 (1987).
  • Higgins AJ, Silvey RE, Abdelghafir AE, Kitching RP. The epidemiology and control of an outbreak of camelpox in Bahrain. Proc. 1st. Int. Camel Conf. 101–104 (1992).
  • Baxby D, Ramyar H, Hessami M, Ghaboosi B. A comparison of the response of camels to intradermal inoculation with camelpox and smallpox viruses. Infect. Immunity 11, 617–621 (1975).
  • Wernery U, Zachariah R. Experimental camel pox infection in vaccinated and unvaccinated dromedaries. J. Vet. Med. [B] Infect. Dis. 46(2), 131–136 (1999).
  • Khalafalla AI, El Dirdiri GA. Laboratory and field investigations of a live attenuated and an inactivated camelpox vaccine. J. Camel Prac. Res. 10(2), 191–200 (2003).
  • Safronov PF. Sequencing and analysis of the genomic organization of cowpox virus (CPV) strain GRI-90. Federal Portal for Science and Innovation (2004).
  • Babkin IV, Mikheev MV, Shchelkunov SN et al. Analysis of nucleotide sequences of individual orthopoxvirus genes. Meetings of the WHO Advisory Committee on Variola Virus (5), 1 (2003).
  • Kile JC, Fleischauer AT, Beard B et al. Transmission of monkeypox among persons exposed to infected prairie dogs in Indiana in 2003. Arch. Pediatr. Adolesc. Med. 159(11), 1022–1025 (2005).
  • Wisser J, Pilaski J, Strauss G et al. Cowpox virus infection causing stillbirth in an Asian elephant (Elephas maximus). Vet. Rec. 149, 244–246 (2001).
  • Munz E, Linckh S, Renner-Müller IC, Reimann M. [The effectiveness of immunization with vaccinia virus type ‘MVA’ against an infection with cowpox virus type ‘OPV 85’ in rabbits]. Zentralblatt Veterinarmedizin. Reihe B 40(2), 131–140 (1993).
  • Iwabuchi H, Matsumoto K, Izawa H, Takahashi K, Soekawa M. The immunogenicity of inactivated cowpox vaccine in rabbits. Kitasato Arch. Exp. Med. 37(1), 43–52 (1964).
  • Thornburg NJ, Ray CA, Collier ML, Liao HX, Pickup DJ, Johnston RE. Vaccination with Venezuelan equine encephalitis replicons encoding cowpox virus structural proteins protects mice from intranasal cowpox virus challenge. Virology 362(2), 441–452 (2007).
  • Tulman ER, Delhon G, Afonso CL et al. Genome of horsepox virus. J. Virol. 80(18), 9244–9258 (2006).
  • Qin L, Upton C, Hazes B, Evans DH. Genomic analysis of the vaccinia virus strain variants found in Dryvax vaccine. J. Virol. 85(24), 13049–13060 (2011).
  • Croft DR, Sotir MJ, Williams CJ et al. Occupational risks during a monkeypox outbreak, Wisconsin, 2003. Emerging Infect. Dis. 13(8), 1150–1157 (2007).
  • Likos AM, Sammons SA, Olson VA et al. A tale of two clades: monkeypox viruses. J. Gen. Virol. 86(Pt 10), 2661–2672 (2005).
  • Olsen RG, Blakeslee JR, Mathes L, Nakano JH. Preparation and evaluation of a noninfectious monkey pox virus vaccine. J. Clin. Microbiol. 6(1), 50–54 (1977).
  • Earl PL, Americo JL, Wyatt LS et al. Immunogenicity of a highly attenuated MVA smallpox vaccine and protection against monkeypox. Nature 428(6979), 182–185 (2004).
  • Hooper JW, Thompson E, Wilhelmsen C et al. Smallpox DNA vaccine protects nonhuman primates against lethal monkeypox. J. Virol. 78(9), 4433–4443 (2004).
  • Hooper JW, Golden JW, Ferro AM, King AD. Smallpox DNA vaccine delivered by novel skin electroporation device protects mice against intranasal poxvirus challenge. Vaccine 25(10), 1814–1823 (2007).
  • Morikawa S, Sakiyama T, Hasegawa H et al. An attenuated LC16m8 smallpox vaccine: analysis of full-genome sequence and induction of immune protection. J. Virol. 79(18), 11873–11891 (2005).
  • Saijo M, Ami Y, Suzaki Y et al. LC16m8, a highly attenuated vaccinia virus vaccine lacking expression of the membrane protein B5R, protects monkeys from monkeypox. J. Virol. 80(11), 5179–5188 (2006).
  • Edghill-Smith Y, Golding H, Manischewitz J et al. Smallpox vaccine-induced antibodies are necessary and sufficient for protection against monkeypox virus. Nat. Med. 11(7), 740–747 (2005).
  • Edghill-Smith Y, Bray M, Whitehouse CA et al. Smallpox vaccine does not protect macaques with AIDS from a lethal monkeypox virus challenge. J. Infect. Dis. 191(3), 372–381 (2005).
  • Stittelaar KJ, Neyts J, Naesens L et al. Comparison of the efficacy of post exposure smallpox vaccination versus antiviral treatment with acyclic nucleotides against monkeypox virus infection. Presented at: 7th Meeting of the WHO Advisory Committee on Variola Virus Research. Geneva, Switzerland, 10–11 November 2005.
  • Stittelaar KJ, Neyts J, Naesens L et al. Antiviral treatment is more effective than smallpox vaccination upon lethal monkeypox virus infection. Nature 439(7077), 745–748 (2006).
  • Heraud JM, Edghill-Smith Y, Ayala V et al. Subunit recombinant vaccine protects against monkeypox. J. Immunol. 177(4), 2552–2564 (2006).
  • Sakhatskyy P, Wang S, Chou TH, Lu S. Immunogenicity and protection efficacy of monovalent and polyvalent poxvirus vaccines that include the D8 antigen. Virology 355(2), 164–174 (2006).
  • Fogg CN, Americo JL, Lustig S et al. Adjuvant-enhanced antibody responses to recombinant proteins correlates with protection of mice and monkeys to orthopoxvirus challenges. Vaccine 25(15), 2787–2799 (2007).
  • Buchman GW, Cohen ME, Xiao Y et al. A protein-based smallpox vaccine protects non-human primates from a lethal monkeypox virus challenge. Vaccine 28(40), 6627–6636 (2010).
  • Nigam P, Earl PL, Americo JL et al. DNA/MVA HIV-1/AIDS vaccine elicits long-lived vaccinia virus-specific immunity and confers protection against a lethal monkeypox challenge. Virology 366(1), 73–83 (2007).
  • Hirao LA, Draghia-Akli R, Prigge JT et al. Multivalent smallpox DNA vaccine delivered by intradermal electroporation drives protective immunity in nonhuman primates against lethal monkeypox challenge. J. Infect. Dis. 203(1), 95–102 (2011).
  • Marriott KA, Parkinson CV, Morefield SI, Davenport R, Nichols R, Monath TP. Clonal vaccinia virus grown in cell culture fully protects monkeys from lethal monkeypox challenge. Vaccine 26(4), 581–588 (2008).
  • Zielinski RJ, Smedley JV, Perera PY et al. Smallpox vaccine with integrated IL-15 demonstrates enhanced in vivo viral clearance in immunodeficient mice and confers long term protection against a lethal monkeypox challenge in cynomolgus monkeys. Vaccine 28(43), 7081–7091 (2010).
  • Denzler KL, Babas T, Rippeon A et al. Attenuated NYCBH vaccinia virus deleted for the E3L gene confers partial protection against lethal monkeypox virus disease in cynomolgus macaques. Vaccine 29(52), 9684–9690 (2011).
  • Venkatesan G, Balamurugan V, Bora DP, Yogisharadhya R, Prabhu M, Bhanuprakash V. Sequence and phylogenetic analyses of an Indian isolate of orf virus from sheep. Vet. Ital. 47(3), 323–332 (2011).
  • Yogisharadhya R, Bhanuprakash V, Venkatesan G, Balamurugan V, Pandey AB, Shivachandra SB. Comparative sequence analysis of poxvirus A32 gene encoded ATPase protein and carboxyl terminal heterogeneity of Indian orf viruses. Vet. Microbiol. 156(1–2), 72–80 (2012).
  • Bora DP, Barman NN, Das SK et al. Identification and phylogenetic analysis of orf viruses isolated from outbreaks in goats of Assam, a northeastern state of India. Virus Genes 45(1), 98–104 (2012).
  • Musser JM, Taylor CA, Guo J, Tizard IR, Walker JW. Development of a contagious ecthyma vaccine for goats. Am. J. Vet. Res. 69(10), 1366–1370 (2008).
  • Nettleton PF, Brebner J, Pow I, Gilray JA, Bell GD, Reid HW. Tissue culture-propagated orf virus vaccine protects lambs from orf virus challenge. Vet. Rec. 138(8), 184–186 (1996).
  • Rziha H, Henkel M, Cottone R et al. Generation of recombinant parapoxviruses: non-essential genes suitable for insertion and expression of foreign genes. J. Biotechnol. 83(1–2), 137–145 (2000).
  • Fleming SB, Lyttle DJ, Sullivan JT, Mercer AA, Robinson AJ. Genomic analysis of a transposition-deletion variant of orf virus reveals a 3.3 kbp region of non-essential DNA. J. Gen. Virol. 76(Pt 12), 2969–2978 (1995).
  • McInnes CJ, Wood AR, Nettleton PE, Gilray JA. Genomic comparison of an avirulent strain of Orf virus with that of a virulent wild type isolate reveals that the Orf virus G2L gene is non-essential for replication. Virus Genes 22(2), 141–150 (2001).
  • Cottone R, Büttner M, Bauer B, Henkel M, Hettich E, Rziha HJ. Analysis of genomic rearrangement and subsequent gene deletion of the attenuated Orf virus strain D1701. Virus Res. 56(1), 53–67 (1998).
  • Mercer AA, Fraser KM, Esposito JJ. Gene homology between orf virus and smallpox variola virus. Virus Genes 13(2), 175–178 (1996).
  • Buddle BM, Dellers RW, Schurig GG. Contagious ecthyma virus-vaccination failures. Am. J. Vet. Res. 45(2), 263–266 (1984).
  • Haig DM. Orf virus infection and host immunity. Curr. Opin. Infect. Dis. 19(2), 127–131 (2006).
  • Haig DM, Fleming S. Immunomodulation by virulence proteins of the parapoxvirus orf virus. Vet. Immunol. Immunopathol. 72(1–2), 81–86 (1999).
  • Gallina L, Scagliarini A, Ciulli S, Prosperi S. Cloning and expression of the Orf virus F1L gene: possible use as a subunit vaccine. Vet. Res. Commun. 28(Suppl. 1), 291–293 (2004).
  • Pye D. Vaccination of sheep with cell culture grown orf virus. Aust. Vet. J. 67(5), 182–186 (1990).
  • Mercante MT, Lelli R, Ronchi GF, Pini A. Production and efficacy of an attenuated live vaccine against contagious ovine ecthyma. Vet. Ital. 44(3), 537–542 (2008).
  • Büttner M. Safety and efficacy of a combined parapox/BVD vaccine. Dev. Biol. Stand. 65, 221–226 (1986).
  • Friebe A, Friederichs S, Scholz K et al. Characterization of immunostimulatory components of orf virus (parapoxvirus ovis). J. Gen. Virol. 92(Pt 7), 1571–1584 (2011).
  • McGuire MJ, Johnston SA, Sykes KF. Novel immune-modulator identified by a rapid, functional screen of the parapoxvirus ovis (Orf virus) genome. Proteome Sci. 10(1), 4 (2012).
  • Mercer AA, Yirrell DL, Whelan EM et al. A novel strategy for determining protective antigens of the parapoxvirus, orf virus. Virology 229(1), 193–200 (1997).
  • Zhao K, He W, Gao W et al. Orf virus DNA vaccines expressing ORFV 011 and ORFV 059 chimeric protein enhances immunogenicity. Virol. J. 8, 562 (2011).
  • Cargnelutti JF, Masuda EK, Martins M et al. Virological and clinico-pathological features of orf virus infection in experimentally infected rabbits and mice. Microb. Pathog. 50(1), 56–62 (2011).
  • Buchnev KN, Sadykov RG, Tulepbayev S, Roslyakov AA. Smallpox–like disease of camels ‘Auzdik’. Trudy Alma-atinskogo Zootekhnicheskogo Instituta. 16, 36–47 (1969).
  • Housawi FM, Abu-Elzein E, Gameel A et al. Severe Auzdyk infection in one-month old camel calves (Camelus dromedarius). Vet. Arch. 74, 467–474 (2004).
  • Robinson AJ, Lyttle DJ. Parapoxviruses: their biology and potential as recombinant vaccines. In: Recombinant Poxviruses. Binns M, Smith GL (Eds). CRC Press, FL, USA, 285–327 (1992).
  • Henkel M, Planz O, Fischer T, Stitz L, Rziha HJ. Prevention of virus persistence and protection against immunopathology after Borna disease virus infection of the brain by a novel Orf virus recombinant. J. Virol. 79(1), 314–325 (2005).
  • Rziha HJ, Henkel M, Cottone R, Meyer M, Dehio C, Büttner M. Parapoxviruses: potential alternative vectors for directing the immune response in permissive and non-permissive hosts. J. Biotechnol. 73(2–3), 235–242 (1999).
  • Fischer T, Planz O, Stitz L, Rziha HJ. Novel recombinant parapoxvirus vectors induce protective humoral and cellular immunity against lethal herpesvirus challenge infection in mice. J. Virol. 77(17), 9312–9323 (2003).
  • Dory D, Fischer T, Béven V, Cariolet R, Rziha HJ, Jestin A. Prime-boost immunization using DNA vaccine and recombinant Orf virus protects pigs against Pseudorabies virus (Herpes suid 1). Vaccine 24(37–39), 6256–6263 (2006).
  • van Rooij EM, Rijsewijk FA, Moonen-Leusen HW, Bianchi AT, Rziha HJ. Comparison of different prime-boost regimes with DNA and recombinant Orf virus based vaccines expressing glycoprotein D of pseudorabies virus in pigs. Vaccine 28(7), 1808–1813 (2010).
  • Voigt H, Merant C, Wienhold D et al. Efficient priming against classical swine fever with a safe glycoprotein E2 expressing Orf virus recombinant (ORFV VrV-E2). Vaccine 25(31), 5915–5926 (2007).
  • Tan JL, Ueda N, Heath D, Mercer AA, Fleming SB. Development of orf virus as a bifunctional recombinant vaccine: surface display of Echinococcus granulosus antigen EG95 by fusion to membrane structural proteins. Vaccine 30(2), 398–406 (2012).
  • Bhanuprakash V, Venkatesan G, Balamurugan V et al. Pox outbreaks in sheep and goats at Makhdoom (Uttar Pradesh), India: evidence of sheeppox virus infection in goats. Transbound. Emerg. Dis. 57(5), 375–382 (2010).
  • Tulman ER, Afonso CL, Lu Z et al. The genomes of sheeppox and goatpox viruses. J. Virol. 76(12), 6054–6061 (2002).
  • Hosamani M, Mondal B, Tembhurne PA, Bandyopadhyay SK, Singh RK, Rasool TJ. Differentiation of sheep pox and goat poxviruses by sequence analysis and PCR-RFLP of P32 gene. Virus Genes 29(1), 73–80 (2004).
  • Hosamani M, Nandi S, Mondal B, Singh RK, Rasool TJ, Bandyopadhyay SK. A Vero cell-attenuated Goatpox virus provides protection against virulent virus challenge. Acta Virol. 48(1), 15–21 (2004).
  • Rao TV, Bandyopadhyay SK. A comprehensive review of goat pox and sheep pox and their diagnosis. Anim. Health Res. Rev. 1(2), 127–136 (2000).
  • Bhanuprakash V, Indrani BK, Hosamani M, Singh RK. The current status of sheep pox disease. Comp. Immunol. Microbiol. Infect. Dis. 29(1), 27–60 (2006).
  • Prasad IJ, Datt NS. Observation on the use of live and inactivated vaccines against goatpox. Indian Vet. J. 50, 1–10 (1973).
  • Dubey SC, Sawhney AM. Live and inactivated tissue culture vaccines against goatpox. Indian Vet. J. 55, 926–927 (1978).
  • Yadav MP, Pandey AB, Negi BS, Sharma B, Shankar H. Studies on inactivated goatpox vaccine. Indian J. Virol. 2, 207–221 (1987).
  • OIE. Sheeppox and Goatpox. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals (Mammals, Birds and Bees), 5th Editon. OIE, Paris, France, 211–220 (2004).
  • Zheng M, Jin N, Liu Q et al. Immunogenicity and protective efficacy of Semliki forest virus replicon-based DNA vaccines encoding goatpox virus structural proteins. Virology 391(1), 33–43 (2009).
  • Anandan R, Sundara Rajan S, Kannamani G, Jayaraman MS. Studies on live and inactivated sheep pox vaccines. Cherion 1, 42–55 (1972).
  • Bhanuprakash V, Moorthy ARS, Krishnappa G, Srinivasa Gowda RN, Indrani BK. A live attenuated vaccine for sheep pox. Indian J. Anim. Sci. 73(10), 1093–1098 (2003).
  • Bhanuprakash V, Indrani BK, Hegde R, Kumar MM, Moorthy AR. A classical live attenuated vaccine for sheep pox. Trop. Anim. Health Prod. 36(4), 307–320 (2004).
  • Carn VM. Control of capripoxvirus infections. Vaccine 11(13), 1275–1279 (1993).
  • Ramyar H, Hessami M. Studies on the duration of immunity conferred by a live-modified sheep pox tissue culture virus vaccine. Zentralblatt Veterinarmedizin. Reihe B 17(8), 869–874 (1970).
  • Yogisharadhya R, Bhanuprakash V, Hosamani M et al. Comparative efficacy of live replicating sheeppox vaccine strains in Ovines. Biologicals 39(6), 417–423 (2011).
  • Davis BP, Dulbecco R, Herman NE, Harold SG. Microbiology (3rd Edition). Harper and Row Publishers, London, UK, 1077–1093 (1980).
  • Achour HA, Bouguedour R, Bouhbal A, Guechtouli A, Aouissat M. Comparative study of the immunizing ability of some attenuated strains of sheep pox virus and of a sensitizing vaccine. Rev. Sci. Tech. 19(3), 773–783 (2000).
  • Balinsky CA, Delhon G, Afonso CL et al. Sheeppox virus kelch-like gene SPPV-019 affects virus virulence. J. Virol. 81(20), 11392–11401 (2007).
  • Weiss KE. Lumpy skin disease. In: Virology Monographs. Springer Verlag, NY, USA, 3, 111–131 (1968).
  • Capstick PB, Coakley W. Protection of cattle against lumpy skin disease. Trials with a vaccine against Neethling type infection. Res. Vet. Sci. 2, 362–368 (1961).
  • Kitching RP. Vaccines for lumpy skin disease, sheep pox and goat pox. Dev. Biol. (Basel). 114, 161–167 (2003).
  • Yeruham I, Perl S, Nyska A et al. Adverse reactions in cattle to a capripox vaccine. Vet. Rec. 135(14), 330–332 (1994).
  • Hunter P, Wallace D. Lumpy skin disease in southern Africa: a review of the disease and aspects of control. J. S. Afr. Vet. Assoc. 72(2), 68–71 (2001).
  • Kadymov RA. Combined immunization of sheep against anthrax, sheep pox and clostridial infections. Vet. Moscow 2, 50–52 (1975).
  • Chaudhary SS, Pandey KD, Singh RP, Verma PC, Gupta PK. A vero cell derived combined vaccine against sheep pox and Peste des Petits ruminants for sheep. Vaccine 27(19), 2548–2553 (2009).
  • Chandran D, Naidu SS, Sugumar P et al. Development of a recombinant epsilon toxoid vaccine against enterotoxemia and its use as a combination vaccine with live attenuated sheep pox virus against enterotoxemia and sheep pox. Clin. Vaccine Immunol. 17(6), 1013–1016 (2010).
  • Matrencher A, Zoyem N, Diallo A. Experimental study of a mixed vaccine against Peste des petits ruminants and capripox infection in goats in northern Cameroon. Small Ruminant Res. 26, 39–44 (1997).
  • Hosamani M, Singh SK, Mondal B et al. A bivalent vaccine against goat pox and Peste des Petits ruminants induces protective immune response in goats. Vaccine 24(35–36), 6058–6064 (2006).
  • Saravanan P, Balamurugan V, Sen A et al. Mixed infection of peste des petits ruminants and orf on a goat farm in Shahjahanpur, India. Vet. Rec. 160(12), 410–412 (2007).
  • Singh RP, Saravanan P, Sreenivasa BP, Shah LC, Singh RK, Bandyopadhyay SK. Comparison of diagnostic efficacy of a monoclonal antibody-based competitive ELISA test with a similar commercial test for the detection of antibodies to Peste des Petits Ruminants (PPR) virus. Vet. Res. Commun. 30(3), 325–330 (2006).
  • Bhanuprakash V, Hosamani M, Sominder J, Nitul K, Singh RK. Detection of goat pox antibodies: comparative efficacy of indirect ELISA and counterimmunoelectrophoresis. J. Appl. Anim. Res. 30, 177–180 (2006).
  • Babiuk S, Wallace DB, Smith SJ et al. Detection of antibodies against capripoxviruses using an inactivated sheeppox virus ELISA. Transbound. Emerg. Dis. 56(4), 132–141 (2009).
  • Bhanot V, Balamurugan V, Bhanuprakash V et al. Expression of P32 protein of goatpox virus in Pichia pastoris and its potential use as a diagnostic antigen in ELISA. J. Virol. Methods 162(1–2), 251–257 (2009).
  • Gershon PD, Kitching RP, Hammond JM, Black DN. Poxvirus genetic recombination during natural virus transmission. J. Gen. Virol. 70(Pt 2), 485–489 (1989).
  • Serruto D, Adu-Bobie J, Capecchi B, Rappuoli R, Pizza M, Masignani V. Biotechnology and vaccines: application of functional genomics to Neisseria meningitidis and other bacterial pathogens. J. Biotechnol. 113(1–3), 15–32 (2004).
  • Rai A, Goel AC, Pandey KD, Mishra SC, Gupta BK. Immunogenicity of a virion polypeptide of sheep poxvirus in sheep. Indian J. Virol. 2(1), 11–15 (1986).
  • Carn VM, Timms CP, Chand P, Black DN, Kitching RP. Protection of goats against capripox using a subunit vaccine. Vet. Rec. 135(18), 434–436 (1994).
  • Berhe G, Minet C, Le Goff C et al. Development of a dual recombinant vaccine to protect small ruminants against peste-des-petits-ruminants virus and capripoxvirus infections. J. Virol. 77(2), 1571–1577 (2003).
  • Diallo A, Minet C, Berhe G et al. Goat immune response to capripox vaccine expressing the hemagglutinin protein of peste des petits ruminants. Ann. NY Acad. Sci. 969, 88–91 (2002).
  • Chen W, Qu L, Hu S et al. [Recombinant goat pox virus expressing PPRV H protein]. Sheng Wu Gong Cheng Xue Bao 25(4), 496–502 (2009).
  • Chen W, Hu S, Qu L et al. A goat poxvirus-vectored peste-des-petits-ruminants vaccine induces long-lasting neutralization antibody to high levels in goats and sheep. Vaccine 28(30), 4742–4750 (2010).
  • Romero CH, Barrett T, Kitching RP, Bostock C, Black DN. Protection of goats against peste des petits ruminants with recombinant capripoxviruses expressing the fusion and haemagglutinin protein genes of rinderpest virus. Vaccine 13(1), 36–40 (1995).
  • Romero CH, Barrett T, Evans SA et al. Single capripoxvirus recombinant vaccine for the protection of cattle against rinderpest and lumpy skin disease. Vaccine 11(7), 737–742 (1993).
  • Romero CH, Barrett T, Kitching RP, Carn VM, Black DN. Protection of cattle against rinderpest and lumpy skin disease with a recombinant capripoxvirus expressing the fusion protein gene of rinderpest virus. Vet. Rec. 135(7), 152–154 (1994).
  • Romero CH, Barrett T, Chamberlain RW, Kitching RP, Fleming M, Black DN. Recombinant capripoxvirus expressing the hemagglutinin protein gene of rinderpest virus: protection of cattle against rinderpest and lumpy skin disease viruses. Virology 204(1), 425–429 (1994).
  • Ngichabe CK, Wamwayi HM, Barrett T, Ndungu EK, Black DN, Bostock CJ. Trial of a capripoxvirus-rinderpest recombinant vaccine in African cattle. Epidemiol. Infect. 118(1), 63–70 (1997).
  • Ngichabe CK, Wamwayi HM, Ndungu EK et al. Long term immunity in African cattle vaccinated with a recombinant capripox-rinderpest virus vaccine. Epidemiol. Infect. 128(2), 343–349 (2002).
  • Wade-Evans AM, Romero CH, Mellor P et al. Expression of the major core structural protein (VP7) of bluetongue virus, by a recombinant capripox virus, provides partial protection of sheep against a virulent heterotypic bluetongue virus challenge. Virology 220(1), 227–231 (1996).
  • Aspden K, van Dijk AA, Bingham J, Cox D, Passmore JA, Williamson AL. Immunogenicity of a recombinant lumpy skin disease virus (neethling vaccine strain) expressing the rabies virus glycoprotein in cattle. Vaccine 20(21–22), 2693–2701 (2002).
  • van der Leek ML, Feller JA, Sorensen G et al. Evaluation of swinepox virus as a vaccine vector in pigs using an Aujeszky’s disease (pseudorabies) virus gene insert coding for glycoproteins gp50 and gp63. Vet. Rec. 134(1), 13–18 (1994).
  • Winslow BJ, Cochran MD, Holzenburg A, Sun J, Junker DE, Collisson EW. Replication and expression of a swinepox virus vector delivering feline leukemia virus Gag and Env to cell lines of swine and feline origin. Virus Res. 98(1), 1–15 (2003).
  • Winslow BJ, Kalabat DY, Brown SM, Cochran MD, Collisson EW. Feline B7.1 and B7.2 proteins produced from swinepox virus vectors are natively processed and biologically active: potential for use as non chemical adjuvants. Vet. Microbiol. 111(1–2), 1–13 (2005).
  • Tripathy DN. Swinepox virus as a vaccine vector for swine pathogens. Adv. Vet. Med. 41, 463–480 (1999).
  • Xu J, Huang D, Liu S et al. Immune responses and protection efficacy of a recombinant swinepox virus expressing HA1 against swine H3N2 influenza virus in mice and pigs. Virus Res. 167(2), 188–195 (2012).
  • Xu J, Huang D, Liu S et al. Immune responses and protective efficacy of a recombinant swinepox virus expressing HA1 against swine H1N1 influenza virus in mice and pigs. Vaccine 30(20), 3119–3125 (2012).
  • Huang D, Zhu H, Lin H, Xu J, Lu C. First insights into the protective effects of a recombinant swinepox virus expressing truncated MRP of Streptococcus suis type 2 in mice. Berl. Munch. Tierarztl. Wochenschr. 125(3–4), 144–152 (2012).
  • Kitching P. Capripoxviruses. In: Encyclopedia of Virology (3rd Edition). Mahy BWJ, van Regenmortel MHV (Eds). Elsevier Academic Press, CA, USA, 427–432 (2008).
  • Kitching RP. Progress towards sheep and goat pox vaccines. Vaccine 1, 4–9 (1983).
  • Kitching RP, Taylor WP. Clinical and antigenic relationship between isolates of sheep and goat pox viruses. Trop. Anim. Health Prod. 17(2), 64–74 (1985).
  • Munz EK, Owen NC. Electron microscopic studies on lumpy skin disease virus type ‘Neethling’. Onderstepoort J. Vet. Res. 33(1), 3–8 (1966).
  • Muzichin SI, Ali B, EI HA. Study of sheep pox in the Sudan. Bull. Anim. Health Prod. Africa. 27(2), 105–112 (1979).
  • Dashteseren T, Solovyev BY, Varejka F, Khokhoo A. Camel contagious ecthyma (Pustular dermatitis). Acta Virol. 28, 122 (1984).
  • Robinson AJ, Mercer AA. Orf virus and vaccinia virus do not cross-protect sheep. Arch. Virol. 101(3–4), 255–259 (1988).
  • Slobod KS, Lockey TD, Howlett N et al. Subcutaneous administration of a recombinant vaccinia virus vaccine expressing multiple envelopes of HIV-1. Eur. J. Clin. Microbiol. Infect. Dis. 23(2), 106–110 (2004).
  • Davies FG. Lumpy Skin Disease: A Capripox Virus Infection of Cattle in Africa. FAO, Rome, Italy (1991).
  • Hanna W. In studies in smallpox and vaccination. Rev. Med. Virol. 12, 176–189 (1913).
  • Pütz MM, Alberini I, Midgley CM, Manini I, Montomoli E, Smith GL. Prevalence of antibodies to Vaccinia virus after smallpox vaccination in Italy. J. Gen. Virol. 86(Pt 11), 2955–2960 (2005).
  • Hosamani M, Scagliarini A, Bhanuprakash V, McInnes CJ, Singh RK. Orf: an update on current research and future perspectives. Expert Rev. Anti. Infect. Ther. 7(7), 879–893 (2009).
  • Benning N, Hassett DE. Vaccinia virus infection during murine pregnancy: a new pathogenesis model for vaccinia fetalis. J. Virol. 78(6), 3133–3139 (2004).
  • Levine MM. Live-virus vaccines in pregnancy. Risks and recommendations. Lancet 2(7871), 34–38 (1974).
  • Hassett DE. Smallpox infections during pregnancy, lessons on pathogenesis from nonpregnant animal models of infection. J. Reprod. Immunol. 60(1), 13–24 (2003).
  • Irons PC, Tuppurainen ES, Venter EH. Excretion of lumpy skin disease virus in bull semen. Theriogenology 63(5), 1290–1297 (2005).
  • Osuagwuh UI, Bagla V, Venter EH, Annandale CH, Irons PC. Absence of lumpy skin disease virus in semen of vaccinated bulls following vaccination and subsequent experimental infection. Vaccine 25(12), 2238–2243 (2007).
  • Sambyal DS, Singh IP. A short note on sheep pox virus soluble antigens studied by immunodiffusion. Zentralblatt Veterinarmedizin. Reihe B 27(4), 340–343 (1980).
  • Murray M, Martin WB, Köylü A. Experimental sheep pox. A histological and ultrastructural study. Res. Vet. Sci. 15(2), 201–208 (1973).
  • Srivastava RN, Singh IP. Preliminary characterization of sheep immunoglobulins against sheep pox virus. Indian J. Exp. Biol. 18(2), 129–131 (1980).
  • Kroon EG, Mota BE, Abrahão JS, da Fonseca FG, de Souza Trindade G. Zoonotic Brazilian Vaccinia virus: from field to therapy. Antiviral Res. 92(2), 150–163 (2011).
  • Bhanuprakash V, Hosamani M, Balamurugan V et al. In vitro antiviral activity of plant extracts on goatpox virus replication. Indian J. Exp. Biol. 46(2), 120–127 (2008).
  • Bhanuprakash V, Hosamani M, Balamurgan V, Singh RK, Swarup D. In vitro antiviral activity of Eugenia jambolana plant extract on buffalopox virus: conventional and qPCR methods. Int. J. Trop. Med. 2, 3–9 (2007).
  • Dave RS, McGettigan JP, Qureshi T, Schnell MJ, Nunnari G, Pomerantz RJ. siRNA targeting vaccinia virus double-stranded RNA binding protein [E3L] exerts potent antiviral effects. Virology 348(2), 489–497 (2006).
  • Vigne S, Germi R, Duraffour S et al. Specific inhibition of orthopoxvirus replication by a small interfering RNA targeting the D5R gene. Antivir. Ther. (Lond.) 13(3), 357–368 (2008).
  • Vigne S, Duraffour S, Andrei G, Snoeck R, Garin D, Crance JM. Inhibition of vaccinia virus replication by two small interfering RNAs targeting B1R and G7L genes and their synergistic combination with cidofovir. Antimicrob. Agents Chemother. 53(6), 2579–2588 (2009).
  • Alkhalil A, Strand S, Mucker E, Huggins JW, Jahrling PB, Ibrahim SM. Inhibition of monkeypox virus replication by RNA interference. Virol. J. 6, 188 (2009).
  • Zhao Z, Wu G, Zhu X et al. RNA interference targeting virion core protein ORF095 inhibits Goatpox virus replication in Vero cells. Virol. J. 9, 48 (2012).
  • Ball LA. High-frequency homologous recombination in vaccinia virus DNA. J. Virol. 61(6), 1788–1795 (1987).
  • Strayer DS, Cabirac G, Sell S, Leibowitz JL. Malignant rabbit fibroma virus: observations on the culture and histopathologic characteristics of a new virus-induced rabbit tumor. J. Natl Cancer Inst. 71(1), 91–104 (1983).
  • Vliegen I, Yang G, Hruby D, Jordan R, Neyts J. Deletion of the vaccinia virus F13L gene results in a highly attenuated virus that mounts a protective immune response against subsequent vaccinia virus challenge. Antiviral Res. 93(1), 160–166 (2012).
  • Bhanuprakash V, Hosamani M, Singh RK. Prospects of control and eradication of capripox from the Indian subcontinent: a perspective. Antiviral Res. 91(3), 225–232 (2011).
  • Ramírez JC, Tapia E, Esteban M. Administration to mice of a monoclonal antibody that neutralizes the intracellular mature virus form of vaccinia virus limits virus replication efficiently under prophylactic and therapeutic conditions. J. Gen. Virol. 83(Pt 5), 1059–1067 (2002).
  • Elizabeth S, Williams BIA. Infectious Diseases of Wild Mammals, Third Edition. Wiley-Blackwell, NJ, USA, 558 (2001).

Patent

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.